DLL3 Is a Prognostic and Potentially Predictive Biomarker for Immunotherapy Linked to PD/PD-L Axis and NOTCH1 in Pancreatic Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. TCGA Dataset Analysis
2.2. Patient Samples
2.3. Tissue Microarray
2.4. Immunohistochemistry
2.5. Quantification of Immunohistochemistry
2.6. Statistical Analysis
3. Results
3.1. High DLL3 mRNA Expression Is Associated with Better Prognosis in PDAC Patients
3.2. Population Characteristics of the Validation Set
3.3. DLL3 Protein Expression Is a Prognostic Biomarker after Resection in PDAC
3.4. DLL3 Tumor Expression Is a Potential Biomarker for Immunotherapy Response
3.5. DLL3 Counteracts NOTCH1 Expression in Resected PDAC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rishi, A.; Goggins, M.; Wood, L.D.; Hruban, R.H. Pathological and Molecular Evaluation of Pancreatic Neoplasms. Semin. Oncol. 2015, 42, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Nikiforova, M.N.; Wald, A.I.; Spagnolo, D.M.; Melan, M.A.; Grupillo, M.; Lai, Y.-T.; Brand, R.E.; O’Broin-Lennon, A.M.; McGrath, K.; Park, W.G.; et al. A Combined DNA/RNA-Based Next-Generation Sequencing Platform to Improve the Classification of Pancreatic Cysts and Early Detection of Pancreatic Cancer Arising from Pancreatic Cysts. Ann. Surg. 2023, 278, e789–e797. [Google Scholar] [CrossRef] [PubMed]
- Falk, D.E.; Yi, H.; Hiller-Sturmhöfel, S. An Epidemiologic Analysis of Co-Occurring Alcohol and Tobacco Use and Disorders: Findings from the National Epidemiologic Survey on Alcohol and Related Conditions. Alcohol. Res. Health 2006, 29, 162–171. [Google Scholar] [PubMed]
- Grimes, A.; Chandra, S.B.C. Significance of Cellular Senescence in Aging and Cancer. Cancer Res. Treat. 2009, 41, 187–195. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Pancreatic Cancer—Statistics. Available online: https://www.cancer.net/cancer-types/pancreatic-cancer/statistics (accessed on 28 August 2023).
- Ferlay, J.; Partensky, C.; Bray, F. More Deaths from Pancreatic Cancer than Breast Cancer in the EU by 2017. Acta Oncol. 2016, 55, 1158–1160. [Google Scholar] [CrossRef]
- Allen, P.J.; Kuk, D.; Castillo, C.F.-D.; Basturk, O.; Wolfgang, C.L.; Cameron, J.L.; Lillemoe, K.D.; Ferrone, C.R.; Morales-Oyarvide, V.; He, J.; et al. Multi-Institutional Validation Study of the American Joint Commission on Cancer (8th Edition) Changes for T and N Staging in Patients with Pancreatic Adenocarcinoma. Ann. Surg. 2017, 265, 185–191. [Google Scholar] [CrossRef]
- Kumar, L.; Kumar, S.; Sandeep, K.; Patel, S.K.S. Therapeutic Approaches in Pancreatic Cancer: Recent Updates. Biomedicines 2023, 11, 1611. [Google Scholar] [CrossRef]
- Oettle, H.; Post, S.; Neuhaus, P.; Gellert, K.; Langrehr, J.; Ridwelski, K.; Schramm, H.; Fahlke, J.; Zuelke, C.; Burkart, C.; et al. Adjuvant Chemotherapy with Gemcitabine vs Observation in Patients Undergoing Curative-Intent Resection of Pancreatic Cancer: A Randomized Controlled Trial. JAMA 2007, 297, 267–277. [Google Scholar] [CrossRef]
- Conroy, T.; Hammel, P.; Hebbar, M.; Ben Abdelghani, M.; Wei, A.C.; Raoul, J.-L.; Choné, L.; Francois, E.; Artru, P.; Biagi, J.J.; et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N. Engl. J. Med. 2018, 379, 2395–2406. [Google Scholar] [CrossRef] [PubMed]
- Neoptolemos, J.P.; Palmer, D.H.; Ghaneh, P.; Psarelli, E.E.; Valle, J.W.; Halloran, C.M.; Faluyi, O.; O’Reilly, D.A.; Cunningham, D.; Wadsley, J.; et al. Comparison of Adjuvant Gemcitabine and Capecitabine with Gemcitabine Monotherapy in Patients with Resected Pancreatic Cancer (ESPAC-4): A Multicentre, Open-Label, Randomised, Phase 3 Trial. Lancet 2017, 389, 1011–1024. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.-C.; Chien, K.-L.; Lin, Y.-L.; Wu, M.-S.; Lin, J.-T.; Wang, H.-P.; Tu, Y.-K. Adjuvant Treatments for Resected Pancreatic Adenocarcinoma: A Systematic Review and Network Meta-Analysis. Lancet Oncol. 2013, 14, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Login. Available online: https://www.nccn.org/login (accessed on 30 August 2023).
