Glucose and Lipid Profiles Predict Anthropometric Changes in Drug-Naïve Adolescents Starting Treatment with Risperidone or Sertraline: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Assessment and Measurements
2.2.1. Anthropometric Parameters
2.2.2. Blood Biochemical Parameters
2.3. Statistical Analyses
3. Results
3.1. Sociodemographic and Clinical Features of the Samples
3.2. Evaluation of Baseline Anthropometric and Haematochemical Parameters: Comparison between the Risperidone and Sertraline Groups
3.3. Evaluation of Changes in Anthropometric Parameters after Treatment with Risperidone and with Sertraline
3.4. Correlation between Baseline Haematochemical Parameters and Variation of Anthropometric Parameters in the Risperidone Group
3.5. Correlation between Baseline Haematochemical Parameters and Variation of Anthropometric Parameters in the Sertraline Group
4. Discussion
5. Conclusions
- -
- To organize specific guidelines that identify specific biomarkers for evaluation and according to which time intervals they should be evaluated during psychopharmacological treatment;
- -
- To identify patients who have the best chance of treatment success, not only from a psychiatric but also a somatic point of view;
- -
- To organize specific prevention and intervention programs for each type of drug- induced dysmetabolic profile.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AIFA (Italian Medicines Agency OsMed 2020—Medicines Use in Italy, National Report Year 2020. Available online: https://www.aifa.gov.it/documents/20142/1542390/Rapporto-OsMed-2020_EN.pdf (accessed on 29 October 2022).
- Baldwin, D.S.; Tiwari, N.; Gordon, R. Sense and Sensibility When Prescribing ‘Off-Label’ to Psychiatric Patients. Curr. Pharm. Des. 2015, 21, 3276–3279. [Google Scholar] [CrossRef] [PubMed]
- Hefner, G.; Wolff, J.; Toto, S.; Reißner, P.; Klimke, A. Off-label use of antidepressants, antipsychotics, and mood-stabilizers in psychiatry. J. Neural Transm. 2022, 129, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Stogios, N.; Au, E.; Maksyutynska, K.; De, R.; Ji, A.; Erlang Sørensen, M.; St John, L.; Lin, H.; Desarkar, P.; et al. The metabolic adverse effects of antipsychotic use in individuals with intellectual and/or developmental disability: A systematic review and meta-analysis. Acta Psychiatr. Scand. 2022, 146, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Al Jumaili, W.; Muzwagi, A.; Shah, K.; Trivedi, C.; Durga, P.; Mansuri, Z.; Jain, S.; Al Jumaili, Y. Pharmacological Interventions of Atypical Antipsychotics Induced Weight Gain in the Pediatric Population: A Systemic Review of Current Evidence. Child Psychiatry Hum. Dev. 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Libowitz, M.R.; Nurmi, E.L. The Burden of Antipsychotic-Induced Weight Gain and Metabolic Syndrome in Children. Front. Psychiatry 2021, 12, 623681. [Google Scholar] [CrossRef] [PubMed]
- Panizzutti, B.; Bortolasci, C.C.; Spolding, B.; Kidnapillai, S.; Connor, T.; Richardson, M.F.; Truong, T.T.T.; Liu, Z.S.J.; Gray, L.; Kim, J.H.; et al. Biological Mechanism(s) Underpinning the Association between Antipsychotic Drugs and Weight Gain. J. Clin. Med. 2021, 10, 4095. [Google Scholar] [CrossRef]
- Burin, L.M.; Hahn, M.K.; da Rocha, N.S.; van Amelsvoort, T.; Bartels-Velthuis, A.A.; Bruggeman, R.; de Haan, L.; Schirmbeck, F.; Simons, C.J.; van Os, J.; et al. Long-term treatment of antipsychotics and combined therapy with other psychotropic medications inducing weight gain in patients with non-affective psychotic disorder: Evidence from GROUP, a longitudinal study. Psychiatry Res. 2022, 314, 114680. [Google Scholar] [CrossRef]
