Unveiling the Role of Contingent Negative Variation (CNV) in Migraine: A Review of Electrophysiological Studies in Adults and Children
Abstract
:1. Introduction
2. Materials and Method
2.1. Selection Criteria
2.2. Information Sources and Search Strategy
2.3. Studies Inclusion Procedure and Data Extraction
3. Results
3.1. CNV Results in Adult Migraine Patients
3.2. CNV results in Child-Adolescents Migraine Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olesen, J. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd Edition. Cephalalgia 2018, 38, 1–211. [Google Scholar] [CrossRef]
- Goadsby, P.J.; Holland, P.R.; Martins-Oliveira, M.; Hoffmann, J.; Schankin, C.; Akerman, S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol. Rev. 2017, 97, 553–622. [Google Scholar] [CrossRef] [PubMed]
- Dodick, D.W. A Phase-by-Phase Review of Migraine Pathophysiology. Headache 2018, 58, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Stovner, L.J.; Hagen, K.; Linde, M.; Steiner, T.J. The Global Prevalence of Headache: An Update, with Analysis of the Influences of Methodological Factors on Prevalence Estimates. J. Headache Pain 2022, 23, 34. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; et al. Global, Regional, and National Burden of Neurological Disorders, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 459–480. [Google Scholar] [CrossRef]
- Dai, W.; Liu, R.H.; Qiu, E.; Liu, Y.; Chen, Z.; Chen, X.; Ao, R.; Zhuo, M.; Yu, S. Cortical Mechanisms in Migraine. Mol. Pain 2021, 17, 1–14. [Google Scholar] [CrossRef]
- Ashina, M.; Hansen, J.M.; Do, T.P.; Melo-Carrillo, A.; Burstein, R.; Moskowitz, M.A. Migraine and the Trigeminovascular System—40 Years and Counting. Lancet Neurol. 2019, 18, 795–804. [Google Scholar] [CrossRef]
- Strassman, A.M.; Raymond, S.A.; Burstein, R. Sensitization of Meningeal Sensory Neurons and the Origin of Headache. Nature 1996, 384, 356–358. [Google Scholar] [CrossRef]
- Bernstein, C.; Burstein, R. Sensitization of the Trigeminovascular Pathway: Perspective and Implications to Migraine Pathophysiology Vascular Theory of Migraine-Extracranial Origin Vascular Theory of Migraine-Intracranial Origin. J. Clin. Neurol. 2012, 8, 89–99. [Google Scholar] [CrossRef]
- Charles, A. Migraine: A Brain State. Curr. Opin. Neurol. 2013, 26, 235–239. [Google Scholar] [CrossRef]
- De Tommaso, M.; Ambrosini, A.; Brighina, F.; Coppola, G.; Perrotta, A.; Pierelli, F.; Sandrini, G.; Valeriani, M.; Marinazzo, D.; Stramaglia, S.; et al. Altered Processing of Sensory Stimuli in Patients with Migraine. Nat. Rev. Neurol. 2014, 10, 144–155. [Google Scholar] [CrossRef] [PubMed]
- De Tommaso, M.; Vecchio, E.; Quitadamo, S.G.; Coppola, G.; Di Renzo, A.; Parisi, V.; Silvestro, M.; Russo, A.; Tedeschi, G. Pain-Related Brain Connectivity Changes in Migraine: A Narrative Review and Proof of Concept about Possible Novel Treatments Interference. Brain Sci. 2021, 11, 234. [Google Scholar] [CrossRef] [PubMed]
- Coppola, G.; Pierelli, F.; Schoenen, J. Is The Cerebral Cortex Hyperexcitable or Hyperresponsive in Migraine? Cephalalgia 2007, 27, 1427–1439. [Google Scholar] [CrossRef]
- Goadsby, P.J.; Holland, P.R. An Update: Pathophysiology of Migraine. Neurol. Clin. 2019, 37, 651–671. [Google Scholar] [CrossRef]
- Noseda, R.; Burstein, R. Migraine Pathophysiology: Anatomy of the Trigeminovascular Pathway and Associated Neurological Symptoms, Cortical Spreading Depression, Sensitization, and Modulation of Pain. Pain 2013, 154, S44–S53. [Google Scholar] [CrossRef]
- Birbaumer, N.; Elbert, T.; Canavan, A.G.; Rockstroh, B. Slow Potentials of the Cerebral Cortex and Behavior. Physiol. Rev. 1990, 70, 1–41. [Google Scholar] [CrossRef]
- Ambrosini, A.; De Noordhout, A.M.; Sándor, P.S.; Schoenen, J. Electrophysiological Studies in Migraine: A Comprehensive Review of Their Interest and Limitations. Cephalalgia 2003, 23 (Suppl. S1), 13–31. [Google Scholar] [CrossRef] [PubMed]
- Coppola, G.; Iacovelli, E.; Bracaglia, M.; Serrao, M.; Di Lorenzo, C.; Pierelli, F. Electrophysiological Correlates of Episodic Migraine Chronification: Evidence for Thalamic Involvement. J. Headache Pain 2013, 14, 76. [Google Scholar] [CrossRef]
- Ambrosini, A.; Magis, D.; Schoenen, J. Migraine—Clinical Neurophysiology, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 97. [Google Scholar]
- Böcker, K.B.E.; Timsit-Berthier, M.; Schoenen, J.; Brunia, C.H.M. Contingent Negative Variation in Migraine. J. Psychophysiol. 1990, 30, 604–609. [Google Scholar] [CrossRef]
- Noordhout, A.M.; Timsit-Berthier, M.; Timsit, M.; Schoenen, J.; Maertens de Noordhout, A.; Timsit-Berthier, M.; Schoenen, J.; Noordhout, A.M.; Timsit, M.; Schoenen, J. Contingent Negative Variation in Headache. Ann. Neurol. 1986, 19, 78–80. [Google Scholar] [CrossRef]