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased Survival in Pancreatic Cancer with Nab-Paclitaxel plus Gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [PubMed]
- Gómez-España, M.A.; Montes, A.F.; Garcia-Carbonero, R.; Mercadé, T.M.; Maurel, J.; Martín, A.M.; Pazo-Cid, R.; Vera, R.; Carrato, A.; Feliu, J. SEOM Clinical Guidelines for Pancreatic and Biliary Tract Cancer (2020). Clin. Transl. Oncol. 2021, 23, 988–1000. [Google Scholar] [CrossRef]
- Ducreux, M.; Cuhna, A.S.; Caramella, C.; Hollebecque, A.; Burtin, P.; Goéré, D.; Seufferlein, T.; Haustermans, K.; Van Laethem, J.L.; Conroy, T.; et al. Cancer of the Pancreas: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2015, 26 (Suppl. S5), v56–v68. [Google Scholar] [CrossRef]
- NAPOLI-3: A Randomized, Open-Label Phase 3 Study of Liposomal Irinotecan + 5-Fluorouracil/Leucovorin + Oxaliplatin (NALIRIFOX) versus Nab-Paclitaxel + Gemcitabine in Treatment-Naïve Patients with Metastatic Pancreatic Ductal Adenocarcinoma (mPDAC). Journal of Clinical Oncology. Available online: https://ascopubs.org/doi/abs/10.1200/JCO.2023.41.4_suppl.LBA661 (accessed on 30 August 2023).
- Sohal, D.P.S.; Duong, M.; Ahmad, S.A.; Gandhi, N.S.; Beg, M.S.; Wang-Gillam, A.; Wade, J.L.; Chiorean, E.G.; Guthrie, K.A.; Lowy, A.M.; et al. Efficacy of Perioperative Chemotherapy for Resectable Pancreatic Adenocarcinoma: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 421–427. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Wu, Y.-L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus Chemotherapy for Previously Untreated, PD-L1-Expressing, Locally Advanced or Metastatic Non-Small-Cell Lung Cancer (KEYNOTE-042): A Randomised, Open-Label, Controlled, Phase 3 Trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Szabados, B.; Kockx, M.; Assaf, Z.J.; van Dam, P.-J.; Rodriguez-Vida, A.; Duran, I.; Crabb, S.J.; Van Der Heijden, M.S.; Pous, A.F.; Gravis, G.; et al. Final Results of Neoadjuvant Atezolizumab in Cisplatin-Ineligible Patients with Muscle-Invasive Urothelial Cancer of the Bladder. Eur. Urol. 2022, 82, 212–222. [Google Scholar] [CrossRef]
- Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.-A.; Shaw Wright, G.; et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [Google Scholar] [CrossRef]
- Torphy, R.J.; Zhu, Y.; Schulick, R.D. Immunotherapy for Pancreatic Cancer: Barriers and Breakthroughs. Ann. Gastroenterol. Surg. 2018, 2, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Renouf, D.J.; Loree, J.M.; Knox, J.J.; Topham, J.T.; Kavan, P.; Jonker, D.; Welch, S.; Couture, F.; Lemay, F.; Tehfe, M.; et al. The CCTG PA.7 Phase II Trial of Gemcitabine and Nab-Paclitaxel with or without Durvalumab and Tremelimumab as Initial Therapy in Metastatic Pancreatic Ductal Adenocarcinoma. Nat. Commun. 2022, 13, 5020. [Google Scholar] [CrossRef] [PubMed]
- Murtaugh, L.C.; Stanger, B.Z.; Kwan, K.M.; Melton, D.A. Notch Signaling Controls Multiple Steps of Pancreatic Differentiation. Proc. Natl. Acad. Sci. USA 2003, 100, 14920–14925. [Google Scholar] [CrossRef] [PubMed]