- Van der Esch, C.C.L.; Kloosterboer, S.M.; van der Ende, J.; Reichart, C.G.; Kouijzer, M.E.J.; de Kroon, M.M.J.; van Daalen, E.; Ester, W.A.; Rieken, R.; Dieleman, G.C.; et al. Risk factors and pattern of weight gain in youths using antipsychotic drugs. Eur. Child Adolesc. Psychiatry 2021, 30, 1263–1271. [Google Scholar] [CrossRef]
- Sun, J.W.; Hernández-Díaz, S.; Haneuse, S.; Bourgeois, F.T.; Vine, S.M.; Olfson, M.; Bateman, B.T.; Huybrechts, K.F. Association of Selective Serotonin Reuptake Inhibitors with the Risk of Type 2 Diabetes in Children and Adolescents. JAMA Psychiatry 2021, 78, 91–100. [Google Scholar] [CrossRef]
- Croatto, G.; Vancampfort, D.; Miola, A.; Olivola, M.; Fiedorowicz, J.G.; Firth, J.; Alexinschi, O.; Gaina, M.A.; Makkai, V.; Soares, F.C.; et al. The impact of pharmacological and non-pharmacological interventions on physical health outcomes in people with mood disorders across the lifespan: An umbrella review of the evidence from randomised controlled trials. Mol. Psychiatry 2022, 1–22. [Google Scholar] [CrossRef]
- Ahmed, N.J.; Alshehri, A.M.; Almalki, Z.S.; Alahmari, A. Drug-Induced Weight Gain in the Last 10 Years: A Descriptive Study. Pharmazie 2022, 77, 299–301. [Google Scholar] [CrossRef]
- Margari, L.; Matera, E.; Craig, F.; Petruzzelli, M.G.; Palmieri, V.O.; Pastore, A.; Margari, F. Tolerability and safety profile of risperidone in a sample of children and adolescents. Int. Clin. Psychopharmacol. 2013, 28, 177–183. [Google Scholar] [CrossRef]
- Matera, E.; Margari, L.; Palmieri, V.O.; Zagaria, G.; Palumbi, R.; Margari, F. Risperidone and Cardiometabolic Risk in Children and Adolescents: Clinical and Instrumental Issues. J. Clin. Psychopharmacol. 2017, 37, 302–309. [Google Scholar] [CrossRef]
- Yao, S.; Li, J.; Fan, X.; Liu, Q.; Lian, J. The effect of selective serotonin re-uptake inhibitors on risk of type II diabetes mellitus and acute pancreatitis: A meta-analysis. Biosci. Rep. 2018, 38, BSR20180967. [Google Scholar] [CrossRef]
- Woo, Y.S.; Lim, H.K.; Wang, S.-M.; Bahk, W.-M. Title Clinical Evidence of Antidepressant Effects of Insulin and Anti-Hyperglycemic Agents and Implications for the Pathophysiology of Depression—A Literature Review. Int. J. Mol. Sci. 2020, 21, 6969. [Google Scholar] [CrossRef]
- American Psychiatric Association (APA) DSM-5. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Waist To Height Ratio (WHtR) Calculator | My Tec Bits. Available online: https://www.mytecbits.com/tools/medical/waist-height-ratio-calculator (accessed on 15 December 2022).
- Casadei, K.; Kiel, J. Anthropometric Measurement. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Giavarina, D.; Lippi, G. Blood venous sample collection: Recommendations overview and a checklist to improve quality. Clin. Biochem. 2017, 50, 568–573. [Google Scholar] [CrossRef]
- HOMA2 Calculator: Overview. Available online: https://www.dtu.ox.ac.uk/homacalculator/ (accessed on 15 December 2022).
- Fukuyama, N.; Homma, K.; Wakana, N.; Kudo, K.; Suyama, A.; Ohazama, H.; Tsuji, C.; Ishiwata, K.; Eguchi, Y.; Nakazawa, H.; et al. Validation of the Friedewald Equation for Evaluation of Plasma LDL-Cholesterol. J. Clin. Biochem. Nutr. 2008, 43, 1–5. [Google Scholar] [CrossRef] [Green Version]
- R and RStudio | NIH Library. Available online: https://www.nihlibrary.nih.gov/resources/tools/r-and-rstudio (accessed on 15 December 2022).