- Kropp, P.; Gerber, W.D. Contingent Negative Variation—Findings and Perspectives in Migraine. Cephalalgia 1993, 13, 33–36. [Google Scholar] [CrossRef]
- Kropp, P.; Gerber, W.D.W.D. Prediction of Migraine Attacks Using a Slow Cortical Potential, the Contingent Negative Variation. Neurosci. Lett. 1998, 257, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Siniatchkin, M.; Averkina, N.; Andrasik, F.; Stephani, U.; Gerber, W.D.W.D. Neurophysiological Reactivity before a Migraine Attack. Neurosci. Lett. 2006, 400, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Siniatchkin, M.; Jonas, A.; Baki, H.; Van Baalen, A.; Gerber, W.D.; Stephani, U. Developmental Changes of the Contingent Negative Variation in Migraine and Healthy Children. J. Headache Pain 2010, 11, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Xu, S.; Guo, Y.; Li, J.; Han, M.; Ma, Y.; Hou, X.; Chen, J.; Luo, D.; Hong, Y.; et al. Contingent Negative Variation for the Periodicity of Migraine Attacks without Aura. J. Integr. Neurosci. 2019, 18, 269–276. [Google Scholar] [CrossRef]
- Brunia, C.H.M.; van Boxtel, G.J.M. Wait and See. Notes Queries 2001, 43, 59–75. [Google Scholar] [CrossRef]
- Brunia, C.H.M. Neural Aspects of Anticipatory Behavior. Acta Psychol. 1999, 101, 213–242. [Google Scholar] [CrossRef]
- Carretié, L.; Martín-Loeches, M.; Hinojosa, J.A.; Mercado, F. Emotion and Attention Interaction Studied through Event-Related Potentials. J. Cogn. Neurosci. 2001, 13, 1109–1128. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, C.; Zhang, Y.; Guan, Q.; Luo, Y.; Yang, S. The Effects of Aversive Mood State on the Affective Anticipation and Perception: An Event-Related Potential Study. Neuroscience 2021, 458, 133–140. [Google Scholar] [CrossRef]
- Hart, S.J.; Lucena, N.; Cleary, K.M.; Belger, A.; Donkers, F.C.L.L. Modulation of Early and Late 1 Event-Related Potentials by Emotion. Front. Integr. Neurosci. 2012, 6, 102. [Google Scholar] [CrossRef]
- Klorman, R.; Bentsen, E. Effects of Warning-Signal Duration on the Early and Late Components of the Contingent Negative Variation. Biol. Psychol. 1975, 3, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Mercado, F.; Antonio, J. The Emotional S1–S2 Paradigm for Exploring Brain Mechanisms Underlying Affective Modulation of Expectancy. In Brain Mapping Research Developments; Nova Biomedical: Mississauga, ON, Canada, 2007; pp. 197–209. [Google Scholar]
- Ambrosini, A.; Schoenen, J. The Electrophysiology of Migraine. Curr. Opin. Neurol. 2003, 16, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Bastiaansen, M.C.M.; Brunia, C.H.M. Anticipatory Attention: An Event-Related Desynchronization Approach. Int. J. Psychophysiol. 2001, 43, 91–107. [Google Scholar] [CrossRef] [PubMed]
- Kropp, P.; Gerber, W.D. Contingent Negative Variation during Migraine Attack and Interval: Evidence for Normalization of Slow Cortical Potentials during the Attack. Cephalalgia 1995, 15, 123–128. [Google Scholar] [CrossRef]
- Kropp, P.; Gerber, W.D. Is Increased Amplitude of Contingent Negative Varation in Migraine Due to Cortical Hyperactivity or to Reduced Habituation? Cephalalgia 1993, 13, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Kropp, P.; Wallasch, T.M.; Müller, B.; Meyer, B.; Darabaneanu, S.; Bosse, C.; Keller, A.; Meyer, W.; Gerber, W.D. Disease Duration of Episodic Migraine Correlates with Modified Amplitudes and Habituation of Contingent Negative Variation. J. Neural Transm. 2015, 122, 877–885. [Google Scholar] [CrossRef]
- Siniatchkin, M.; Gerber, W.D.; Kropp, P.; Vein, A. Contingent Negative Variation in Patients with Chronic Daily Headache. Cephalalgia 1998, 18, 565–569. [Google Scholar] [CrossRef]
- Siniatchkin, M.; Gerber, W.D.; Kropp, P.; Voznesenskaya, T.; Vein, A.M. Are the Periodic Changes of Neurophysiological Parameters during the Pain-Free Interval in Migraine Related to Abnormal Orienting Activity? Cephalalgia 2000, 20, 20–29. [Google Scholar] [CrossRef]
- Siniatchkin, M.; Kropp, P.; Gerber, W.D.; Stephani, U. Migraine in Childhood—Are Periodically Occurring Migraine Attacks Related to Dynamic Changes of Cortical Information Processing? Neurosci. Lett. 2000, 279, 1–4. [Google Scholar] [CrossRef]
- Siniatchkin, M.; Andrasik, F.; Kropp, P.; Niederberger, U.; Strenge, H.; Averkina, N.; Lindner, V.; Stephani, U.; Gerber, W.D. Central Mechanisms of Controlled-Release Metoprolol in Migraine: A Double-Blind, Placebo-Controlled Study. Cephalalgia 2007, 27, 1024–1032. [Google Scholar] [CrossRef]
- Siniatchkin, M.; Gerber-Von Müller, G.; Darabaneanu, S.; Petermann, F.; Stephani, U.; Gerber, W.D.W. Behavioural Treatment Programme Contributes to Normalization of Contingent Negative Variation in Children with Migraine. Cephalalgia 2011, 31, 562–572. [Google Scholar] [CrossRef]