- Mullendore, M.E.; Koorstra, J.-B.; Li, Y.-M.; Offerhaus, G.J.; Fan, X.; Henderson, C.M.; Matsui, W.; Eberhart, C.G.; Maitra, A.; Feldmann, G. Ligand-Dependent Notch Signaling Is Involved in Tumor Initiation and Tumor Maintenance in Pancreatic Cancer. Clin. Cancer Res. 2009, 15, 2291–2301. [Google Scholar] [CrossRef] [PubMed]
- Vaz, A.P.; Ponnusamy, M.P.; Seshacharyulu, P.; Batra, S.K. A Concise Review on the Current Understanding of Pancreatic Cancer Stem Cells. J. Cancer Stem Cell Res. 2014, 2, e1004. [Google Scholar] [CrossRef] [PubMed]
- Barman, S.; Fatima, I.; Singh, A.B.; Dhawan, P. Pancreatic Cancer and Therapy: Role and Regulation of Cancer Stem Cells. Int. J. Mol. Sci. 2021, 22, 4765. [Google Scholar] [CrossRef]
- Katoh, M.; Katoh, M. Precision Medicine for Human Cancers with Notch Signaling Dysregulation (Review). Int. J. Mol. Med. 2020, 45, 279–297. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Ko, J.H.; Sage, J. DLL3 Regulates Notch Signaling in Small Cell Lung Cancer. iScience 2022, 25, 105603. [Google Scholar] [CrossRef]
- Geffers, I.; Serth, K.; Chapman, G.; Jaekel, R.; Schuster-Gossler, K.; Cordes, R.; Sparrow, D.B.; Kremmer, E.; Dunwoodie, S.L.; Klein, T.; et al. Divergent Functions and Distinct Localization of the Notch Ligands DLL1 and DLL3 In Vivo. J. Cell Biol. 2007, 178, 465–476. [Google Scholar] [CrossRef]
- Matsuo, K.; Taniguchi, K.; Hamamoto, H.; Ito, Y.; Futaki, S.; Inomata, Y.; Shima, T.; Asakuma, M.; Lee, S.-W.; Tanaka, K.; et al. Delta-like 3 Localizes to Neuroendocrine Cells and Plays a Pivotal Role in Gastrointestinal Neuroendocrine Malignancy. Cancer Sci. 2019, 110, 3122–3131. [Google Scholar] [CrossRef]
- Lim, J.S.; Ibaseta, A.; Fischer, M.M.; Cancilla, B.; O’Young, G.; Cristea, S.; Luca, V.C.; Yang, D.; Jahchan, N.S.; Hamard, C.; et al. Intratumoural Heterogeneity Generated by Notch Signalling Promotes Small-Cell Lung Cancer. Nature 2017, 545, 360–364. [Google Scholar] [CrossRef]
- Lashari, B.H.; Vallatharasu, Y.; Kolandra, L.; Hamid, M.; Uprety, D. Rovalpituzumab Tesirine: A Novel DLL3-Targeting Antibody-Drug Conjugate. Drugs R&D 2018, 18, 255–258. [Google Scholar] [CrossRef]
- Morgensztern, D.; Besse, B.; Greillier, L.; Santana-Davila, R.; Ready, N.; Hann, C.L.; Glisson, B.S.; Farago, A.F.; Dowlati, A.; Rudin, C.M.; et al. Efficacy and Safety of Rovalpituzumab Tesirine in Third-Line and Beyond Patients with DLL3-Expressing, Relapsed/Refractory Small-Cell Lung Cancer: Results From the Phase II TRINITY Study. Clin. Cancer Res. 2019, 25, 6958–6966. [Google Scholar] [CrossRef] [PubMed]