- Fjukstad, K.K.; Engum, A.; Lydersen, S.; Dieset, I.; Steen, N.E.; Andreassen, O.A.; Spigset, O. Metabolic Abnormalities Related to Treatment with Selective Serotonin Reuptake Inhibitors in Patients with Schizophrenia or Bipolar Disorder. J. Clin. Psychopharmacol. 2016, 36, 615–620. [Google Scholar] [CrossRef] [Green Version]
- Pisano, S.; Catone, G.; Veltri, S.; Lanzara, V.; Pozzi, M.; Clementi, E.; Iuliano, R.; Riccio, M.P.; Radice, S.; Molteni, M.; et al. Update on the safety of second generation antipsychotics in youths: A call for collaboration among paediatricians and child psychiatrists. Ital. J. Pediatr. 2016, 42, 51. [Google Scholar] [CrossRef] [Green Version]
- Correll, C.U.; Manu, P.; Olshanskiy, V.; Napolitano, B.; Kane, J.M.; Malhotra, A.K. Cardiometabolic Risk of Second-Generation Antipsychotic Medications during First-Time Use in Children and Adolescents. JAMA 2009, 302, 1765–1773. [Google Scholar] [CrossRef]
- Bretler, T.; Weisberg, H.; Koren, O.; Neuman, H. The effects of antipsychotic medications on microbiome and weight gain in children and adolescents. BMC Med. 2019, 17, 112. [Google Scholar] [CrossRef] [PubMed]
- Asarnow, J.R.; Emslie, G.; Clarke, G.; Wagner, K.D.; Spirito, A.; Vitiello, B.; Iyengar, S.; Shamseddeen, W.; Ritz, L.; Birmaher, B.; et al. Treatment of Selective Serotonin Reuptake Inhibitor—Resistant Depression in Adolescents: Predictors and Moderators of Treatment Response. J. Am. Acad. Child Adolesc. Psychiatry 2009, 48, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, B.S.; Glass, T.A.; Pollak, J.; Hirsch, A.G.; Bailey-Davis, L.; Moran, T.H.; Bandeen-Roche, K. Depression, its comorbidities and treatment, and childhood body mass index trajectories. Obesity 2016, 24, 2585–2592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockerill, R.G.; Biggs, B.K.; Oesterle, T.S.; Croarkin, P.E. Antidepressant use and body mass index change in overweight adolescents: A historical cohort study. Innov. Clin. Neurosci. 2014, 11, 14–21. [Google Scholar] [PubMed]
- Blumenthal, S.R.; Castro, V.M.; Clements, C.C.; Rosenfield, H.R.; Murphy, S.N.; Fava, M.; Weilburg, J.B.; Erb, J.L.; Churchill, S.E.; Kohane, I.S.; et al. An Electronic Health Records Study of Long-Term Weight Gain Following Antidepressant Use. JAMA Psychiatry 2014, 71, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Correll, C.U.; Detraux, J.; De Lepeleire, J.; De Hert, M. Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry 2015, 14, 119–136. [Google Scholar] [CrossRef] [Green Version]
- Cleland, V.; Tian, J.; Buscot, M.-J.; Magnussen, C.G.; Bazzano, L.; Burns, T.L.; Daniels, S.; Dwyer, T.; Hutri-Kahonen, N.; Ikonen, J.; et al. Body-mass index trajectories from childhood to mid-adulthood and their sociodemographic predictors: Evidence from the International Childhood Cardiovascular Cohort (i3C) Consortium. eClinicalMedicine 2022, 48, 101440. [Google Scholar] [CrossRef]
