Behavioral Effects and Analgesic Profile of Hemoglobin-Derived Valorphin and Its Synthetic Analog in Rodents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Biological Assay
2.2.1. Experimental Animals and Drug Treatment
2.2.2. Experimental Design
2.2.3. Methods
- Formalin test
- 2.
- Rota-rod test
- 3.
- Elevated plus maze (EPM)
- 4.
- Tail suspension test
- 5.
- Carrageenan-induced hyperalgesia and edema
2.2.4. Data Analysis
3. Results
3.1. Experiment 1
3.2. Experiment 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coutens, B.; Ingram, S.L. Key differences in regulation of opioid receptors localized to presynaptic terminals compared to somas: Relevance for novel therapeutics. Neuropharmacology 2022, 226, 109408. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.P.; Ko, M.C. The therapeutic potential of nociceptin/orphanin FQ receptor agonists as analgesics without abuse liability. ACS Chem. Neurosci. 2013, 4, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Gomes, I.; Sierra, S.; Lueptow, L.; Gupta, A.; Gouty, S.; Margolis, E.B.; Cox, B.M.; Devi, L.A. Biased signaling by endogenous opioid peptides. Proc. Natl. Acad. Sci. USA 2020, 117, 11820–11828. [Google Scholar] [CrossRef] [PubMed]
- Günther, T.; Dasgupta, P.; Mann, A.; Miess, E.; Kliewer, A.; Fritzwanker, S.; Steinborn, R.; Schulz, S. Targeting multiple opioid receptors—Improved analgesics with reduced side effects? Br. J. Pharmacol. 2018, 175, 2857–2868. [Google Scholar] [CrossRef] [PubMed]
- Nyberg, F.; Sanderson, K.; Glämsta, E.L. The hemorphins: A new class of opioid peptides derived from the blood protein hemoglobin. Biopolymers 1997, 43, 147–156. [Google Scholar] [CrossRef]
- Mielczarek, P.; Hartman, K.; Drabik, A.; Hung, H.Y.; Huang, E.Y.; Gibula-Tarlowska, E.; Kotlinska, J.H.; Silberring, J. Hemorphins-From Discovery to Functions and Pharmacology. Molecules 2021, 26, 3879. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, M.A.; Vijayan, R. Hemorphins Targeting G Protein-Coupled Receptors. Pharmaceuticals 2021, 14, 225. [Google Scholar] [CrossRef] [PubMed]
- Brantl, V.; Gramsch, C.; Lottspeich, F.; Mertz, R.; Jaeger, K.H.; Herz, A. Novel opioid peptides derived from hemoglobin: Hemorphins. Eur. J. Pharmacol. 1986, 125, 309–310. [Google Scholar] [CrossRef]
- Liebmann, C.; Schrader, U.; Brantl, V. Opioid receptor affinities of the blood-derived tetrapeptides hemorphin and cytochrophin. Eur. J. Pharmacol. 1989, 166, 523–526. [Google Scholar] [CrossRef]
- Zadina, J.E.; Kastin, A.J.; Kersh, D.; Wyatt, A. Tyr-mif-1 and hemorphin can act as opiate agonists as well as antagonists in the guinea pig ileum. Life Sci. 1992, 51, 869–885. [Google Scholar] [CrossRef]
- Yukhananov, R.Y.; Glämsta, E.-L.; Nyberg, F. Interaction of hemorphins with opioid receptors in the rat vas deferens and guinea-pig ileum. Regul. Pept. 1994, 53, S239–S242. [Google Scholar] [CrossRef]
- Song, C.Z.; Wang, Q.W.; Liu, H.; Song, C.C. Inhibition of intraerythrocytic proteasome retards the generation of hemorphins. Peptides 2012, 33, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Song, C.Z.; Wang, Q.W.; Song, C.C. Diminution of hemoglobin-derived hemorphin: An underlying risk factor for cognitive deficit in diabetes. J. Neurol. Sci. 2012, 317, 157–158. [Google Scholar] [CrossRef]