- Blackhall, F.; Jao, K.; Greillier, L.; Cho, B.C.; Penkov, K.; Reguart, N.; Majem, M.; Nackaerts, K.; Syrigos, K.; Hansen, K.; et al. Efficacy and Safety of Rovalpituzumab Tesirine Compared with Topotecan as Second-Line Therapy in DLL3-High SCLC: Results From the Phase 3 TAHOE Study. J. Thorac. Oncol. 2021, 16, 1547–1558. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.L.; Zvirbule, Z.; Laktionov, K.; Helland, A.; Cho, B.C.; Gutierrez, V.; Colinet, B.; Lena, H.; Wolf, M.; Gottfried, M.; et al. Rovalpituzumab Tesirine as a Maintenance Therapy After First-Line Platinum-Based Chemotherapy in Patients with Extensive-Stage-SCLC: Results From the Phase 3 MERU Study. J. Thorac. Oncol. 2021, 16, 1570–1581. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.L.; Dy, G.K.; Mamdani, H.; Dowlati, A.; Schoenfeld, A.J.; Pacheco, J.M.; Sanborn, R.E.; Menon, S.P.; Santiago, L.; Yaron, Y.; et al. Interim Results of an Ongoing Phase 1/2a Study of HPN328, a Tri-Specific, Half-Life Extended, DLL3-Targeting, T-Cell Engager, in Patients with Small Cell Lung Cancer and Other Neuroendocrine Cancers. JCO 2022, 40, 8566. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Champiat, S.; Lai, W.V.; Izumi, H.; Govindan, R.; Boyer, M.; Hummel, H.-D.; Borghaei, H.; Johnson, M.L.; Steeghs, N.; et al. Tarlatamab, a First-in-Class DLL3-Targeted Bispecific T-Cell Engager, in Recurrent Small-Cell Lung Cancer: An Open-Label, Phase I Study. J. Clin. Oncol. 2023, 41, 2893–2903. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal 2013, 6, pl1. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Pietrantonio, F.; Loupakis, F.; Randon, G.; Raimondi, A.; Salati, M.; Trapani, D.; Pagani, F.; Depetris, I.; Maddalena, G.; Morano, F.; et al. Efficacy and Safety of Immune Checkpoint Inhibitors in Patients with Microsatellite Instability-High End-Stage Cancers and Poor Performance Status Related to High Disease Burden. Oncologist 2020, 25, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G.; Psyrri, A.; Basté, N.; Neupane, P.; Bratland, Å.; et al. Pembrolizumab Alone or with Chemotherapy versus Cetuximab with Chemotherapy for Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck (KEYNOTE-048): A Randomised, Open-Label, Phase 3 Study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.-P.; Li, Z.; Kim, S.-B.; et al. Pembrolizumab plus Chemotherapy versus Chemotherapy Alone for First-Line Treatment of Advanced Oesophageal Cancer (KEYNOTE-590): A Randomised, Placebo-Controlled, Phase 3 Study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.; Cescon, D.W.; Rugo, H.S.; Nowecki, Z.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Holgado, E.; et al. Pembrolizumab plus Chemotherapy versus Placebo plus Chemotherapy for Previously Untreated Locally Recurrent Inoperable or Metastatic Triple-Negative Breast Cancer (KEYNOTE-355): A Randomised, Placebo-Controlled, Double-Blind, Phase 3 Clinical Trial. Lancet 2020, 396, 1817–1828. [Google Scholar] [CrossRef] [PubMed]
- Nishio, S.; Yonemori, K.; Usami, T.; Minobe, S.; Yunokawa, M.; Iwata, T.; Okamoto, A.; Aoki, Y.; Itamochi, H.; Takekuma, M.; et al. Pembrolizumab plus Chemotherapy in Japanese Patients with Persistent, Recurrent or Metastatic Cervical Cancer: Results from KEYNOTE-826. Cancer Sci. 2022, 113, 3877–3887. [Google Scholar] [CrossRef]