- Isaac, R.; Boura-Halfon, S.; Gurevitch, D.; Shainskaya, A.; Levkovitz, Y.; Zick, Y. Selective Serotonin Reuptake Inhibitors (SSRIs) Inhibit Insulin Secretion and Action in Pancreatic β Cells. J. Biol. Chem. 2013, 288, 5682–5693. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.H.; Jakubovski, E.; Gabriel, D.; Bloch, M.H. Predictors and Moderators of Antipsychotic-Related Weight Gain in the Treatment of Early-Onset Schizophrenia Spectrum Disorders Study. J. Child Adolesc. Psychopharmacol. 2018, 28, 474–484. [Google Scholar] [CrossRef]
- Kjeldsen, E.; Nordestgaard, L.; Frikke-Schmidt, R. HDL Cholesterol and Non-Cardiovascular Disease: A Narrative Review. Int. J. Mol. Sci. 2021, 22, 4547. [Google Scholar] [CrossRef]
- Grajales, D.; Ferreira, V.; Valverde, M. Second-Generation Antipsychotics and Dysregulation of Glucose Metabolism: Beyond Weight Gain. Cells 2019, 8, 1336. [Google Scholar] [CrossRef] [Green Version]
- Vancampfort, D.; Stubbs, B.; Mitchell, A.J.; De Hert, M.; Wampers, M.; Ward, P.B.; Rosenbaum, S.; Correll, C.U. Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: A systematic review and meta-analysis. World Psychiatry 2015, 14, 339–347. [Google Scholar] [CrossRef]
- Emul, M.; Kalelioglu, T. Etiology of cardiovascular disease in patients with schizophrenia: Current perspectives. Neuropsychiatr. Dis. Treat. 2015, 11, 2493–2503. [Google Scholar] [CrossRef] [Green Version]
- Le Hellard, S.; Theisen, F.M.; Haberhausen, M.; Raeder, M.B.; Fernø, J.; Gebhardt, S.; Hinney, A.; Remschmidt, H.; Krieg, J.C.; Mehler-Wex, C.; et al. Association between the insulin-induced gene 2 (INSIG2) and weight gain in a German sample of antipsychotic-treated schizophrenic patients: Perturbation of SREBP-controlled lipogenesis in drug-related metabolic adverse effects? Mol. Psychiatry 2009, 14, 308–317. [Google Scholar] [CrossRef]
- Nurmi, E.L.; Spilman, S.L.; Whelan, F.; Scahill, L.L.; Aman, M.G.; McDougle, C.J.; Arnold, L.E.; Handen, B.; Johnson, C.; Sukhodolsky, D.G.; et al. Moderation of antipsychotic-induced weight gain by energy balance gene variants in the RUPP autism network risperidone studies. Transl. Psychiatry 2013, 3, e274. [Google Scholar] [CrossRef] [Green Version]
- Suvitaival, T.; Mantere, O.; Kieseppä, T.; Mattila, I.; Pöhö, P.; Hyötyläinen, T.; Suvisaari, J.; Orešič, M. Serum metabolite profile associates with the development of metabolic co-morbidities in first-episode psychosis. Transl. Psychiatry 2016, 6, e951. [Google Scholar] [CrossRef] [Green Version]
- Vogelzangs, N.; Beekman, A.T.F.; van Reedt Dortland, A.K.B.; Schoevers, R.A.; Giltay, E.J.; de Jonge, P.; Penninx, B.W.J.H. Inflammatory and Metabolic Dysregulation and the 2-Year Course of Depressive Disorders in Antidepressant Users. Neuropsychopharmacology 2014, 39, 1624–1634. [Google Scholar] [CrossRef] [Green Version]
- Hiles, S.A.; Révész, D.; Lamers, F.; Giltay, E.; Penninx, B.W.J.H. Bidirectional Prospective Associations of Metabolic Syndrome Components with Depression, Anxiety, and Antidepressant Use. Depress. Anxiety 2016, 33, 754–764. [Google Scholar] [CrossRef] [Green Version]