- Garreau, I.; Zhao, Q.; Pejoan, C.; Cupo, A.; Piot, J.M. VV-hemorphin-7 and LVV-hemorphin-7 released during in vitro peptic hemoglobin hydrolysis are morphinomimetic peptides 7. Neuropeptides 1995, 28, 243–250. [Google Scholar] [CrossRef]
- Davis, T.P.; Gillespie, T.J.; Porreca, F. Peptide fragments derived from the beta-chain of hemoglobin (hemorphins) are centrally active in vivo. Peptides 1989, 10, 747–751. [Google Scholar] [CrossRef] [PubMed]
- Erchegyi, J.; Kastin, A.J.; Zadina, J.E.; Qiu, X.D. Isolation of a heptapeptide (valorphin) with some opiate activity. Int. J. Pept. Protein Res. 1992, 39, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Todorov, P.; Peneva, P.; Pechlivanova, D.; Georgieva, S.; Dzhambazova, E. Synthesis, characterization, and nociceptive screening of new VV-hemorphin-5 analogues. Bioorg. Med. Chem. Lett. 2018, 28, 3073–3079. [Google Scholar] [CrossRef]
- Assenov, B.; Pechlivanova, D.; Dzhambazova, E.; Peneva, P.; Todorov, P. Antinociceptive Effects of VV-Hemorphin-5 peptide analogues containing amino phosphonate moiety in mouse formalin model of pain. Protein Pept. Lett. 2021, 28, 442–449. [Google Scholar] [CrossRef]
- Todorov, P.; Peneva, P.; Tchekalarova, J.; Rangelov, M.; Georgieva, S.; Todorova, N. Synthesis, characterization and anticonvulsant activity of new series of N-modified analogues of VV-Hemorphin-5 with aminophosphonate moiety. Amino Acids 2019, 51, 1527–1545. [Google Scholar] [CrossRef]
- Todorov, P.; Rangelov, M.; Peneva, P.; Todorova, N.; Tchekalarova, J. Anticonvulsant evaluation and docking analysis of VV-Hemorphin-5 analogues. Drug Dev. Res. 2019, 80, 425–437. [Google Scholar] [CrossRef]
- Todorov, P.; Georgieva, S.; Tchekalarova, J. Recent synthesis, characterization and pharmacological evaluation of multifunctional hemorphins containing non-natural amino acids with potential biological importance. Pharmaceuticals 2022, 15, 1425. [Google Scholar] [CrossRef] [PubMed]
- Haley, T.J.; McCormick, W.G. Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br. J. Pharmacol. Chemother. 1957, 12, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Can, A.; Dao, D.T.; Terrillion, C.E.; Piantadosi, S.C.; Bhat, S.; Gould, T.D. The tail suspension test. J. Vis. Exp. 2012, 59, e3769. [Google Scholar] [CrossRef]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc. Soc. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef]
- Kayser, V.; Guilbaud, G. Physiological relevance and time course of a tonic endogenous opioid modulation of nociceptive messages, based on the effects of naloxone in a rat model of localized hyperalgesic inflammation. Brain Res. 1991, 567, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, U.H.; Raaschou-Nielsen, M.; Breddam, K. Recognition of C-terminal amide groups by (serine) carboxypeptidase Y investigated by site-directed mutagenesis. J. Biol. Chem. 1994, 269, 15528–15532. [Google Scholar] [CrossRef] [PubMed]
- Pogozheva, I.D.; Przydzial, M.J.; Mosberg, H.I. Homology modeling of opioid receptor-ligand complexes using experimental constraints. AAPS J. 2005, 7, E434–E448. [Google Scholar] [CrossRef] [PubMed]
- Maestro, A.; de Marigorta, E.M.; Palacios, F.; Vicario, J. Alpha-iminophosphonates: Useful intermediates for enantioselective synthesis of alpha-minophosphonates. Asian J. Org. Chem. 2020, 9, 538–548. [Google Scholar] [CrossRef]