- Keller, A.; Meyer, B.; Wöhlbier, H.G.; Overath, C.H.; Kropp, P. Migraine and Meditation: Characteristics of Cortical Activity and Stress Coping in Migraine Patients, Meditators and Healthy Controls—An Exploratory Cross-Sectional Study. Appl. Psychophysiol. Biofeedback 2016, 41, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.; Keller, A.; Wöhlbier, H.G.; Overath, C.H.; Müller, B.; Kropp, P. Progressive Muscle Relaxation Reduces Migraine Frequency and Normalizes Amplitudes of Contingent Negative Variation (CNV). J. Headache Pain 2016, 17, 37. [Google Scholar] [CrossRef] [PubMed]
- Pelayo-González, H.J.; Reyes-Meza, V.; Méndez-Balbuena, I.; Méndez-Díaz, O.; Trenado, C.; Ruge, D.; García-Aguilar, G.; López-Cortés, V.A. Quantitative Electroencephalographic Analysis in Women with Migraine during the Luteal Phase. Appl. Sci. 2023, 13, 7443. [Google Scholar] [CrossRef]
- Kropp, P.; Kirbach, U.; Detlefsen, J.O.; Siniatchkin, M.; Gerber, W.D.; Stephani, U.; Kropp, P.; Kirbach, U. Slow Cortical Potentials in Migraine: A Comparison of Adults and Children. Cephalalgia 1999, 19, 60–64. [Google Scholar] [CrossRef]
- Siniatchkin, M.; Kirsch, E.; Kropp, P.; Stephani, U.; Gerber, W.D. Slow Cortical Potentials in Migraine Families. Cephalalgia 2000, 20, 881–892. [Google Scholar] [CrossRef]
- Kyu, H.H.; Pinho, C.; Wagner, J.A.; Brown, J.C.; Bertozzi-Villa, A.; Charlson, F.J.; Coffeng, L.E.; Dandona, L.; Erskine, H.E.; Ferrari, A.J.; et al. Global and National Burden of Diseases and Injuries among Children and Adolescents between 1990 and 2013: Findings from the Global Burden of Disease 2013 Study. JAMA Pediatr. 2013, 170, 267–287. [Google Scholar] [CrossRef]
- Kropp, P.; Siniatchkin, M.; Stephani, U.; Gerber, W.D. Migraine—Evidence for a Disturbance of Cerebral Maturation in Man? Neurosci. Lett. 1999, 276, 181–184. [Google Scholar] [CrossRef]
- Bender, S.; Weisbrod, M.; Just, U.; Pfüller, U.; Parzer, P.; Resch, F.; Oelkers-Ax, R. Lack of Age-Dependent Development of the Contingent Negative Variation (CNV) in Migraine Children? Cephalalgia 2002, 22, 132–136. [Google Scholar] [CrossRef]
- Oelkers-Ax, R.; Schmidt, K.; Bender, S.; Reimer, I.; Möhler, E.; Knauss, E.; Resch, F.; Weisbrod, M. Longitudinal Assessment of Response Preparation and Evaluation in Migraine Gives Evidence for Deviant Maturation. Cephalalgia 2008, 28, 237–249. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Schoenen, J. β Blockers and the Central Nervous System. Cephalalgia 1986, 6, 47–54. [Google Scholar] [CrossRef]
- Dixon, R. Measuring Event-Related Potentials. Cephalalgia 1999, 19, 29–31. [Google Scholar] [CrossRef]
- Nagel-Leiby, S.; Welch, K.M.A.; Grunfeld, S.; Brown, E.; D’andrea, G. Event-Related Slow Potentials and Associated Catecholamine Function in Migraine. Cephalalgia 1990, 10, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Siniatchkin, M.; Averkina, N.; Gerber, W.D. Relationship between Precipitating Agents and Neurophysiological Abnormalities in Migraine. Cephalalgia 2006, 26, 457–465. [Google Scholar] [CrossRef]
- Darabaneanu, S.; Kropp, P.; Niederberger, U.; Strenge, H.; Gerber, W.D. Effects of Pregnancy on Slow Cortical Potentials in Migraine Patients and Healthy Controls. Cephalalgia 2008, 28, 1053–1060. [Google Scholar] [CrossRef]
- Mulder, E.; Linssen, W.H.J.P.; De Geus, E.J.C. Reduced Sensory Anticipation in Migraine. Psychophysiology 2002, 39, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Schoenen, J.; de Noordhout, M.; Timsit-Berthier, M.; Timsit, M. Contingent Negative Variation and Efficacy of Beta-Blocking Agents in Migraine. Cephalalgia 1986, 6, 229–233. [Google Scholar] [CrossRef]
- de Tommaso, M.; Guido, M.; Sardaro, M.; Serpino, C.; Vecchio, E.; De Stefano, G.; Di Claudio, T.; Specchio, L.M.; Livrea, P. Effects of Topiramate and Levetiracetam vs. Placebo on Habituation of Contingent Negative Variation in Migraine Patients. Neurosci. Lett. 2008, 442, 81–85. [Google Scholar] [CrossRef]
- Göbel, H.; Krapat, S.; Ensink, F.M.; Soyka, D. Comparison of Contingent Negative Variation Between Migraine Interval and Migraine Attack before and after Treatment with Sumatriptan. Headache J. Head Face Pain 1993, 33, 570–572. [Google Scholar] [CrossRef]
- Mulder, E.; Linssen, W.; Passchier, J.; De Geus, E.C. Interictal and Postictal Contingent Negative Variation in Migraine without Aura. Headache 2001, 41, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Gerber, W.D.; Stephani, U.; Kirsch, E.; Kropp, P.; Siniatchkin, M. Slow Cortical Potentials in Migraine Families Are Associated with Psychosocial Factors. J. Psychosom. Res. 2002, 52, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Siniatchkin, M.; Kropp, P.; Gerber, W.D. Contingent Negative Variation in Subjects at Risk for Migraine without Aura. Pain 2001, 94, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Bender, S.; Weisbrod, M.; Resch, F.; Oelkers-Ax, R. Stereotyped Topography of Different Elevated Contingent Negative Variation Components in Children with Migraine without Aura Points towards a Subcortical Dysfunction. Pain 2007, 127, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Siniatchkin, M.; Hierundar, A.; Kropp, P.; Kuhnert, R.; Gerber, W.D.; Stephani, U. Self-Regulation of Slow Cortical Potentials in Children with Migraine: An Exploratory Study. Appl. Psychophysiol. Biofeedback 2000, 25, 13–32. [Google Scholar] [CrossRef]