- Li, W.; Ye, L.; Huang, Y.; Zhou, F.; Wu, C.; Wu, F.; He, Y.; Li, X.; Wang, H.; Xiong, A.; et al. Characteristics of Notch Signaling Pathway and Its Correlation with Immune Microenvironment in SCLC. Lung Cancer 2022, 167, 25–33. [Google Scholar] [CrossRef]
- Zhang, Y.; Shang, L.; Han, J.; Shen, X.; Liu, H.; Yang, J.; Shi, H. Biological and Immunological Significance of DLL3 Expression in Different Tumor Tissues: A Pan-Cancer Analysis. Aging 2023, 15, 3427–3441. [Google Scholar] [CrossRef]
- Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and Its Ligands in Tolerance and Immunity. Annu. Rev. Immunol. 2008, 26, 677–704. [Google Scholar] [CrossRef] [PubMed]
- Hipp, S.; Voynov, V.; Drobits-Handl, B.; Giragossian, C.; Trapani, F.; Nixon, A.E.; Scheer, J.M.; Adam, P.J. A Bispecific DLL3/CD3 IgG-Like T-Cell Engaging Antibody Induces Antitumor Responses in Small Cell Lung Cancer. Clin. Cancer Res. 2020, 26, 5258–5268. [Google Scholar] [CrossRef]
- Chen, X.; Amar, N.; Zhu, Y.; Wang, C.; Xia, C.; Yang, X.; Wu, D.; Feng, M. Combined DLL3-Targeted Bispecific Antibody with PD-1 Inhibition Is Efficient to Suppress Small Cell Lung Cancer Growth. J. Immunother. Cancer 2020, 8, e000785. [Google Scholar] [CrossRef]
- Li, X.; Yan, X.; Wang, Y.; Kaur, B.; Han, H.; Yu, J. The Notch Signaling Pathway: A Potential Target for Cancer Immunotherapy. J. Hematol. Oncol. 2023, 16, 45. [Google Scholar] [CrossRef]
- De Jesus-Acosta, A.; Laheru, D.; Maitra, A.; Arcaroli, J.; Rudek, M.A.; Dasari, A.; Blatchford, P.J.; Quackenbush, K.; Messersmith, W. A Phase II Study of the Gamma Secretase Inhibitor RO4929097 in Patients with Previously Treated Metastatic Pancreatic Adenocarcinoma. Invest. New Drugs 2014, 32, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Mizuma, M.; Rasheed, Z.A.; Yabuuchi, S.; Omura, N.; Campbell, N.R.; de Wilde, R.F.; De Oliveira, E.; Zhang, Q.; Puig, O.; Matsui, W.; et al. The Gamma Secretase Inhibitor MRK-003 Attenuates Pancreatic Cancer Growth in Preclinical Models. Mol. Cancer Ther. 2012, 11, 1999–2009. [Google Scholar] [CrossRef] [PubMed]
- Plentz, R.; Park, J.-S.; Rhim, A.D.; Abravanel, D.; Hezel, A.F.; Sharma, S.V.; Gurumurthy, S.; Deshpande, V.; Kenific, C.; Settleman, J.; et al. Inhibition of Gamma-Secretase Activity Inhibits Tumor Progression in a Mouse Model of Pancreatic Ductal Adenocarcinoma. Gastroenterology 2009, 136, 1741–1749.e6. [Google Scholar] [CrossRef] [PubMed]
- McCaw, T.R.; Inga, E.; Chen, H.; Jaskula-Sztul, R.; Dudeja, V.; Bibb, J.A.; Ren, B.; Rose, J.B. Gamma Secretase Inhibitors in Cancer: A Current Perspective on Clinical Performance. Oncologist 2021, 26, e608–e621. [Google Scholar] [CrossRef]
Univariate PFS (95%CI) | Univariate OS (95%CI) | |||||||
---|---|---|---|---|---|---|---|---|
HR | Lower | Upper | p | HR | Lower | Upper | p | |
Age (<65 years vs. >65 years) | 1.39 | 0.90 | 2.16 | 0.13 | 1.39 | 0.93 | 2.09 | 0.10 |
Sex (Male vs. Female) | 1.17 | 0.76 | 1.81 | 0.45 | 1.25 | 0.83 | 1.87 | 0.27 |
