Necessity of Pelvic Lymph Node Irradiation in Patients with Recurrent Prostate Cancer after Radical Prostatectomy in the PSMA PET/CT Era: A Narrative Review
Abstract
:1. Development of PSMA PET/CT Scan
2. Nodal Metastasis Detection by PET Scan
3. Nodal Irradiation in PSMA-Positive Patients
4. Nodal Irradiation in PSMA-Negative Patients
5. Extent of the Nodal Irradiation Target Volume in RPCa Patients
6. Conclusions
7. Future Perspective
8. Executive Summary or Practice Points
- The conventional imaging methods, including MRI and CT scanning, have limited diagnostic accuracy for LN involvement in patients with PCa. In the past few years, the development of PSMA PET, with high positive and negative predictive values, has transformed the diagnostic and therapeutic approaches to PCa. Although, in the case of negative PSMA PET results and positive MRI results, we should take the more conservative action and identify the given node as malignant.
- Several studies have suggested changes in the therapeutic plans of patients, especially in cases with LN involvement, according to the PSMA PET/CT scan results. The involved nodes may change the target volume of RT or the dissection field.
- The treatment of all LNs detected on PSMA PET using RT and ADT showed improved BCR-free survival in 83% of patients, thereby confirming the selection of treatment based on the PET/CT scan results. When irradiating these cases, it would be best to dose-escalate the positive node as much as safely possible, considering the availability of IGRT using IMRT/VMAT or SBRT techniques. This approach is currently being applied in the PEACE-V-STORM trial.
- Patients with PSMA-negative LNs had a lower PSA than those with PSMA-positive LNs, suggesting a better prognosis in this group. However, the likelihood of salvage LNRT and ADT was higher in the PSMA-positive patients compared to the PSMA-negative patients.
- Negative 68Ga-PSMA PET/CT, as the basis for not performing pelvic LND, may avoid unnecessary LND treatments in about 2/3 of the patients since only 24% of the PSMA-negative patients were found to be positive histologically.
- Leaving patients with BCR and PSMA-negative LN without treatment may harbor a remarkable risk of disease progression since in a some of the patients clinical RPCa was detected in the prostatic fossa (45.6%), nodes (38.6%), and bone (15.8%) during a median follow-up of 15.4 months. It is encouraged to use a risk scoring system for decision-making about the treatment of PSMA-negative patients. This system routinely includes the primary T status and the extent of LND and positive nodes at the primary surgery, the PSA doubling time, and GS.
- Strong responses to treatment (salvage LNRT) and increased PSA levels in 65% of PSMA-negative patients highlight the value of treatment in these patients. This evidence suggests the low sensitivity of PSMA PET/CT in the diagnosis of micro-metastasis (<3–4 mm LNs). The availability of newer and safer RT techniques and the results of the recently published SPPORT trial encourage more radiation oncologists to electively irradiate the clinically negative nodes based on the new proposed LN delineation guidelines. This treatment has a high efficacy and a very low toxicity.
- The results of evaluating RPCa in patients using 68Ga-PSMA PET/CT showed a positive LN outside the CTV in 30–68.75% of cases, according to the RTOG guidelines. These findings suggest larger target volumes are required for targeting the occult relapse. The major uncovered areas included the para-aortal, perirectal, paravesical, preacetabular, presacral, and inguinal regions.
- Note that the pattern of the LN involvement of patients with RPCa differs from those with primary cancer; hence, guidelines should be provided to define the RT extent in RPCa patients.
- Newer radionuclide tracers are currently under development that could show the microscopic disease in small LNs and with lower PSA levels. These tracers have yet to become standard in routine clinical practice.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hövels, A.; Heesakkers, R.; Adang, E.; Jager, G.; Strum, S.; Hoogeveen, Y.; Severens, J.; Barentsz, J. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: A meta-analysis. Clin. Radiol. 2008, 63, 387–395. [Google Scholar] [CrossRef]
- Cheung, D.C.; Fleshner, N.; Sengupta, S.; Woon, D. A narrative review of pelvic lymph node dissection in prostate cancer. Transl. Androl. Urol. 2020, 9, 3049. [Google Scholar] [CrossRef]
- Fossati, N.; Willemse, P.-P.M.; Van den Broeck, T.; van den Bergh, R.C.; Yuan, C.Y.; Briers, E.; Bellmunt, J.; Bolla, M.; Cornford, P.; De Santis, M. The benefits and harms of different extents of lymph node dissection during radical prostatectomy for prostate cancer: A systematic review. Eur. Urol. 2017, 72, 84–109. [Google Scholar] [CrossRef] [PubMed]