- Müller, B.W.; Sartory, G.; Tackenberg, A. The Movement-Related Potential in Children with Migraine and Tension-Type Headache. Cephalalgia 2002, 22, 125–131. [Google Scholar] [CrossRef]
- Kropp, P.; Siniatchkin, M.; Gerber, W.D. On the Pathophysiology of Migraine—Links for “Empirically Based Treatment” with Neurofeedback. Appl. Psychophysiol. Biofeedback 2002, 27, 203–213. [Google Scholar] [CrossRef]
- Babiloni, C.; Arendt-Nielsen, L.; Pascual-Marqui, R.D.; Rossini, P.M.; Brancucci, A.; Del Percio, C.; Babiloni, F.; Sabbatini, G.; Chen, A.C.N. Cortical Sensorimotor Interactions during the Expectancy of a Go/No-Go Task: Effects of Painful Stimuli. Behav. Neurosci. 2004, 118, 925–935. [Google Scholar] [CrossRef]
- Ozkan, M.; Teber, S.T.; Deda, G. Electroencephalogram Variations in Pediatric Migraines and Tension-Type Headaches. Pediatr. Neurol. 2012, 46, 154–157. [Google Scholar] [CrossRef]
- Timsit, M.; Timsit-Berthier, M.; Schoenen, J.; Maertens de Noordhout, A. Interet De L’etude de La VNC Dans Les Migraines Et Les Cephaless de Tension. Rev. D’électroencéphalographie Neurophysiol. Clin. 1978, 17, 259–270. [Google Scholar] [CrossRef]
- Gerber, W.D.; Kropp, P. Migr/Ine Als Reizverarbeitungsst6rung? Untersuchungen, Empirische Variation, Contingenten Negativen. Schmerz 1993, 7, 280–286. [Google Scholar] [CrossRef]
- Kropp, P.; Linstedt, U.; Gerber, W.D. Migräne. Die Dauer Der Erkrankung Beeinflusst Amplitude Und Habituation Ereigniskorrelierter Potenziale. Schmerz 2005, 19, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.; Keller, A.; Müller, B.; Wöhlbier, H.G.; Kropp, P.B.; Meyer, A.; Keller, B.; Müller, H.-G.; Wöhlbier, P. Kropp Institut Für Medizinische Psychologie Und Medizinische Soziologie, Universitätsmedizin Rostock, Rostock, Deutschland Progressive Muskelrelaxation Nach Jacobson Bei Der Migräneprophylaxe Klinisch. Schmerz 2018, 32, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Schoenen, J. Contingent Negative Variation: Methods and Potential Interest in Headache. Cephalalgia 1993, 13, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Gerber, W.D.; Schoenen, J. Biobehavioral Correlates in Migraine: The Role of Hypersensitivity and Information-Processing Dysfunction. Cephalalgia 1998, 18 (Suppl. S21), 5–11. [Google Scholar] [CrossRef] [PubMed]
- Coppola, G.; Schoenen, J. Cortical Excitability in Chronic Migraine. Curr. Pain Headache Rep. 2012, 16, 93–100. [Google Scholar] [CrossRef]
- Smite, M.G.; van der Meer, Y.G.; Pfeil, J.P.J.M.; Rijnierse, J.J.M.M.; Vos, A.J.M. Perimenstrual Migraine: Effect of Estraderm TTSr and the Value of Contingent Negative Variation and Exteroceptive Temporalis Muscle Suppression Test. Headache J. Head Face Pain 1994, 34, 103–106. [Google Scholar] [CrossRef]
- Bender, S.; Oelkers-Ax, R.; Resch, F.; Weisbrod, M. Frontal Lobe Involvement in the Processing of Meaningful Auditory Stimuli Develops during Childhood and Adolescence. Neuroimage 2006, 33, 759–773. [Google Scholar] [CrossRef] [PubMed]
- Lev, R.; Granovsky, Y.; Yarnitsky, D. Enhanced Pain Expectation in Migraine: EEG-Based Evidence for Impaired Prefrontal Function. Headache 2013, 53, 1054–1070. [Google Scholar] [CrossRef]
- Besken, E.; Pothmann, R.; Sartory, G. Contingent Negative Variation in Childhood Migraine. J. Psychophysiol. 1993, 11, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I. Contingent Negative Variation in Migraine: Effect of Beta Blocker Therapy. Clin. EEG Neurosci. 1999, 30, 21–23. [Google Scholar] [CrossRef]
- Hamerla, G.; Kropp, P.; Meyer, B.; Rocco, A.; Jürgens, T.P.; Walter, U. Midbrain Raphe Hypoechogenicity in Migraineurs: An Indicator for the Use of Analgesics but Not Triptans. Cephalalgia 2017, 37, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- De Noordhout, A.M.; Timsit-Berthier, M.; Timsit, M.; Schoenen, J. Effects of β Blockade on Contingent Negative Variation in Migraine. Ann. Neurol. 1987, 21, 111–112. [Google Scholar] [CrossRef] [PubMed]
- Kropp, P.; Kiewitt, A.; Göbel, H.; Vetter, P.; Gerber, W.D. Reliability and Stability of Contingent Negative Variation. Appl. Psychophysiol. Biofeedback 2000, 25, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Bender, S.; Weisbrod, M.; Bornfleth, H.; Resch, F.; Oelkers-Ax, R. How Do Children Prepare to React? Imaging Maturation of Motor Preparation and Stimulus Anticipation by Late Contingent Negative Variation. Neuroimage 2005, 27, 737–752. [Google Scholar] [CrossRef]