Diabetes mellitus (No vs. Yes) | 0.91 | 0.51 | 1.63 | 0.76 | 0.99 | 0.57 | 1.73 | 0.98 |
Alcohol exposure (No vs. Yes) | 1.21 | 0.76 | 1.94 | 0.40 | 1.09 | 0.70 | 1.71 | 0.68 |
Size (≤2 cm vs. >2 cm) | 1.91 | 0.60 | 6.08 | 0.27 | 2.53 | 0.61 | 10.38 | 0.19 |
Stage (I vs. II) | 2.42 | 1.10 | 5.32 | 0.02 | 2.02 | 0.93 | 4.41 | 0.07 |
Lymph nodes involved (No vs. Yes) | 3.99 | 0.54 | 29.28 | 0.17 | 3.42 | 0.47 | 24.81 | 0.22 |
Grade (Low vs. High) | 1.788 | 1.13 | 2.81 | 0.01 | 1.60 | 1.04 | 2.45 | 0.03 |
Margin status (Negative vs. Positive) | 1.86 | 1.17 | 2.94 | 0.008 | 1.76 | 1.14 | 2.69 | 0.009 |
DLL3 (Low vs. High) | 0.49 | 0.29 | 0.84 | 0.01 | 0.54 | 0.32 | 0.91 | 0.02 |
Multivariate PFS (95%CI) | Multivariate OS (95%CI) | |||||||
Grade (Low vs. High) | 1.59 | 0.977 | 2.58 | 0.06 | 1.63 | 1.03 | 2.58 | 0.03 |
Margin status (Negative vs. Positive) | 1.99 | 1.24 | 3.19 | 0.004 | 1.93 | 1.24 | 3.00 | 0.004 |
DLL3 (Low vs. High) | 0.46 | 0.25 | 0.82 | 0.009 | 0.58 | 0.34 | 1.01 | 0.05 |
Clinical Characteristics | All Patients (N = 122) (%) |
---|---|
Age-yr | |
≤65 | 33 (27) |
>65 | 89 (73) |
Median | 72 |
Range | 42 |
Sex | |
Female | 68 (55.7) |
Male | 54 (44.3) |
Adjuvant treatment | |
No | 57 (46.7) |
Yes | 50 (41) |
N/A | 15 (12.3) |
Grade | |
Low | 41 (33.6) |
High | 77 (63.1) |
N/A | 4 (3.3) |
Vascular invasion | |
No | 59 (48.4) |
Yes | 53 (43.4) |
N/A | 10 (8.2) |
Perineural invasion | |
No | 21 (17.2) |
Yes | 91 (74.6) |
N/A | 10 (8.2) |
Margin status | |
R0 | 65 (53.3) |
R1 | 41 (33.6) |
N/A | 16 (13.1) |
Pathologic T status | |
T1 | 26 (21.3) |
T2 | 43 (35.2) |
T3 | 45 (36.9) |
T4 | 1 (0.8) |
N/A | 7 (5.7) |
Pathologic N Status | |
N0 | 49 (40.2) |
N1 | 52 (42.6) |
N2 | 20 (16.4) |
N/A | 1 (0.8) |
Stage TNM 8th edition | |
IA | 18 (14.8) |
IB | 13 (10.7) |
IIA | 15(12.3) |
IIB | 41 (41.8) |
III | 18 (14.8) |
N/A | 7 (5.7) |
N/A: not available |
Univariate PFS (95%CI) | Univariate OS (95%CI) | |||||||
---|---|---|---|---|---|---|---|---|
HR | Lower | Upper | p | HR | Lower | Upper | p | |
Age (<65 years vs. >65 years) | 1.29 | 0.76 | 21.8 | 0.33 | 1.50 | 0.88 | 2.56 | 0.12 |
Sex (Male vs. Female) | 1.41 | 0.88 | 2.27 | 0.15 | 1.35 | 0.85 | 2.14 | 0.20 |
Diabetes mellitus (No vs. Yes) | 1.47 | 0.91 | 2.39 | 0.11 | 1.43 | 0.87 | 2.34 | 0.15 |
Symptoms at diagnosis (No vs. Yes) | 1.75 | 0.91 | 3.34 | 0.08 | 2.11 | 1.04 | 4.28 | 0.03 |
Adjuvant treatment (Yes vs. No) | 1.09 | 0.67 | 1.77 | 0.72 | 0.83 | 0.51 | 1.35 | 0.46 |
Size (≤2 cm vs. >2 cm) | 2.27 | 1.21 | 4.26 | 0.01 | 1.84 | 1.04 | 3.26 | 0.03 |
Stage (I vs. II) | 2.08 | 1.19 | 3.66 | 0.01 | 1.79 | 1.06 | 3.03 | 0.02 |
Lymph nodes involved (No vs. Yes) | 1.81 | 1.10 | 2.97 | 0.01 | 1.20 | 0.75 | 1.90 | 0.44 |
Grade (Low vs. High) | 1.22 | 0.74 | 2.01 | 0.42 | 1.31 | 0.81 | 2.14 | 0.26 |
Necrosis (No vs. Yes) | 1.32 | 0.76 | 2.26 | 0.31 | 1.63 | 0.98 | 2.72 | 0.05 |
Vascular invasion (No vs. Yes) | 1.10 | 0.69 | 1.78 | 0.66 | 0.88 | 0.55 | 1.41 | 0.59 |