- Jackson, P.F.; Cole, D.C.; Slusher, B.S.; Stetz, S.L.; Ross, L.E.; Donzanti, B.A.; Trainor, D.A. Design, synthesis, and biological activity of a potent inhibitor of the neuropeptidase N-acetylated α-linked acidic dipeptidase. J. Med. Chem. 1996, 39, 619–622. [Google Scholar] [CrossRef] [PubMed]
- Carter, R.E.; Feldman, A.R.; Coyle, J.T. Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc. Natl. Acad. Sci. USA 1996, 93, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Linxweiler, J.; Saar, M.; Al-Kailani, Z.; Janssen, M.; Ezziddin, S.; Stöckle, M.; Siemer, S.; Ohlmann, C.-H. Robotic salvage lymph node dissection for nodal-only recurrences after radical prostatectomy: Perioperative and early oncological outcomes. Surg. Oncol. 2018, 27, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Herlemann, A.; Kretschmer, A.; Buchner, A.; Karl, A.; Tritschler, S.; El-Malazi, L.; Fendler, W.P.; Wenter, V.; Ilhan, H.; Bartenstein, P. Salvage lymph node dissection after 68Ga-PSMA or 18F-FEC PET/CT for nodal recurrence in prostate cancer patients. Oncotarget 2017, 8, 84180. [Google Scholar] [CrossRef] [Green Version]
- Brogsitter, C.; Zöphel, K.; Kotzerke, J. 18F-Choline, 11C-choline and 11C-acetate PET/CT: Comparative analysis for imaging prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 18–27. [Google Scholar] [CrossRef]
- Nanni, C.; Zanoni, L.; Pultrone, C.; Schiavina, R.; Brunocilla, E.; Lodi, F.; Malizia, C.; Ferrari, M.; Rigatti, P.; Fonti, C. 18F-FACBC (anti1-amino-3-18F-fluorocyclobutane-1-carboxylic acid) versus 11C-choline PET/CT in prostate cancer relapse: Results of a prospective trial. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1601–1610. [Google Scholar] [CrossRef]
- Foss, C.A.; Mease, R.C.; Cho, S.Y.; Kim, H.J.; Pomper, M.G. GCPII imaging and cancer. Curr. Med. Chem. 2012, 19, 1346–1359. [Google Scholar] [CrossRef]
- Sheikhbahaei, S.; Afshar-Oromieh, A.; Eiber, M.; Solnes, L.B.; Javadi, M.S.; Ross, A.E.; Pienta, K.J.; Allaf, M.E.; Haberkorn, U.; Pomper, M.G. Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 2117–2136. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.R.; Foss, C.A.; Castanares, M.; Mease, R.C.; Byun, Y.; Fox, J.J.; Hilton, J.; Lupold, S.E.; Kozikowski, A.P.; Pomper, M.G. Synthesis and evaluation of technetium-99m-and rhenium-labeled inhibitors of the prostate-specific membrane antigen (PSMA). J. Med. Chem. 2008, 51, 4504–4517. [Google Scholar] [CrossRef] [Green Version]
- Bluemel, C.; Krebs, M.; Polat, B.; Linke, F.; Eiber, M.; Samnick, S.; Lapa, C.; Lassmann, M.; Riedmiller, H.; Czernin, J. 68Ga-PSMA-PET/CT in patients with biochemical prostate cancer recurrence and negative 18F-choline-PET/CT. Clin. Nucl. Med. 2016, 41, 515. [Google Scholar] [CrossRef] [Green Version]
- Eder, M.; Schäfer, M.; Bauder-Wüst, U.; Hull, W.-E.; Wängler, C.; Mier, W.; Haberkorn, U.; Eisenhut, M. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug. Chem. 2012, 23, 688–697. [Google Scholar] [CrossRef]
- Chen, Y.; Pullambhatla, M.; Foss, C.A.; Byun, Y.; Nimmagadda, S.; Senthamizhchelvan, S.; Sgouros, G.; Mease, R.C.; Pomper, M.G. 2-(3-{1-Carboxy-5-[(6-[18F] fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F] DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin. Cancer Res. 2011, 17, 7645–7653. [Google Scholar] [CrossRef] [Green Version]
- Morigi, J.J.; Stricker, P.D.; van Leeuwen, P.J.; Tang, R.; Ho, B.; Nguyen, Q.; Hruby, G.; Fogarty, G.; Jagavkar, R.; Kneebone, A. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J. Nucl. Med. 2015, 56, 1185–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afshar-Oromieh, A.; Hetzheim, H.; Kratochwil, C.; Benesova, M.; Eder, M.; Neels, O.C.; Eisenhut, M.; Kübler, W.; Holland-Letz, T.; Giesel, F.L. The theranostic PSMA ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: Biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions. J. Nucl. Med. 2015, 56, 1697–1705. [Google Scholar] [CrossRef] [Green Version]
- Giesel, F.L.; Hadaschik, B.; Cardinale, J.; Radtke, J.; Vinsensia, M.; Lehnert, W.; Kesch, C.; Tolstov, Y.; Singer, S.; Grabe, N. F-18 labelled PSMA-1007: Biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 678–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choyke, P.L.; Bouchelouche, K. Prostate specific membrane antigen (PSMA) imaging: The past is prologue. Transl. Androl. Urol. 2019, 8, 283. [Google Scholar] [CrossRef]
- Murphy, D.G.; Sweeney, C.J.; Tombal, B. “ Gotta Catch’em All”, or Do We? Pokemet Approach to Metastatic Prostate Cancer. Eur. Urol. 2017, 72, 1–3. [Google Scholar] [CrossRef]
- Hope, T.A.; Afshar-Oromieh, A.; Eiber, M.; Emmett, L.; Fendler, W.P.; Lawhn-Heath, C.; Rowe, S.P. Imaging prostate cancer with PSMA PET/CT and PET/MRI: Current and future applications. AJR. Am. J. Roentgenol. 2018, 211, 286. [Google Scholar] [CrossRef] [PubMed]