- Kropp, P.; Brecht, I.B.; Niederberger, U.; Kowalski, J.; Schröder, D.; Thome, J.; Meyer, W.; Wallasch, T.M.; Hilgendorf, I.; Gerber, W.D. Time-Dependent Post-Imperative Negative Variation Indicates Adaptation and Problem Solving in Migraine Patients. J. Neural Transm. 2012, 119, 1213–1221. [Google Scholar] [CrossRef]
- Overath, C.H.; Darabaneanu, S.; Evers, M.C.; Gerber, W.D.; Graf, M.; Keller, A.; Niederberger, U.; Schäl, H.; Siniatchkin, M.; Weisser, B. Does an Aerobic Endurance Programme Have an Influence on Information Processing in Migraineurs? J. Headache Pain 2014, 15, 11. [Google Scholar] [CrossRef]
- Rohrbaugh, J.W.; Syndulko, K.; Lindsley, D.B. Brain Wave Components of the Contingent Negative Variation in Humans. Science 1976, 191, 1055–1057. [Google Scholar] [CrossRef]
- Loveless, N.E.; Sanford, A.J. Slow Potential Correlates of Preparatory Set. Biol. Psychol. 1974, 1, 303–314. [Google Scholar] [CrossRef]
- Brunia, C.H.M.; Hackley, S.A.; van Boxtel, G.J.M.; Kotani, Y.; Ohgami, Y. Waiting to Perceive: Reward or Punishment? Clin. Neurophysiol. 2011, 122, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Gao, H.; You, J.; Liang, J.; Ma, J.; Yang, N.; Xu, H.; Jin, H. Larger N2 and Smaller Early Contingent Negative Variation during the Processing of Uncertainty about Future Emotional Events. Int. J. Psychophysiol. 2014, 94, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Carretié, L.; Mercado, F.; Hinojosa, J.A.J.A.; Martín-Loeches, M.; Sotillo, M. Valence-Related Vigilance Biases in Anxiety Studied through Event-Related Potentials. J. Affect. Disord. 2004, 78, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Baas, J.M.P.; Kenemans, J.L.; Böcker, K.B.E.; Verbaten, M.M. Threat-Induced Cortical Processing and Startle Potentiation. Neuroreport 2002, 13, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Böcker, K.B.E.; Baas, J.M.P.; Kenemans, J.L.; Verbaten, M.N. Stimulus-Preceding Negativity Induced by Fear: A Manifestation of Affective Anticipation. Int. J. Psychophysiol. 2001, 43, 77–90. [Google Scholar] [CrossRef]
- Piedimonte, A.; Guerra, G.; Vighetti, S.; Carlino, E. Measuring Expectation of Pain: Contingent Negative Variation in Placebo and Nocebo Effects. Eur. J. Pain 2017, 21, 874–885. [Google Scholar] [CrossRef]
- Babiloni, C.; Pizzella, V.; Romani, G.L.; Torquati, K.; Arendt-Nielsen, L.; Chen, A.C.N.; Brancucci, A.; Tecchio, F.; Zappasodi, F.; Rossini, P.M. Contingent Negative Variation in the Parasylvian Cortex Increases during Expectancy of Painful Sensorimotor Events: A Magnetoencephalographic Study. Behav. Neurosci. 2005, 119, 491–502. [Google Scholar] [CrossRef]
- Brown, C.A.; Seymour, B.; Boyle, Y.; El-Deredy, W.; Jones, A.K.P. Modulation of Pain Ratings by Expectation and Uncertainty: Behavioral Characteristics and Anticipatory Neural Correlates. Pain 2008, 135, 240–250. [Google Scholar] [CrossRef]
- Tandon, O.P.; Kumar, S. Contingent Negative Variation Response in Chronic Pain Patients. Indian J. Physiol. Pharmacol. 1996, 40, 257–261. [Google Scholar]
- Kaji, R.; Ikeda, A.; Ikeda, T.; Kubori, T.; Mezaki, T.; Kohara, N.; Kanda, M.; Nagamine, T.; Honda, M.; Rothwell, J.C.; et al. Physiological Study of Cervical Dystonia. Task-Specific Abnormality in Contingent Negative Variation. Brain 1995, 118, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Schoenen, J. Deficient Habituation of Evoked Cortical Potentials in Migraine: A Link between Brain Biology, Behavior and Trigeminovascular Activation? Biomed. Pharmacother. 1996, 50, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Judit, Á.; Sándor, P.; Schoenen, J. Habituation of Visual and Intensity Dependence of Auditory Evoked Cortical Potentials Tends to Normalize Just before and during the Migraine Attack. Cephalalgia 2000, 20, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Nagai, Y.; Critchley, H.D.; Featherstone, E.; Fenwick, P.B.C.; Trimble, M.R.; Dolan, R.J. Brain Activity Relating to the Contingent Negative Variation: An FMRI Investigation. Neuroimage 2004, 21, 1232–1241. [Google Scholar] [CrossRef]
- Coppola, G.; Di Lorenzo, C.; Schoenen, J.; Pierelli, F. Habituation and Sensitization in Primary Headaches. J. Headache Pain 2013, 14, 65. [Google Scholar] [CrossRef]
- Deen, M.; Christensen, C.E.; Hougaard, A.; Hansen, H.D.; Knudsen, G.M.; Ashina, M. Serotonergic Mechanisms in the Migraine Brain—A Scope Review. Cephalalgia 2017, 37, 251–264. [Google Scholar] [CrossRef]