- Kosińska, A.; Virieux, D.; Pirat, J.-L.; Czarnecka, K.; Girek, M.; Szymański, P.; Wojtulewski, S.; Vasudevan, S.; Chworos, A.; Rudolf, B. Synthesis and Biological Studies of Novel Aminophosphonates and Their Metal Carbonyl Complexes (Fe, Ru). Int. J. Mol. Sci. 2022, 23, 8091. [Google Scholar] [CrossRef]
- Cheng, B.C.; Tao, P.L.; Cheng, Y.Y.; Huang, E.Y. LVV-hemorphin 7 and angiotensin IV in correlation with antinociception and anti-thermal hyperalgesia in rats. Peptides 2012, 1, 9–16. [Google Scholar] [CrossRef]
- Ali, A.; Baby, B.; Soman, S.S.; Vijayan, R. Molecular insights into the interaction of hemorphin and its targets. Sci. Rep. 2019, 9, 14747. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.S.; Wang, J.; Chen, J.C.; Tao, Y.M.; Wang, Y.H.; Xu, X.J.; Chen, J.; Xu, Y.G.; Xi, T.; Hu, X.W.; et al. Novel κ-opioid receptor agonist MB-1C-OH produces potent analgesia with less depression and sedation. Acta Pharmacol. Sin. 2015, 36, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, Y.; Yong, Z.; Chen, M.; Zhang, Y.; Su, R.; Gong, Z. Thienorphine induces antinociception without dependence through activation of κ- and δ-, and partial activation of μ- opioid receptor. Brain Res. 2020, 1748, 147083. [Google Scholar] [CrossRef] [PubMed]
- Knoll, A.T.; Meloni, E.G.; Thomas, J.B.; Carroll, F.I.; Carlezon, W.A. Anxiolytic-like effects of kappa-opioid receptor antagonists in models of unlearned and learned fear in rats. J. Pharmacol. Exp. Ther. 2007, 323, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Bruchas, M.R.; Land, B.B.; Lemos, J.C.; Chavkin, C. CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior. PLoS ONE 2009, 4, e8528. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Long, Y.; Hang, A.; Zan, G.Y.; Shu, X.H.; Wang, Y.J.; Liu, J.G. The anxiolytic- and antidepressant-like effects of ATPM-ET, a novel κ agonist and μ partial agonist, in mice. Psychopharmacology 2016, 233, 2411–2418. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, K.; Nyberg, F.; Khalil, Z. Modulation of peripheral inflammation by locally administered hemorphin-7. Inflamm. Res. 1998, 47, 49–55. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todorov, P.; Assenov, B.; Angelov, D.; Dzhambazova, E.; Pechlivanova, D. Behavioral Effects and Analgesic Profile of Hemoglobin-Derived Valorphin and Its Synthetic Analog in Rodents. Biomedicines 2023, 11, 2783. https://doi.org/10.3390/biomedicines11102783
Todorov P, Assenov B, Angelov D, Dzhambazova E, Pechlivanova D. Behavioral Effects and Analgesic Profile of Hemoglobin-Derived Valorphin and Its Synthetic Analog in Rodents. Biomedicines. 2023; 11(10):2783. https://doi.org/10.3390/biomedicines11102783
Chicago/Turabian StyleTodorov, Petar, Borislav Assenov, Dimo Angelov, Elena Dzhambazova, and Daniela Pechlivanova. 2023. "Behavioral Effects and Analgesic Profile of Hemoglobin-Derived Valorphin and Its Synthetic Analog in Rodents" Biomedicines 11, no. 10: 2783. https://doi.org/10.3390/biomedicines11102783
APA StyleTodorov, P., Assenov, B., Angelov, D., Dzhambazova, E., & Pechlivanova, D. (2023). Behavioral Effects and Analgesic Profile of Hemoglobin-Derived Valorphin and Its Synthetic Analog in Rodents. Biomedicines, 11(10), 2783. https://doi.org/10.3390/biomedicines11102783