- Fendler, W.P.; Calais, J.; Eiber, M.; Flavell, R.R.; Mishoe, A.; Feng, F.Y.; Nguyen, H.G.; Reiter, R.E.; Rettig, M.B.; Okamoto, S. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: A prospective single-arm clinical trial. JAMA Oncol. 2019, 5, 856–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perera, M.; Papa, N.; Christidis, D.; Wetherell, D.; Hofman, M.S.; Murphy, D.G.; Bolton, D.; Lawrentschuk, N. Sensitivity, specificity, and predictors of positive 68Ga–prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: A systematic review and meta-analysis. Eur. Urol. 2016, 70, 926–937. [Google Scholar] [CrossRef] [PubMed]
- Rahman, L.A.; Rutagengwa, D.; Lin, P.; Lin, M.; Yap, J.; Lai, K.; Mancuso, P.; Rathore, P.; Haghighi, K.; Gassner, P. High negative predictive value of 68Ga PSMA PET-CT for local lymph node metastases in high risk primary prostate cancer with histopathological correlation. Cancer Imaging 2019, 19, 86. [Google Scholar] [CrossRef] [Green Version]
- Sprute, K.; Kramer, V.; Koerber, S.A.; Meneses, M.; Fernandez, R.; Soza-Ried, C.; Eiber, M.; Weber, W.A.; Rauscher, I.; Rahbar, K. Diagnostic Accuracy of 18F-PSMA-1007 PET/CT Imaging for Lymph Node Staging of Prostate Carcinoma in Primary and Biochemical Recurrence. J. Nucl. Med. 2021, 62, 208–213. [Google Scholar] [CrossRef]
- Maurer, T.; Gschwend, J.E.; Rauscher, I.; Souvatzoglou, M.; Haller, B.; Weirich, G.; Wester, H.-J.; Heck, M.; Kübler, H.; Beer, A.J. Diagnostic efficacy of 68gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J. Urol. 2016, 195, 1436–1443. [Google Scholar] [CrossRef]
- Herlemann, A.; Wenter, V.; Kretschmer, A.; Thierfelder, K.M.; Bartenstein, P.; Faber, C.; Gildehaus, F.-J.; Stief, C.G.; Gratzke, C.; Fendler, W.P. 68Ga-PSMA positron emission tomography/computed tomography provides accurate staging of lymph node regions prior to lymph node dissection in patients with prostate cancer. Eur. Urol. 2016, 70, 553–557. [Google Scholar] [CrossRef]
- Jilg, C.A.; Drendel, V.; Rischke, H.C.; Beck, T.; Vach, W.; Schaal, K.; Wetterauer, U.; Schultze-Seemann, W.; Meyer, P.T. Diagnostic accuracy of Ga-68-HBED-CC-PSMA-ligand-PET/CT before salvage lymph node dissection for recurrent prostate cancer. Theranostics 2017, 7, 1770. [Google Scholar] [CrossRef]
- Hope, T.A.; Eiber, M.; Armstrong, W.R.; Juarez, R.; Murthy, V.; Lawhn-Heath, C.; Behr, S.C.; Zhang, L.; Barbato, F.; Ceci, F. Diagnostic accuracy of 68Ga-PSMA-11 PET for pelvic nodal metastasis detection prior to radical prostatectomy and pelvic lymph node dissection: A multicenter prospective phase 3 imaging trial. JAMA Oncol. 2021, 7, 1635–1642. [Google Scholar] [CrossRef]
- Van Leeuwen, P.J.; Donswijk, M.; Nandurkar, R.; Stricker, P.; Ho, B.; Heijmink, S.; Wit, E.M.; Tillier, C.; van Muilenkom, E.; Nguyen, Q. Gallium-68-prostate-specific membrane antigen (68Ga-PSMA) positron emission tomography (PET)/computed tomography (CT) predicts complete biochemical response from radical prostatectomy and lymph node dissection in intermediate-and high-risk prostate cancer. BJU Int. 2019, 124, 62–68. [Google Scholar] [CrossRef]
- Corona-Montes, V.; González-Cuenca, E.; Fernández-Noyola, G.; Olarte-Casas, M.; Bobadilla-Salazar, D.; Medrano-Urtecho, H.; Asimakopoulos, A. Primary lymph-node staging with 68Ga-PSMA PET in high-risk prostate cancer: Pathologic correlation with extended pelvic lymphadenectomy specimens. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 494.e1–494.e6. [Google Scholar] [CrossRef] [PubMed]
- Perry, E.; Talwar, A.; Taubman, K.; Ng, M.; Wong, L.-M.; Booth, R.; Sutherland, T.R. [18F] DCFPyL PET/CT in detection and localization of recurrent prostate cancer following prostatectomy including low PSA < 0.5 ng/mL. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2038–2046. [Google Scholar]
- Roach, P.J.; Francis, R.; Emmett, L.; Hsiao, E.; Kneebone, A.; Hruby, G.; Eade, T.; Nguyen, Q.A.; Thompson, B.D.; Cusick, T. The impact of 68Ga-PSMA PET/CT on management intent in prostate cancer: Results of an Australian prospective multicenter study. J. Nucl. Med. 2018, 59, 82–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewes, S.; Schiller, K.; Sauter, K.; Eiber, M.; Maurer, T.; Schwaiger, M.; Gschwend, J.E.; Combs, S.E.; Habl, G. Integration of 68 Ga-PSMA-PET imaging in planning of primary definitive radiotherapy in prostate cancer: A retrospective study. Radiat. Oncol. 2016, 11, 73. [Google Scholar] [CrossRef] [Green Version]
- Onal, C.; Torun, N.; Akyol, F.; Guler, O.C.; Hurmuz, P.; Yildirim, B.A.; Caglar, M.; Reyhan, M.; Ozyigit, G. Integration of 68Ga-PSMA-PET/CT in radiotherapy planning for prostate cancer patients. Clin. Nucl. Med. 2019, 44, e510–e516. [Google Scholar] [CrossRef] [PubMed]