- Evers, S.; Quibeldey, F.; Grotemeyer, K.H.; Suhr, B.; Husstedt, I.W. Dynamic Changes of Cognitive Habituation and Serotonin Metabolism during the Migraine Interval. Cephalalgia 1999, 19, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Welch, K.M. Brain Hyperexcitability: The Basis for Antiepileptic Drugs in Migraine Prevention. Headache 2005, 45, S25–S32. [Google Scholar] [CrossRef] [PubMed]
- Nappi, R.E.; Tiranini, L.; Sacco, S.; De Matteis, E.; De Icco, R.; Tassorelli, C. Role of Estrogens in Menstrual Migraine. Cells 2022, 11, 1355. [Google Scholar] [CrossRef]
- Vetvik, K.G.; MacGregor, E.A. Menstrual Migraine: A Distinct Disorder Needing Greater Recognition. Lancet Neurol. 2021, 20, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Lu, Y.; Li, J.; Zhang, W. Alpha Neural Oscillation of Females in the Luteal Phase Is Sensitive to High Risk during Sequential Risk Decisions. Behav. Brain Res. 2021, 413, 113427. [Google Scholar] [CrossRef]
- Welch, K.M.A.; Brandes, J.L.; Berman, N.E.J. Mismatch in How Oestrogen Modulates Molecular and Neuronal Function May Explain Menstrual Migraine. Neurol. Sci. 2006, 27, 190–192. [Google Scholar] [CrossRef]
- Todd, C.; Lagman-Bartolome, A.M.; Lay, C. Women and Migraine: The Role of Hormones. Curr. Neurol. Neurosci. Rep. 2018, 18, 42. [Google Scholar] [CrossRef]
- Pakalnis, A. Migraine and Hormones. Semin. Pediatr. Neurol. 2016, 23, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Sauro, K.M.; Becker, W.J. The Stress and Migraine Interaction. Headache 2009, 49, 1378–1386. [Google Scholar] [CrossRef]
- Noseda, R.; Kainz, V.; Borsook, D.; Burstein, R. Neurochemical Pathways That Converge on Thalamic Trigeminovascular Neurons: Potential Substrate for Modulation of Migraine by Sleep, Food Intake, Stress and Anxiety. PLoS ONE 2014, 9, e103929. [Google Scholar] [CrossRef] [PubMed]
- Barbanti, P.; Brighina, F.; Egeo, G.; Di Stefano, V.; Silvestro, M.; Russo, A. Migraine as a Cortical Brain Disorder. Headache 2020, 60, 2103–2114. [Google Scholar] [CrossRef]
- Barbanti, P.; Fofi, L.; Aurilia, C.; Egeo, G. Does the Migraine Attack Start in the Cortex and Is the Cortex Critical in the Migraine Process? Neurol. Sci. 2019, 40, 31–37. [Google Scholar] [CrossRef]
- Welch, K.M.A. Migraine: A Biobehavioral Disorder. Arch. Neurol. 1987, 44, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Maleki, N.; Becerra, L.; Borsook, D. Migraine: Maladaptive Brain Responses to Stress. Headache 2012, 52 (Suppl. S2), 102–106. [Google Scholar] [CrossRef]
- Minen, M.T.; De Dhaem, O.B.; Van Diest, A.K.; Powers, S.; Schwedt, T.J.; Lipton, R.; Silbersweig, D. Migraine and Its Psychiatric Comorbidities. J. Neurol. Neurosurg. Psychiatry 2016, 87, 741–749. [Google Scholar] [CrossRef]
- Karimi, L.; Wijeratne, T.; Crewther, S.G.; Evans, A.E.; Ebaid, D.; Khalil, H. The Migraine-Anxiety Comorbidity Among Migraineurs: A Scope Review. Front. Neurol. 2021, 11, 613372. [Google Scholar] [CrossRef]
- Amoozegar, F. Depression Comorbidity in Migraine. Int. Rev. Psychiatry 2017, 29, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Yalınay Dikmen, P.; Onur Aysevener, E.; Kosak, S.; Ilgaz Aydınlar, E.; Sağduyu Kocaman, A. Relationship between MIDAS, Depression, Anxiety and Alexithymia in Migraine Patients. Acta Neurol. Belg. 2020, 120, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.-T.; Liang, C.S.; Lee, J.T.; Yeh, T.C.; Lee, M.S.; Sung, Y.F.; Yang, F.C. Associations Between Depression/Anxiety and Headache Frequency in Migraineurs: A Cross-Sectional Study. Headache 2018, 58, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Shao, A.; Jiang, Z.; Tsai, H.; Liu, W. The Exploration of Mechanisms of Comorbidity between Migraine and Depression. J. Cell. Mol. Med. 2019, 23, 4505–4513. [Google Scholar] [CrossRef] [PubMed]
- Sándor, P.S.; Áfra, J.; Proietti-Cecchini, A.; Albert, A.; Schoenen, J. Familial Influences on Cortical Evoked Potentials in Migraine. Neuroreport 1999, 10, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
- Segalowitz, S.J.; Davies, P.L. Charting the Maturation of the Frontal Lobe: An Electrophysiological Strategy. Brain Cogn. 2004, 55, 116–133. [Google Scholar] [CrossRef]
- Bahra, A.; Matharu, M.S.; Buchet, C.; Frackowiak, R.S.J.; Goadsby, P.J. Brainstem Activation Specific to Migraine Headache. Lancet 2001, 357, 1016–1017. [Google Scholar] [CrossRef]
- Gómez, C.M.; Marco, J.; Grau, C. Preparatory Visuo-Motor Cortical Network of the Contingent Negative Variation Estimated by Current Density. Neuroimage 2003, 20, 216–224. [Google Scholar] [CrossRef]
- Rohrbaugh, J.W.; Gaillard, A.K. Sensory and Motor Aspects of the Contingent Negative Variation. In Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1983; Volume 10, pp. 269–310. [Google Scholar]
Articles | Reason of Exclusion |
---|---|
Schoenen (1986) [54] Dixon (1999) [55] Siniatchkin, et al. (2000) [67] Müller, et al. (2002) [68] Kropp, et al. (2002) [69] Babiloni, et al. (2004) [70] Ozkan, et al. (2012) [71] | Without S1–S2 expectation paradigm |