- Marmorstein, N.; Iacono, W.G.; Legrand, L. Obesity and depression in adolescence and beyond: Reciprocal risks. Int. J. Obes. 2014, 38, 906–911. [Google Scholar] [CrossRef] [Green Version]
- Sainz, J.; Prieto, C.; Crespo-Facorro, B. Sex differences in gene expression related to antipsychotic induced weight gain. PLoS ONE 2019, 14, e0215477. [Google Scholar] [CrossRef]
- Amare, A.T.; Schubert, K.O.; Klingler-Hoffmann, M.; Cohen-Woods, S.; Baune, B.T. The genetic overlap between mood disorders and cardiometabolic diseases: A systematic review of genome wide and candidate gene studies. Transl. Psychiatry 2017, 7, e1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, A.M.; Wadden, T.A.; Berkowitz, R.I. Obesity in Adolescents with Psychiatric Disorders. Curr. Psychiatry Rep. 2019, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Goldfield, G.S.; Murray, M.; Maras, D.; Wilson, A.L.; Phillips, P.; Kenny, G.P.; Hadjiyannakis, S.; Alberga, A.; Cameron, J.D.; Tulluch, H.; et al. Screen time is associated with depressive symptomatology among obese adolescents: A HEARTY study. Eur. J. Pediatr. 2016, 175, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Hoare, E.; Millar, L.; Fuller-Tyszkiewicz, M.; Skouteris, H.; Nichols, M.; Malakellis, M.; Swinburn, B.; Allender, S. Depressive symptomatology, weight status and obesogenic risk among Australian adolescents: A prospective cohort study. BMJ Open 2016, 6, e010072. [Google Scholar] [CrossRef] [PubMed]
- De Hert, M.; Detraux, J.; Van Winkel, R.; Yu, W.; Correll, C.U. Metabolic and cardiovascular adverse effects associated with antipsychotic drugs. Nat. Rev. Endocrinol. 2011, 8, 114–126. [Google Scholar] [CrossRef]
- Penninx, B.W.J.H.; Lange, S.M.M. Metabolic syndrome in psychiatric patients: Overview, mechanisms, and implications. Dialogues Clin. Neurosci. 2018, 20, 63–73. [Google Scholar] [CrossRef]
- Shulman, M.; Miller, A.; Misher, J.; Tentler, A. Managing cardiovascular disease risk in patients treated with antipsychotics: A multidisciplinary approach. J. Multidiscip. Healthc. 2014, 7, 489–501. [Google Scholar] [CrossRef] [Green Version]
- De Silva, V.A.; Suraweera, C.; Ratnatunga, S.S.; Dayabandara, M.; Wanniarachchi, N.; Hanwella, R. Metformin in prevention and treatment of antipsychotic induced weight gain: A systematic review and meta-analysis. BMC Psychiatry 2016, 16, 341. [Google Scholar] [CrossRef] [Green Version]
- Generali, J.A.; Cada, D.J. Topiramate: Antipsychotic-Induced Weight Gain. Hosp. Pharm. 2014, 49, 345–347. [Google Scholar] [CrossRef] [Green Version]
- Evers, S.S.; van Vliet, A.; van Vugt, B.; Scheurink, A.J.W.; van Dijk, G. A low TSH profile predicts olanzapine-induced weight gain and relief by adjunctive topiramate in healthy male volunteers. Psychoneuroendocrinology 2016, 66, 101–110. [Google Scholar] [CrossRef]