- Sterzing, F.; Kratochwil, C.; Fiedler, H.; Katayama, S.; Habl, G.; Kopka, K.; Afshar-Oromieh, A.; Debus, J.; Haberkorn, U.; Giesel, F.L. 68 Ga-PSMA-11 PET/CT: A new technique with high potential for the radiotherapeutic management of prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Donswijk, M.L.; van Leeuwen, P.J.; Vegt, E.; Cheung, Z.; Heijmink, S.W.; van der Poel, H.G.; Stokkel, M.P. Clinical impact of PSMA PET/CT in primary prostate cancer compared to conventional nodal and distant staging: A retrospective single center study. BMC Cancer 2020, 20, 723. [Google Scholar] [CrossRef]
- Bottke, D.; Miksch, J.; Thamm, R.; Krohn, T.; Bartkowiak, D.; Beer, M.; Bolenz, C.; Beer, A.J.; Prasad, V.; Wiegel, T. Changes of Radiation Treatment Concept Based on 68Ga-PSMA-11-PET/CT in Early PSA-Recurrences After Radical Prostatectomy. Front. Oncol. 2021, 11, 1864. [Google Scholar] [CrossRef]
- Afshar-Oromieh, A.; Debus, N.; Uhrig, M.; Hope, T.A.; Evans, M.J.; Holland-Letz, T.; Giesel, F.L.; Kopka, K.; Hadaschik, B.; Kratochwil, C. Impact of long-term androgen deprivation therapy on PSMA ligand PET/CT in patients with castration-sensitive prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2045–2054. [Google Scholar] [CrossRef] [Green Version]
- Emmett, L.; Yin, C.; Crumbaker, M.; Hruby, G.; Kneebone, A.; Epstein, R.; Nguyen, Q.; Hickey, A.; Ihsheish, N.; O’Neill, G. Rapid modulation of PSMA expression by androgen deprivation: Serial 68Ga-PSMA-11 PET in men with hormone-sensitive and castrate-resistant prostate cancer commencing androgen blockade. J. Nucl. Med. 2019, 60, 950–954. [Google Scholar] [CrossRef] [Green Version]
- Bravi, C.A.; Fossati, N.; Gandaglia, G.; Suardi, N.; Mazzone, E.; Robesti, D.; Osmonov, D.; Juenemann, K.-P.; Boeri, L.; Karnes, R.J. Long-term outcomes of salvage lymph node dissection for nodal recurrence of prostate cancer after radical prostatectomy: Not as good as previously thought. Eur. Urol. 2020, 78, 661–669. [Google Scholar] [CrossRef]
- Bravi, C.A.; Fossati, N.; Gandaglia, G.; Suardi, N.; Mazzone, E.; Robesti, D.; Osmonov, D.; Juenemann, K.-P.; Boeri, L.; Karnes, R.J. Assessing the best surgical template at salvage pelvic lymph node dissection for nodal recurrence of prostate cancer after radical prostatectomy: When can bilateral dissection be omitted? Results from a multi-institutional series. Eur. Urol. 2020, 78, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Bashir, U.; Tree, A.; Mayer, E.; Levine, D.; Parker, C.; Dearnaley, D.; Oyen, W.J. Impact of Ga-68-PSMA PET/CT on management in prostate cancer patients with very early biochemical recurrence after radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 901–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, M.; Hughes, S.; Mallia, A.; Gibson, V.; Young, J.; Aggarwal, A.; Morris, S.; Challacombe, B.; Popert, R.; Brown, C. The management impact of 68 gallium-tris (hydroxypyridinone) prostate-specific membrane antigen (68 Ga-THP-PSMA) PET-CT imaging for high-risk and biochemically recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 674–686. [Google Scholar] [CrossRef] [Green Version]
- Ploussard, G.; Gandaglia, G.; Borgmann, H.; De Visschere, P.; Heidegger, I.; Kretschmer, A.; Mathieu, R.; Surcel, C.; Tilki, D.; Tsaur, I. Salvage lymph node dissection for nodal recurrent prostate cancer: A systematic review. Eur. Urol. 2019, 76, 493–504. [Google Scholar] [CrossRef] [PubMed]
- De Bleser, E.; Tran, P.T.; Ost, P. Radiotherapy as metastasis-directed therapy for oligometastatic prostate cancer. Curr. Opin. Urol. 2017, 27, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Rogowski, P.; Trapp, C.; von Bestenbostel, R.; Eze, C.; Ganswindt, U.; Li, M.; Unterrainer, M.; Zacherl, M.J.; Ilhan, H.; Beyer, L. Outcome after PSMA-PET/CT-based salvage radiotherapy for nodal recurrence after radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging 2021, 49, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Von Eyben, F.E.; Soydal, C.; von Eyben, R. 68Ga-PSMA PET/CT for Patients with PSA Relapse after Radical Prostatectomy or External Beam Radiotherapy. Diagnostics 2021, 11, 622. [Google Scholar] [CrossRef]
- Porres, D.; Pfister, D.; Thissen, A.; Kuru, T.; Zugor, V.; Buettner, R.; Knuechel, R.; Verburg, F.; Heidenreich, A. The role of salvage extended lymph node dissection in patients with rising PSA and PET/CT scan detected nodal recurrence of prostate cancer. Prostate Cancer Prostatic Dis. 2017, 20, 85–92. [Google Scholar] [CrossRef]
- Henkenberens, C.; Von Klot, C.A.; Ross, T.L.; Bengel, F.M.; Wester, H.-J.; HÜPER, K.; Christiansen, H.; Derlin, T. 68Ga-PSMA ligand PET/CT-based radiotherapy for lymph node relapse of prostate cancer after primary therapy delays initiation of systemic therapy. Anticancer Res. 2017, 37, 1273–1279. [Google Scholar]
- Fossati, N.; Suardi, N.; Gandaglia, G.; Bravi, C.A.; Soligo, M.; Karnes, R.J.; Shariat, S.; Battaglia, A.; Everaerts, W.; Joniau, S. Identifying the optimal candidate for salvage lymph node dissection for nodal recurrence of prostate cancer: Results from a large, multi-institutional analysis. Eur. Urol. 2019, 75, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Hegemann, N.-S.; Buchner, A.; Eze, C.; Rogowski, P.; Schaefer, C.; Ilhan, H.; Li, M.; Fendler, W.P.; Bartenstein, P.; Ganswindt, U. PSMA-positive nodal recurrence in prostate cancer: Salvage radiotherapy is superior to salvage lymph node dissection in retrospective analysis. Strahlenther. Und Onkol. 2020, 196, 637. [Google Scholar] [CrossRef] [PubMed]