Timsit, et al. (1987) [72] Gerber, et al. (1993) [73] Kropp, et al. (2005) [74] Meyer, et al. (2018) [75] | Articles were not in English language |
Kropp, et al. (1993) [22] Schoenen, et al. (1993) [76] Gerber, et al. (1998) [77] Coppola, et al. (2012) [78] | Reviews |
Smite, et al. (1994) [79] Bender, et al. (2006) [80] Lev, et al. (2013) [81] | No results related to CNV |
Besken, et al. (1993) [82] Ahmed, (1999) [83] Harmela, et al. (2017) [84] | Incomplete statistical or EEG analysis |
De Noordhouth, et al. (1987) [85] Kropp, et al. (2000) [86] Bender, et al. (2005) [87] | Inadequate study methodology |
Authors (Year) | Sample Characteristics | Use of Medication | Experimental Task | Electrode’s Location | CNV Temporal Window (ms) | Significant Differences in CNV (Yes/No) | CNV Amplitude Results | CNV Habituation Results | |
---|---|---|---|---|---|---|---|---|---|
Maertens de Noordhout, et al. (1986) [21] | 79 Migraine Group (MG)/Tension Headache (TH) 6 Classic Migraine/with Aura (WA) 23 Common Migraine/WoA 16 Combined, Mostly Migraine 21 Tension Headache 13 Combined, Mostly Tension Headache 33 Healthy Control (HC) | No prophylactic treatment Analgesic | 48 Trials Warning Tones (S1) Target Flashes (S2) | Unspecified | Contingent Negative Variatiob (CNV) (Baseline-1000 ms) | Yes | Pure Migraine > Controls or Tension (***) Combined Mostly Migraine > Controls or Tension (***) | ↓ habituation in Migraine | |
Schoenen, et.al, (1986) [60] | 33 MG /WoA/ 27 Metoprolol 6 Propanolol | No prophylactic treatment | 48 Trials Warning Tone (S1) Target Flashes (S2) 1 s Inter Stimulus Interval (ISI) | Unspecified | CNV (800–1000 ms) | Yes | MG after treatment < MG before treatment | No significant changes in CNV | |
Böker, et.al, (1990) [20] | 17 MG 12 WoA 5 WA 8 HC | Unspecified | 32 Trials Warning Tones (S1) Response Flashes (S2) 1 s ISI (CNV1) 3 s ISI (CNV3) | Cz, Fz, C3, C4 | Early CNV (eCNV) (550–750 ms) | No | WoA > WA/HC (T) | --- | |
Late CNV (lCNV) (200 ms pre S2-2800–3000 ms) | No | WoA > WA/HC (T) | |||||||
Nagel-Leiby, et al. (1990) [56] | 12 MG (Women) 7 WoA 5 WA 6 HC (Women) | No prophylactic and contraceptives treatment | 48 Trials Warning Auditory (S1) Target Flashes (S2) 4 s ISI | Cz, Pz | eCNV (500–1500 ms) | Yes | WA > WoA Menses Phase | --- | |
Göbel. et al. (1993) [62] | 14 WoA (Women) Sumatriptan or Placebo | No prophylactic treatment | 32 Trials Warning Auditory (S1) Target Flashes (S2) 2 s ISI | Cz | CNV (1800–2000 ms) | No | Sumatriptan = Placebo Interictal and Ictal Pre-Post Treatment | --- | |
Kropp, et al. (1993) [37] | 12 WoA 20 HC | Unspecified | 40 Trials Warning Tone (S1) Imperative Tone (S2) 3 s ISI | Cz | CNV (0–3000 ms) | Yes | WoA > HC (**) | ||
eCNV (550–750 ms) | No | WoA > HC (T) | ↓ habituation eCNV WoA | ||||||
lCNV (200 ms pre S2-2800–3000 ms) | No | WoA = HC | |||||||
Kropp, et al. (1995) [36] | 16 WoA 22 HC | No medication (Prophylactic or analgesic) | 40 Trials Warning Tone (S1) Imperative Tone (S2) [-During Interictal -During Ictal] | Cz | CNV (0–3000 ms) | Yes | Interictal > Ictal (**) WoA Ictal < HC (**) | ↓ habituation eCNV interictal WoA | |
eCNV (550–750 ms) | Yes | WoA > HC (***) Interictal > Ictal (***) WoA Ictal = HC | |||||||
lCNV (200 ms pre S2-2800–3000 ms) | Yes | Interictal > Ictal (**) WoA Ictal < HC (*) | |||||||
Kropp, et al. (1998) [23] | 16 WoA 22 HC | No prophylactic treatment | 40 Trials Warning Tone (S1) Imperative Tone (S2) 3 s ISI | Cz | eCNV (550–750 ms) | Yes | WoA > HC (−1) (***) WoA (−1) > WoA (+1) (***) | ↓ habituation eCNV WoA Previous Day Ictal (−1) ↑ habituation eCNV WoA Following Day Ictal (+1) | |
Siniatchkin, et al. (1998) [39] | 30 MG 15 WoA 15 Chronic Daily Headache (CDH) 15 HC | No prophylactic treatment | 40 Trials Warning Auditory (S1) Imperative Auditory (S2) 3 s ISI | C3, C4 | CNV (0–3000 ms) | Yes | WoA > CDH (**) WoA > HC (**) | ↓ habituation eCNV WoA ↓ habituation eCNV CDH | |
eCNV (550–750 ms) | Yes | WoA > CDH (***) WoA > HC (***) | |||||||
lCNV (200 ms pre S2-2800–3000 ms) | Yes | CHD < WoA (**) CHD < HC (**) | |||||||
Kropp, et al. (1999) [50] | 162 WoA 320 HC Age Subgroups 8–14 15–19 20–29 30–39 40–49 50–59 | No prophylactic treatment | 40 Trials Warning Tone (S1) Imperative Tone (S2) 3 s ISI | Cz | CNV (0–3000 ms) | Yes | WoA >HC (**) | ||
eCNV (550–750 ms) | Yes | WoA > HC (***) | ↓ habituation eCNV | ||||||
lCNV (200 ms pre S2-2800–3000 ms) | No | WoA = HC | |||||||
Kropp, et al. (1999) [47] | 40 WoA: 14 Children WoA 26 Adult WoA 24 HC: 11 Children HC 13 Adult HC 5 Sibling Migraine Children (SMC) | No prophylactic treatment | 40 Trials Warning Tone (S1) Target Tone (S2) 3 s ISI | Cz | CNV (0–3000 ms) | Yes | Children WoA = Adults WoA Children WoA/SMC > Children HC (*) | --- | |