- Cooper, S.J.; Reynolds, G.P.; Barnes, T.; England, E.; Haddad, P.M.; Heald, A.; Holt, R.; Lingford-Hughes, A.; Osborn, D.; McGowan, O.; et al. BAP guidelines on the management of weight gain, metabolic disturbances and cardiovascular risk associated with psychosis and antipsychotic drug treatment. J. Psychopharmacol. 2016, 30, 717–748. [Google Scholar] [CrossRef] [Green Version]
- Kvam, S.; Kleppe, C.L.; Nordhus, I.H.; Hovland, A. Exercise as a treatment for depression: A meta-analysis. J. Affect. Disord. 2016, 202, 67–86. [Google Scholar] [CrossRef]
- Rosenbaum, S.; Tiedemann, A.; Sherrington, C.; Curtis, J.; Ward, P.B. Physical Activity Interventions for People with Mental Illness: A Systematic Review and Meta-Analysis. J. Clin. Psychiatry 2014, 75, 964–974. [Google Scholar] [CrossRef]
- Jeppesen, R.; Christensen, R.H.B.; Pedersen, E.M.J.; Nordentoft, M.; Hjorthøj, C.; Köhler-Forsberg, O.; Benros, M.E. Efficacy and safety of anti-inflammatory agents in treatment of psychotic disorders—A comprehensive systematic review and meta-analysis. Brain Behav. Immun. 2020, 90, 364–380. [Google Scholar] [CrossRef]
- Fond, G.; Lançon, C.; Korchia, T.; Auquier, P.; Boyer, L. The Role of Inflammation in the Treatment of Schizophrenia. Front. Psychiatry 2020, 11, 160. [Google Scholar] [CrossRef] [Green Version]
- Baumeister, D.; Ciufolini, S.; Mondelli, V. Effects of psychotropic drugs on inflammation: Consequence or mediator of therapeutic effects in psychiatric treatment? Psychopharmacology 2016, 233, 1575–1589. [Google Scholar] [CrossRef]
- Rogers, G.B.; Keating, D.; Young, R.; Wong, M.-L.; Licinio, J.; Wesselingh, S. From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. Mol. Psychiatry 2016, 21, 738–748. [Google Scholar] [CrossRef] [Green Version]
- Kovtun, A.S.; Averina, O.V.; Angelova, I.Y.; Yunes, R.A.; Zorkina, Y.A.; Morozova, A.Y.; Pavlichenko, A.V.; Syunyakov, T.S.; Karpenko, O.A.; Kostyuk, G.P.; et al. Alterations of the Composition and Neurometabolic Profile of Human Gut Microbiota in Major Depressive Disorder. Biomedicines 2022, 10, 2162. [Google Scholar] [CrossRef]
- Tanaka, M.; Szabó, Á.; Vécsei, L. Integrating Armchair, Bench, and Bedside Research for Behavioral Neurology and Neuropsychiatry: Editorial. Biomedicines 2022, 10, 2999. [Google Scholar] [CrossRef]
- Tanaka, M.; Szabó, Á.; Spekker, E.; Polyák, H.; Tóth, F.; Vécsei, L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan–Kynurenine Metabolic System. Cells 2022, 11, 2607. [Google Scholar] [CrossRef]
- Gong, X.; Chang, R.; Zou, J.; Tan, S.; Huang, Z. The role and mechanism of tryptophan—Kynurenine metabolic pathway in depression. Rev. Neurosci. 2022. [Google Scholar] [CrossRef]
- Mesleh, A.G.; Abdulla, S.A.; El-Agnaf, O. Paving the Way toward Personalized Medicine: Current Advances and Challenges in Multi-OMICS Approach in Autism Spectrum Disorder for Biomarkers Discovery and Patient Stratification. J. Pers. Med. 2021, 11, 41. [Google Scholar] [CrossRef]
Risperidone (n = 22) | Sertraline (n = 18) | ||
---|---|---|---|
Age Range (Mean ± SD) | 12–17 (12.7 ± 2.8) | 12–17 (14.4 ± 1.5) | |
Gender | Male N (%) | 12 (54.5%) | 3 (16.7%) |