- Kretschmer, A.; Milow, J.; Eze, C.; Buchner, A.; Li, M.; Westhofen, T.; Fuchs, F.; Rogowski, P.; Trapp, C.; Ganswindt, U. Patient-Reported and Oncological Outcomes of Salvage Therapies for PSMA-Positive Nodal Recurrent Prostate Cancer: Real-Life Experiences and Implications for Future Trial Design. Front. Oncol. 2021, 11, 2408. [Google Scholar] [CrossRef] [PubMed]
- Hijazi, S.; Meller, B.; Leitsmann, C.; Strauss, A.; Meller, J.; Ritter, C.; Lotz, J.; Schildhaus, H.U.; Trojan, L.; Sahlmann, C. Pelvic lymph node dissection for nodal oligometastatic prostate cancer detected by 68Ga-PSMA-positron emission tomography/computerized tomography. Prostate 2015, 75, 1934–1940. [Google Scholar] [CrossRef]
- Pereira Mestre, R.; Treglia, G.; Ferrari, M.; Pascale, M.; Mazzara, C.; Azinwi, N.C.; Llado’, A.; Stathis, A.; Giovanella, L.; Roggero, E. Correlation between PSA kinetics and PSMA-PET in prostate cancer restaging: A meta-analysis. Eur. J. Clin. Investig. 2019, 49, e13063. [Google Scholar] [CrossRef]
- Farolfi, A.; Ilhan, H.; Gafita, A.; Calais, J.; Barbato, F.; Weber, M.; Afshar-Oromieh, A.; Spohn, F.; Wetter, A.; Rischpler, C. Mapping prostate cancer lesions before and after unsuccessful salvage lymph node dissection using repeat PSMA PET. J. Nucl. Med. 2020, 61, 1037–1042. [Google Scholar] [CrossRef]
- De Bari, B.; Mazzola, R.; Aiello, D.; Aloi, D.; Gatta, R.; Corradini, S.; Salgarello, M.; Alongi, F. (68Ga)-PSMA-PET/CT for the detection of postoperative prostate cancer recurrence: Possible implications on treatment volumes for radiation therapy. Cancer/Radiother. 2019, 23, 194–200. [Google Scholar] [CrossRef]
- De Bruycker, A.; Spiessens, A.; Dirix, P.; Koutsouvelis, N.; Semac, I.; Liefhooghe, N.; Gomez-Iturriaga, A.; Everaerts, W.; Otte, F.; Papachristofilou, A. PEACE V–Salvage Treatment of OligoRecurrent nodal prostate cancer Metastases (STORM): A study protocol for a randomized controlled phase II trial. BMC Cancer 2020, 20, 406. [Google Scholar] [CrossRef]
- Pollack, A.; Karrison, T.G.; Balogh, A.G.; Gomella, L.G.; Low, D.A.; Bruner, D.W.; Wefel, J.S.; Martin, A.-G.; Michalski, J.M.; Angyalfi, S.J. The addition of androgen deprivation therapy and pelvic lymph node treatment to prostate bed salvage radiotherapy (NRG Oncology/RTOG 0534 SPPORT): An international, multicentre, randomised phase 3 trial. Lancet 2022, 399, 1886–1901. [Google Scholar] [CrossRef]
- Dekalo, S.; Kuten, J.; Mintz, I.; Fahoum, I.; Gitstein, G.; Keizman, D.; Sarid, D.; Matzkin, H.; Mabjeesh, N.J.; Beri, A. Preoperative 68Ga-PSMA PET/CT defines a subgroup of high-risk prostate cancer patients with favorable outcomes after radical prostatectomy and lymph node dissection. Prostate Cancer Prostatic Dis. 2021, 24, 910–916. [Google Scholar] [CrossRef]
- Yaxley, J.W.; Raveenthiran, S.; Nouhaud, F.-X.; Samartunga, H.; Yaxley, A.J.; Coughlin, G.; Delahunt, B.; Egevad, L.; McEwan, L.; Wong, D. Outcomes of primary lymph node staging of intermediate and high risk prostate cancer with 68Ga-PSMA positron emission tomography/computerized tomography compared to histological correlation of pelvic lymph node pathology. J. Urol. 2019, 201, 815–820. [Google Scholar] [CrossRef]
- Mandel, P.; Tilki, D.; Chun, F.K.; Pristupa, E.; Graefen, M.; Klutmann, S.; Budäus, L.; Steuber, T. Accuracy of 68Ga-prostate-specific membrane antigen positron emission tomography for the detection of lymph node metastases before salvage lymphadenectomy. Eur. Urol. Focus 2020, 6, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Luiting, H.B.; van Leeuwen, P.J.; Busstra, M.B.; Brabander, T.; van der Poel, H.G.; Donswijk, M.L.; Vis, A.N.; Emmett, L.; Stricker, P.D.; Roobol, M.J. Use of gallium-68 prostate-specific membrane antigen positron-emission tomography for detecting lymph node metastases in primary and recurrent prostate cancer and location of recurrence after radical prostatectomy: An overview of the current literature. BJU Int. 2020, 125, 206. [Google Scholar] [CrossRef] [PubMed]
- Meijer, D.; de Barros, H.A.; van Leeuwen, P.J.; Bodar, Y.J.; van der Poel, H.G.; Donswijk, M.L.; Hendrikse, N.H.; van Moorselaar, R.J.A.; Nieuwenhuijzen, J.A.; Oprea-Lager, D.E. The predictive value of preoperative negative prostate specific membrane antigen positron emission tomography imaging for lymph node metastatic prostate cancer. J. Urol. 2021, 205, 1655–1662. [Google Scholar] [CrossRef] [PubMed]