Neural invasion (No vs. Yes) | 0.95 | 0.51 | 1.74 | 0.87 | 0.92 | 0.52 | 1.62 | 0.78 |
Tumor DLL3 (Low vs. High) | 0.55 | 0.34 | 0.87 | 0.01 | 0.59 | 0.37 | 0.93 | 0.02 |
Multivariate PFS (95%CI) | Multivariate OS (95%CI) | |||||||
Symptoms at diagnosis (No vs. Yes) | 2.12 | 1.00 | 4.50 | 0.05 | ||||
Stage (I vs. II) | 1.85 | 0.69 | 4.93 | 0.21 | 1.80 | 0.89 | 3.60 | 0.09 |
Size (≤2 cm vs. >2 cm) | 1.64 | 0.77 | 3.49 | 0.19 | 1.66 | 0.83 | 3.34 | 0.15 |
Lymph nodes involved (No vs. Yes) | 1.13 | 0.51 | 2.48 | 0.74 | ||||
Tumor DLL3 (High vs. Low) | 0.41 | 0.23 | 0.71 | 0.02 | 0.44 | 0.255 | 0.76 | 0.004 |
Clinical Characteristics | DLL3 Low | DLL3 High | p-Value |
---|---|---|---|
Age-years | 0.616 | ||
≤65 | 18 | 15 | |
>65 | 43 | 44 | |
Sex | 0.069 | ||
Female | 39 | 28 | |
Male | 22 | 31 | |
Adjuvant treatment | 0.3 | ||
No | 33 | 24 | |
Yes | 18 | 31 | |
Grade | 0.9 | ||
Low | 21 | 20 | |
High | 38 | 38 | |
Vascular invasion | 0.39 | ||
No | 31 | 27 | |
Yes | 24 | 29 | |
Perineural invasion | 0.007 | ||
No | 16 | 5 | |
Yes | 39 | 51 | |
Margin status | 0.126 | ||
No affected (R0) | 36 | 29 | |
Affected (R1) | 16 | 24 | |
Pathologic T status | 0.093 | ||
T1/2 | 29 | 39 | |
T3/4 | 27 | 19 | |
Pathologic N Status | 0.029 | ||
N0 | 30 | 29 | |
N1/2 | 18 | 40 | |
Stroma DLL3 | 0.018 | ||
Low | 37 | 23 | |
High | 24 | 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lacalle-Gonzalez, C.; Florez-Cespedes, M.; Sanz-Criado, L.; Ochieng’ Otieno, M.; Ramos-Muñoz, E.; Fernandez-Aceñero, M.J.; Ortega-Medina, L.; Garcia-Foncillas, J.; Martinez-Useros, J. DLL3 Is a Prognostic and Potentially Predictive Biomarker for Immunotherapy Linked to PD/PD-L Axis and NOTCH1 in Pancreatic Cancer. Biomedicines 2023, 11, 2812. https://doi.org/10.3390/biomedicines11102812
Lacalle-Gonzalez C, Florez-Cespedes M, Sanz-Criado L, Ochieng’ Otieno M, Ramos-Muñoz E, Fernandez-Aceñero MJ, Ortega-Medina L, Garcia-Foncillas J, Martinez-Useros J. DLL3 Is a Prognostic and Potentially Predictive Biomarker for Immunotherapy Linked to PD/PD-L Axis and NOTCH1 in Pancreatic Cancer. Biomedicines. 2023; 11(10):2812. https://doi.org/10.3390/biomedicines11102812
Chicago/Turabian StyleLacalle-Gonzalez, Carlos, Maria Florez-Cespedes, Lara Sanz-Criado, Michael Ochieng’ Otieno, Edurne Ramos-Muñoz, Maria Jesus Fernandez-Aceñero, Luis Ortega-Medina, Jesus Garcia-Foncillas, and Javier Martinez-Useros. 2023. "DLL3 Is a Prognostic and Potentially Predictive Biomarker for Immunotherapy Linked to PD/PD-L Axis and NOTCH1 in Pancreatic Cancer" Biomedicines 11, no. 10: 2812. https://doi.org/10.3390/biomedicines11102812
APA StyleLacalle-Gonzalez, C., Florez-Cespedes, M., Sanz-Criado, L., Ochieng’ Otieno, M., Ramos-Muñoz, E., Fernandez-Aceñero, M. J., Ortega-Medina, L., Garcia-Foncillas, J., & Martinez-Useros, J. (2023). DLL3 Is a Prognostic and Potentially Predictive Biomarker for Immunotherapy Linked to PD/PD-L Axis and NOTCH1 in Pancreatic Cancer. Biomedicines, 11(10), 2812. https://doi.org/10.3390/biomedicines11102812