Female N (%) | 10 (45.5%) | 15 (83.3%) | |
Metabolic Disease Family History | Absent N (%) | 17 (77.3%) | 14 (77.8%) |
Hypertension N (%) | 3 (13.6%) | 2 (14.2%) | |
Diabetes N (%) | 2 (9.1%) | 3 (21.4%) | |
Metabolic Syndrome N (%) | - | 1 (7.1%) | |
Obesity N (%) | 1 (4.5%) | 1 (7.1%) | |
Main Diagnosis | Schizophrenia N (%) | 10 (45.5%) | - |
Behavioral Disorders N (%) | 8 (36.4%) | - | |
Bipolar Disorders N (%) | 4 (18.2%) | - | |
Major Depressive D. N (%) | - | 5 (27.8%) | |
Persistent Depressive D. N (%) | - | 6 (33.3%) | |
Social Anxiety N (%) | - | 4 (22.2%) | |
OCD N (%) | - | 3 (16.7%) | |
Dose | T0 (mean ± SD) | 1 mg/die | 50 mg/die |
T1 (mean ± SD) | 1.5 mg/die | 75 mg/die | |
Follow-Up Length | 4.5 months | 5.7 months |
Risperidone | Sertraline | ||||||
---|---|---|---|---|---|---|---|
N | Mean (SD) | Median (IQR) | N | Mean (SD) | Median (IQR) | p-Value | |
Weight | 22 | 51.650 (14.212) | 54.500 (18.750) | 18 | 51.583 (8.860) | 51.000 (13.750) | 0.986 |
WC | 22 | 69.636 (17.140) | 69.000 (22.250) | 18 | 63.111 (11.119) | 63.500 (8.500) | 0.172 |
WHtR | 22 | 0.433 (0.128) | 0.445 (0.127) | 18 | 0.391 (0.063) | 0.400 (0.047) | 0.216 |
BMI | 22 | 21.785 (4.853) | 22.100 (7.180) | 18 | 20.445 (3.896) | 19.050 (6.325) | 0.350 |
Glucose | 22 | 81.500 (8.222) | 81.500 (6.500) | 18 | 78.500 (8.082) | 76.500 (14.250) | 0.255 |
Insulin | 22 | 11.305 (6.704) | 11.000 (4.500) | 18 | 12.556 (6.220) | 11.950 (6.850) | 0.568 a |
HOMA-IR | 22 | 1.922 (1.047) | 1.860 (1.075) | 18 | 2.392 (1.264) | 2.295 (1.355) | 0.201 a |
Cholesterol Tot | 22 | 148.727 (36.087) | 140.500 (37.750) | 18 | 163.778 (23.728) | 155.500 (39.000) | 0.137 |
Triglycerides | 22 | 70.364 (28.840) | 66.000 (26.250) | 18 | 80.333 (39.718) | 71.000 (34.500) | 0.362 a |
HDL | 22 | 54.591 (11.438) | 58.000 (15.250) | 17 | 54.647 (16.332) | 52.000 (25.750) | 0.800 |
LDL | 22 | 84.000 (30.944) | 78.000 (46.000) | 18 | 92.667 (16.037) | 91.500 (16.000) | 0.289 |
Risperidone | Sertraline | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T0 | T1 | T0 | T1 | |||||||||
N | Mean (SD) | Median (IQR) | Mean (SD) | Median | p-Value | N | Mean (SD) | Median (IQR) | Mean (SD) | Median | p-Value | |
Weight | 22 | 51.650 (14.212) | 54.500 (18.750) | 51.650 (14.212) | 56.500 (17.200) | <0.001 a | 18 | 51.583 (8.860) | 51.000 (13.750) | 54.667 (8.520) | 54.500 (11.400) | 0.008 a |
WC | 22 | 69.636 (17.140) | 69.000 (22.250) | 74.045 (16.888) | 75.000 (16.500) | <0.001 a | 18 | 63.111 (11.119) | 63.500 (8.500) | 66.583 (10.424) | 66.000 (10.000) | 0.005 a |
WHtR | 22 | 0.433 (0.128) | 0.445 (0.127) | 0.488 (0.120) | 0.485 (0.120) | 0.008 a | 18 | 0.391 (0.063) | 0.400 (0.047) | 0.446 (0.132) | 0.425 (0.077) | 0.002 a |
BMI | 22 | 21.785 (4.853) | 22.100 (7.180) | 23.908 (4.559) | 24.050 (6.160) | <0.001 | 18 | 20.445 (3.896) | 19.050 (6.325) | 21.461 (3.879) | 20.900 (5.730) | 0.026 a |
Δ Weight | Δ WC | Δ WtHR | Δ BMI | ||
---|---|---|---|---|---|
Glucose | Rho | −0.280 | −0.362 b | −0.230 b | −0.296 |