- Amiel, T.; Würnschimmel, C.; Heck, M.; Horn, T.; Nguyen, N.; Budäus, L.; Knipper, S.; Wenzel, M.; Rauscher, I.; Eiber, M. Regional lymph node metastasis on prostate specific membrane antigen positron emission tomography correlates with decreased biochemical recurrence-free and therapy-free survival after radical prostatectomy: A retrospective single-center single-arm observational study. J. Urol. 2021, 205, 1663–1670. [Google Scholar]
- Abufaraj, M.; Grubmüller, B.; Zeitlinger, M.; Kramer, G.; Seitz, C.; Haitel, A.; Baltzer, P.; Hacker, M.; Wadsak, W.; Pfaff, S. Prospective evaluation of the performance of [68 Ga] Ga-PSMA-11 PET/CT (MRI) for lymph node staging in patients undergoing superextended salvage lymph node dissection after radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2169–2177. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Hegemann, N.-S.; Stief, C.; Kim, T.-H.; Eze, C.; Kirste, S.; Strouthos, I.; Li, M.; Schultze-Seemann, W.; Ilhan, H.; Fendler, W.P. Outcome after PSMA PET/CT–based salvage radiotherapy in patients with biochemical recurrence after radical prostatectomy: A 2-institution retrospective analysis. J. Nucl. Med. 2019, 60, 227–233. [Google Scholar] [CrossRef]
- Celli, M.; De Giorgi, U.; Caroli, P.; Di Iorio, V.; Fantini, L.; Rossetti, V.; Foca, F.; Nicolini, S.; Giganti, M.; Paganelli, G. Clinical value of negative 68 Ga-PSMA PET/CT in the management of biochemical recurrent prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 87–94. [Google Scholar] [CrossRef]
- Koschel, S.; Taubman, K.; Sutherland, T.; Yap, K.; Chao, M.; Guerrieri, M.; Benson, A.; Starmans, M.; Byrne, G.; Ong, G. Patterns of disease detection using [18 F] DCFPyL PET/CT imaging in patients with detectable PSA post prostatectomy being considered for salvage radiotherapy: A prospective trial. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3712–3722. [Google Scholar] [CrossRef]
- Zschaeck, S.; Wust, P.; Beck, M.; Wlodarczyk, W.; Kaul, D.; Rogasch, J.; Budach, V.; Furth, C.; Ghadjar, P. Intermediate-term outcome after PSMA-PET guided high-dose radiotherapy of recurrent high-risk prostate cancer patients. Radiat. Oncol. 2017, 12, 140. [Google Scholar] [CrossRef] [Green Version]
- Emmett, L.; van Leeuwen, P.J.; Nandurkar, R.; Scheltema, M.J.; Cusick, T.; Hruby, G.; Kneebone, A.; Eade, T.; Fogarty, G.; Jagavkar, R. Treatment outcomes from 68Ga-PSMA PET/CT–informed salvage radiation treatment in men with rising PSA after radical prostatectomy: Prognostic value of a negative PSMA PET. J. Nucl. Med. 2017, 58, 1972–1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmett, L.; Tang, R.; Nandurkar, R.; Hruby, G.; Roach, P.; Watts, J.A.; Cusick, T.; Kneebone, A.; Ho, B.; Chan, L. 3-Year freedom from progression after 68Ga-PSMA PET/CT–triaged management in men with biochemical recurrence after radical prostatectomy: Results of a prospective multicenter trial. J. Nucl. Med. 2020, 61, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Stabile, A.; Pellegrino, A.; Mazzone, E.; Cannoletta, D.; de Angelis, M.; Barletta, F.; Scuderi, S.; Cucchiara, V.; Gandaglia, G.; Raggi, D. Can Negative Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography Avoid the Need for Pelvic Lymph Node Dissection in Newly Diagnosed Prostate Cancer Patients? A Systematic Review and Meta-analysis with Backup Histology as Reference Standard. Eur. Urol. Oncol. 2021, 5, 1–17. [Google Scholar] [PubMed]
- Pienta, K.J.; Gorin, M.A.; Rowe, S.P.; Carroll, P.R.; Pouliot, F.; Probst, S.; Saperstein, L.; Preston, M.A.; Alva, A.S.; Patnaik, A. A Phase 2/3 Prospective Multicenter Study of the Diagnostic Accuracy of Prostate Specific Membrane Antigen PET/CT with 18F-DCFPyL in Prostate Cancer Patients (OSPREY). J. Urol. 2021, 206, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Kirste, S.; Kroeze, S.G.; Henkenberens, C.; Schmidt-Hegemann, N.-S.; Vogel, M.M.; Becker, J.; Zamboglou, C.; Burger, I.; Derlin, T.; Bartenstein, P. Combining 68Ga-PSMA-PET/CT-Directed and Elective Radiation Therapy Improves Outcome in Oligorecurrent Prostate Cancer: A Retrospective Multicenter Study. Front. Oncol. 2021, 11, 946. [Google Scholar] [CrossRef] [PubMed]
- Michalski, J.M.; Lawton, C.; El Naqa, I.; Ritter, M.; O’Meara, E.; Seider, M.J.; Lee, W.R.; Rosenthal, S.A.; Pisansky, T.; Catton, C. Development of RTOG consensus guidelines for the definition of the clinical target volume for postoperative conformal radiation therapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Jameson, M.G.; Holloway, L.C.; Vial, P.J.; Vinod, S.K.; Metcalfe, P.E. A review of methods of analysis in contouring studies for radiation oncology. J. Med. Imaging Radiat. Oncol. 2010, 54, 401–410. [Google Scholar] [CrossRef]
- Smith, G.; Rodrigues, G. Comparative Review of Consensus-Based Clinical Target Volume Definitions for Prostate Radiotherapy. Cureus 2013, 5, e128. [Google Scholar] [CrossRef] [Green Version]
- Croke, J.; Maclean, J.; Nyiri, B.; Li, Y.; Malone, K.; Avruch, L.; Kayser, C.; Malone, S. Proposal of a post-prostatectomy clinical target volume based on pre-operative MRI: Volumetric and dosimetric comparison to the RTOG guidelines. Radiat. Oncol. 2014, 9, 303. [Google Scholar] [CrossRef] [Green Version]
- Gunnlaugsson, A.; Persson, E.; Gustafsson, C.; Kjellén, E.; Ambolt, P.; Engelholm, S.; Nilsson, P.; Olsson, L.E. Target definition in radiotherapy of prostate cancer using magnetic resonance imaging only workflow. Phys. Imaging Radiat. Oncol. 2019, 9, 89–91. [Google Scholar] [CrossRef] [Green Version]
- Jani, A.B.; Schreibmann, E.; Rossi, P.J.; Shelton, J.; Godette, K.; Nieh, P.; Master, V.A.; Kucuk, O.; Goodman, M.; Halkar, R. Impact of 18F-fluciclovine PET on target volume definition for postprostatectomy salvage radiotherapy: Initial findings from a randomized trial. J. Nucl. Med. 2017, 58, 412–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegemann, N.-S.; Wenter, V.; Spath, S.; Kusumo, N.; Li, M.; Bartenstein, P.; Fendler, W.P.; Stief, C.; Belka, C.; Ganswindt, U. Distribution of prostate nodes: A PET/CT-derived anatomic atlas of prostate cancer patients before and after surgical treatment. Radiat. Oncol. 2016, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Afshar-Oromieh, A.; Zechmann, C.M.; Malcher, A.; Eder, M.; Eisenhut, M.; Linhart, H.G.; Holland-Letz, T.; Hadaschik, B.A.; Giesel, F.L.; Debus, J. Comparison of PET imaging with a 68Ga-labelled PSMA ligand and 18F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Schiller, K.; Stöhrer, L.; Düsberg, M.; Borm, K.; Devecka, M.; Vogel, M.M.; Tauber, R.; Heck, M.M.; Rauscher, I.; Eiber, M. PSMA-PET/CT–based lymph node atlas for prostate cancer patients recurring after primary treatment: Clinical implications for salvage radiation therapy. Eur. Urol. Oncol. 2021, 4, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Boreta, L.; Gadzinski, A.J.; Wu, S.Y.; Xu, M.; Greene, K.; Quanstrom, K.; Nguyen, H.G.; Carroll, P.R.; Hope, T.A.; Feng, F.Y. Location of recurrence by Gallium-68 PSMA-11 PET scan in prostate cancer patients eligible for salvage radiotherapy. Urology 2019, 129, 165–171. [Google Scholar] [CrossRef]
- Wiltshire, K.L.; Brock, K.K.; Haider, M.A.; Zwahlen, D.; Kong, V.; Chan, E.; Moseley, J.; Bayley, A.; Catton, C.; Chung, P.W. Anatomic boundaries of the clinical target volume (prostate bed) after radical prostatectomy. Int. J. Radiat. Oncol. Biol. Phys. 2007, 69, 1090–1099. [Google Scholar] [CrossRef]
- Hall, W.A.; Paulson, E.; Davis, B.J.; Spratt, D.E.; Morgan, T.M.; Dearnaley, D.; Tree, A.C.; Efstathiou, J.A.; Harisinghani, M.; Jani, A.B. NRG oncology updated international consensus atlas on pelvic lymph node volumes for intact and postoperative prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 174–185. [Google Scholar] [CrossRef]
- De Bleser, E.; Jereczek-Fossa, B.A.; Pasquier, D.; Zilli, T.; Van As, N.; Siva, S.; Fodor, A.; Dirix, P.; Gomez-Iturriaga, A.; Trippa, F. Metastasis-directed therapy in treating nodal oligorecurrent prostate cancer: A multi-institutional analysis comparing the outcome and toxicity of stereotactic body radiotherapy and elective nodal radiotherapy. Eur. Urol. 2019, 76, 732–739. [Google Scholar] [CrossRef]
Author, Year of Publication | Number of Patients | Imaging Method | Treatments Applied | Median Follow-Up (Months) | Conclusion | |
---|---|---|---|---|---|---|
Recurrence or Response Rate | Survival | |||||
Porres et al. [49], 2017 | 87 | 18FEC or 68Ga-PSMA PET/CT | Salvage extended lymph node dissection | 21 | Complete biochemical response: 27.5%, Incomplete biochemical response: 40.6% | ADT-free: 62.2%, CSM: 3.7%, 3-year BCR-free: 69.3%, systemic-therapy-free survival: 77.0%, clinical-recurrence-free survival: 75%, for patients with complete biochemical response |
Henkenberenz et al. [50], 2017 | 23 | 68GA-PSMA PET/CT | Salvage LNRT | 12.4 | Recurrence outside the initial radiation field: 12.9% | BCR-free survival: 95.6%, systemic-therapy-free survival: 100% |
Fossati et al. [51], 2019 | 654 | 11C- or 68Ga-PSMA PET/CT | Salvage LND | 30 | Early clinical recurrence: 25% | CSM: 20% in patients with and 1.4% in patients without early clinical recurrence |
Schmidt-Hegemann et al. [52], 2020 | 100 | 68GA-PSMA PET/CT | Salvage LNRT vs. LND | 17 in SLND and 31 in salvage LNRT | LND had higher distant metastases (52% vs. 21%) and secondary treatments (39% vs. 15%). | 2-year BCR-free survival was 92% in salvage LNRT and 30% in SLND |
Kretschmer et al. [53], 2021 | 138 | 68GA-PSMA PET/CT | Salvage LNRT vs. LND | 47 in SLNRT and 31 in SLND | BCR: 40.3% for SLNRT and 86.4% for SLND, distant metastasis: 31.3% for SLNRT and 36.4% for SLND | Median metastasis-free survival: 70 months for all (57.6 months for SLNRT and 39.5 months for SLND; not different) |
Rogowski et al. [47], 2021 | 100 | 18FEC and 68Ga-PSMA PET/CT | sENRT | 37 | Metastasis: 83% only pelvic, 2% only para-aortic, 15% pelvic and para-aortic LN metastases. | 1, 2-, and 3-year BCR-free survival: 80.7%, 71.6%, and 65.8%, and 1, 2-, and 3-year distant-metastasis-free survival: 91.6%, 79.1%, and 66.4%, respectively |