2-Tailed p | 0.207 | 0.098 | 0.303 | 0.181 | |
Insulin | Rho | −0.341 b | −0.213 b | −0.381 b | −0.167 b |
2-Tailed p | 0.121 | 0.341 | 0.080 | 0.457 | |
HOMA-IR | Rho | −0.182 | −0.043 b | −0.216 b | −0.158 |
2-Tailed p | 0.418 | 0.850 | 0.335 | 0.482 | |
Cholesterol Tot | Rho | −0.092 | 0.014 b | 0.232 b | −0.092 |
2-Tailed p | 0.684 | 0.950 | 0.299 | 0.685 | |
Triglycerides | Rho | −0.078 b | 0.007 b | −0.058 b | −0.115 b |
2-Tailed p | 0.730 | 0.975 | 0.797 | 0.609 | |
HDL | Rho | −0.267 | −0.426 *,b | −0.106 b | −0.277 |
2-Tailed p | 0.229 | 0.048 | 0.640 | 0.212 | |
LDL | Rho | −0.089 | −0.013 b | 0.170 b | −0.104 |
2-Tailed p | 0.694 | 0.954 | 0.450 | 0.645 |
Δ Weight | Δ WC | Δ WtHR | Δ BMI | ||
---|---|---|---|---|---|
Glucose | Rho | −0.033 b | −0.039 | 0.020 b | 0.147 b |
2-Tailed p | 0.896 | 0.878 | 0.938 | 0.561 | |
Insulin | Rho | 0.340 b | 0.334 b | 0.257 b | 0.532 *,b |
2-Tailed p | 0.167 | 0.175 | 0.304 | 0.023 | |
HOMA-IR | Rho | 0.292 b | 0.296 b | 0.171 b | 0.482 *,b |
2-Tailed p | 0.240 | 0.233 | 0.496 | 0.043 | |
Cholesterol Tot | Rho | 0.101 b | 0.147 | 0.067 b | −0.066 b |
2-Tailed p | 0.689 | 0.560 | 0.791 | 0.794 | |
Triglycerides | Rho | 0.149 b | 0.157 b | −0.151 b | 0.011 b |
2-Tailed p | 0.555 | 0.534 | 0.550 | 0.964 | |
HDL | Rho | −0.178 b | −0.199 | −0.104 b | −0.223 b |
2-Tailed p | 0.480 | 0.428 | 0.681 | 0.374 | |
LDL | Rho | 0.343 b | 0.286 | 0.233 b | 0.177 b |
2-Tailed p | 0.164 | 0.251 | 0.351 | 0.482 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matera, E.; Cristofano, G.; Furente, F.; Marzulli, L.; Tarantini, M.; Margari, L.; Piarulli, F.M.; De Giacomo, A.; Petruzzelli, M.G. Glucose and Lipid Profiles Predict Anthropometric Changes in Drug-Naïve Adolescents Starting Treatment with Risperidone or Sertraline: A Pilot Study. Biomedicines 2023, 11, 48. https://doi.org/10.3390/biomedicines11010048
Matera E, Cristofano G, Furente F, Marzulli L, Tarantini M, Margari L, Piarulli FM, De Giacomo A, Petruzzelli MG. Glucose and Lipid Profiles Predict Anthropometric Changes in Drug-Naïve Adolescents Starting Treatment with Risperidone or Sertraline: A Pilot Study. Biomedicines. 2023; 11(1):48. https://doi.org/10.3390/biomedicines11010048
Chicago/Turabian StyleMatera, Emilia, Gloria Cristofano, Flora Furente, Lucia Marzulli, Martina Tarantini, Lucia Margari, Francesco Maria Piarulli, Andrea De Giacomo, and Maria Giuseppina Petruzzelli. 2023. "Glucose and Lipid Profiles Predict Anthropometric Changes in Drug-Naïve Adolescents Starting Treatment with Risperidone or Sertraline: A Pilot Study" Biomedicines 11, no. 1: 48. https://doi.org/10.3390/biomedicines11010048
APA StyleMatera, E., Cristofano, G., Furente, F., Marzulli, L., Tarantini, M., Margari, L., Piarulli, F. M., De Giacomo, A., & Petruzzelli, M. G. (2023). Glucose and Lipid Profiles Predict Anthropometric Changes in Drug-Naïve Adolescents Starting Treatment with Risperidone or Sertraline: A Pilot Study. Biomedicines, 11(1), 48. https://doi.org/10.3390/biomedicines11010048