Author, Year of Publication | Ratio of Patients with Negative PSMA PET/CT to All Patients | Treatments Applied | Median Duration of Follow-up (Months) | Conclusion |
---|---|---|---|---|
Zschaek et al. [70], 2017 | Not mentioned | Salvage LNRT | 29 | Median PSA response:9% decline for PSMA-negative patients and pathological N+ vs. 79% decline for PSMA negative and pathological N0 |
Emmett et al. [71], 2017 | 60/164 | Salvage LNRT and prostate bed RT | 10.5 | In total, 85% with negative PSMA responded to treatment, and PSA increased in 65% of untreated patients. |
Schmidt-Hegemann et al. [67], 2019 | 48/90 | Salvage LNRT and/or ADT | 23 | Similar recurrence-free rates between positive and negative PSMA (74% vs. 82%) |
Emmett et al. [72], 2020 | 90/260 | Salvage LNRT and prostate bed RT | Negative PSMA plus salvage LNRT was the best predictor of 3-year free-from-progression rate (82.5%), and 66% of untreated patients had a PSA increase. |
Author, Year of Publication | No. of Patients Who Received RT | Treatments Applied | Definition of Target Volumes | Lymph Nodes Involved | Radiotherapy Details | Toxicity |
---|---|---|---|---|---|---|
Zschaek et al. [70], 2017 | 20 | Salvage LNRT (IMRT) only to those with positive PET/CT | in case of negative PSMA PET: Prostate bed and seminal vesicles. If positive PSMA added pelvic nodes | Not mentioned | Prostate bed irradiated to 66.6 Gy. If positive margins or extra-capsular invasion a SIB to 70.3. if positive PSMA in prostate bed increasd dose to 74–77 Gy. LN drainage sites received 54.0 Gy, while macroscopic LNs on PET received 66 Gy. | Well tolerated, 2 cases of >grade I acute toxicity (grade II noninfective cystitis and diarrhea) |
Henkenberenz et al. [50], 2017 | 11 | Salvage LNRT | GTV based on CT, PSMA PET, and MRI. CTV as the area with pathological tracer uptake; PTV with 10 mm safety margins in all directions around CTV | Para-aortic and retroperitoneal (54.5%), mediastinal (18.2%) | LNRT included five times weekly with 2.0 Gy up to a total dose of 50.4–54.0 Gy | No grade III acute or grade II late toxicity, 21.7% had grade II diarrhea and 8.7% had persistent grade I diarrhea, no deterioration of urinary or fecal continence |
Emmett et al. [71], 2017 | 99 | Salvage LNRT and the prostate bed RT | Three categories of RT: Prostate fossa-only, Prostate fossa + pelvic nodes, or SBRT external to the pelvis. | fossa + pelvic nodes | Not mentioned | Not mentioned |
Schmidt-Hegemann et al. [67], 2019 | 18 | Salvage LNRT (IMRT or image-guided VMAT) ± ADT | PTV was considered the 5–7 mm expanded CTV margin in all directions | 13% pelvic LNs, 7% fossa + pelvic LNs | Total of 45–50.4 Gy, with simultaneous or sequential boost | Grade II genitourinary and gastrointestinal toxicity were present as 13% and 16% acute and 13% and 3% late, 2 patients with grade III late genitourinary toxicity |
Schmidt-Hegemann et al. [52], 2020 | 67 | Same as above | Same as above | Same as above | Same as above | Acute grade II gastrointestinal and urogenital toxicity in 28% of patients, acute grade III urogenital toxicity in 2%, late grade II toxicity in 36%, and grade III in 37% |
Emmett et al. [72], 2020 | 186 | Salvage LNRT (25% with ADT) | Not mentioned | 49.4% to the fossa + pelvic LNs, 12.4% LNs or stereotactic body | Not mentioned | Not mentioned |
Kretschmer et al. [53], 2021 | 67 | Salvage LNRT (IMRT or VMAT) +ADT (n = 61) vs. LND | RTOG | Not mentioned | Median of 61.6 Gy (range: 50.4–66 Gy). | Acute grade II gastrointestinal and urogenital toxicity in 28.4%, acute grade III urogenital toxicity in 1.5%, late grade II toxicity in 35.8%, and grade III in 37.3% |
Rogowski et al. [47], 2021 | 100 | Salvage LNRT (IMRT or VMAT) +ADT | RTOG | 83% only pelvic, 2% only para-aortic, and 15% pelvic + para-aortic LNs | Median 65.1 Gy (Range: 56–66 Gy) | Not mentioned |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabian, N.; Ghalehtaki, R.; Couñago, F. Necessity of Pelvic Lymph Node Irradiation in Patients with Recurrent Prostate Cancer after Radical Prostatectomy in the PSMA PET/CT Era: A Narrative Review. Biomedicines 2023, 11, 38. https://doi.org/10.3390/biomedicines11010038
Nabian N, Ghalehtaki R, Couñago F. Necessity of Pelvic Lymph Node Irradiation in Patients with Recurrent Prostate Cancer after Radical Prostatectomy in the PSMA PET/CT Era: A Narrative Review. Biomedicines. 2023; 11(1):38. https://doi.org/10.3390/biomedicines11010038
Chicago/Turabian StyleNabian, Naeim, Reza Ghalehtaki, and Felipe Couñago. 2023. "Necessity of Pelvic Lymph Node Irradiation in Patients with Recurrent Prostate Cancer after Radical Prostatectomy in the PSMA PET/CT Era: A Narrative Review" Biomedicines 11, no. 1: 38. https://doi.org/10.3390/biomedicines11010038