eCNV (550–750 ms) | Yes | Children WoA = Adults WoA Children WoA > Children HC (*) Adult WoA > Adult HC (**) | |||||||
Siniatchkin, et al. (2000) [40] | 20 WoA 12 HC | No prophylactic and contraceptives treatment | 40 Trials Warning Auditory (S1) Imperative Auditory (S2) 3 s ISI | C3, C4 | CNV (500–3000 ms) | Yes | WoA > HC (−1) (**) | ↓ habituation eCNV WoA (−1) | |
eCNV (550–750 ms) | Yes | WoA > HC (−1) (**) | |||||||
Siniatchkin, et al. (2000) [41] | 10 Children WoA 20 Children HC | No prophylactic treatment Analgesics | Warning Auditory (S1) Imperative Auditory (S2) 3 s ISI | Cz | eCNV (550–750 ms) | Yes | Children WoA > Children HC (−1/Ictal/+1) (Maximum amplitudes −1) | ↓ habituation eCNV Children WoA (Most pronounced deficit 1–2 days before attack) | |
Siniatchkin, et al. (2000) [48] | 43 Families with Migraine: 45 Children WoA 36 Sibling Migraine Children (SMC) 30 Parents WoA 54 Healthy Parents 41 Healthy Families: 48 Children 82 Parents | No prophylactic treatment | 40 Trials Warning Auditory (S1) Imperative Auditory (S2) 3 s ISI | Cz | eCNV (550–750 ms) | Yes | Children WoA > Healthy Parents Migraine Families (***) Children WoA > Healthy Parents Healthy Families (**) Greater values Children WoA Parents WoA = Healthy Parents | ↓ habituation eCNV WoA Children (Migraine Children > Healthy Children > Migraine Adults) | |
lCNV (200 ms pre S2-2800–3000 ms) | No | --- | |||||||
Siniatchkin, et al. (2001) [65] | 35 WoA: 35 Healthy Young Positive WoA Family 35 Healthy Young Negative WoA Family | No prophylactic treatment | 40 Trials Warning Auditory (S1) Imperative Auditory (S2) 3 s ISI | Cz | eCNV (550–750 ms) | Yes | WoA > Negative WoA Family (***) Positive WoA Family > Negative WoA Family (***) | ↓ habituation eCNV Positive WoA family ↓ habituation eCNV WoA Positive WoA > Negative WoA Family | |
Mulder, et al. (2001) [63] | 20 WoA: Pre- Post Attack Sumatriptan 20 HC | Antidepressants B-Blockers Lithium | 52 Trials Auditory Warning (S1) Flashes Response (S2) 3 s ISI | Fz, Cz, Pz | eCNV (550–750 ms) | Yes | WoA = HC WoA Post Attack Sumatriptan < HC (**) WoA Post Attack Sumatriptan < WoA Habitual Medication (***) | Habituation WoA Post Attack Sumatriptan = Habituation WoA Habitual Medication = HC | |
lCNV (200 ms pre S2-2800–3000 ms) | Yes | WoA = HC WoA Post Attack Sumatriptan < HC (**) (Most prominent at the Frontal area) | |||||||
Bender, et al. (2002) [51] | 61 Children WoA 76 Children HC | No prophylactic treatment | 20 Trials Auditory Warning (S1) Auditory Imperative (S2) 3 s ISI | Cz | CNV (0–3000 ms) | Yes | Children WoA > HC (**) | --- | |
eCNV (550–750 ms) | No | Children WoA = Children HC | |||||||
lCNV (200 ms pre S2-2800–3000 ms) | Yes | Children WoA > Children HC (**) | |||||||
Gerber, et al. (2002) [64] | 30 Migraine Families WoA 30 Migraine Children 30 Migraine Mothers 28 Siblings Migraine Children (SMC) 20 Healthy Families 20 Healthy Children 20 Healthy Mothers | No prophylactic or acute treatment | 40 Trials Auditory Warning (S1) Auditory Imperative (S2) 3 s ISI | Cz | CNV (500–3000 ms) | No | Migraine Children > Healthy Children (T) | ↓ habituation eCNV Migraine Children = Healthy Children | |
eCNV (550–750 ms) | No | Migraine Children > Healthy Children (T) Migraine Childrens > Sibling Migraine Children(T) | |||||||
Mulder, et al. (2002) [59] | 20 MG 14 WoA 6 WA 22 HC | Antidepressants, B-Blockers or Lithium | Visual Warning (S1) Visual Response (S2) 3 s ISI [Certain/Uncertainty conditions] | Fz, Cz, Pz | eCNV (600–1100 ms) | No | HC = WoA/WA | --- | |
lCNV (200 ms pre S2-2800–3000 ms) | Yes | WoA < HC (**) | |||||||
Siniatchkin, et al. (2006) [57] | 17 WoA (Women) 15 HC (Women) | No prophylactic medication No oral contraceptives | 40 Trials Auditory Warning (S1) Auditory Imperative (S2) 3 s ISI (Stressful Condition) + [Premenstrual and Ovulatory Phases] | Cz | eCNV (550–750 ms) | Yes | WoA > HC (**) WoA Premenstrual > WoA Ovulatory (**) WoA Premenstrual + Stress > HC Premenstrual + Stress (**) WoA Premenstrual + Stress > WoA Ovulatory +Stress (**) | --- | |
Siniatchkin, et al. (2006) [24] | 45 MG 30 WoA 15 WA Pre-Ictal group (1–3 days before) Post-Ictal group (1–3 days after) Interictal group 20 HC | No prophylactic medication | 40 Trials Auditory Warning (S1) Auditory Imperative (S2) 3 s ISI (Stressful Condition) | Cz | eCNV (550–750 ms) | Yes | MG Pre-Ictal + Stress > HC (**) | ↓ habituation eCNV WoA Pre-Ictal + Stress | |
Bender, et al. (2007) [66] | 101 Children MG 69 WoA 32 WA 23 Children TH 81 Children HC Prepubertal 6–11 Years Postpubertal 12–18 Years | No prophylactic medication | 60 Trials Auditory Warning (S1) Auditory Imperative (S2) 3 s ISI | Cz/FCz/FC1/FC2/C3/C4/C5/C6/CP3/CP4/CP6/CP5/P3/P4 | eCNV (700–1100 ms) | Yes | ↑ WoA PrePubertal over Cz/FCz/FC1/FC2 (**) HC > WoA (**) | --- | |
Siniatchkin, et al. (2007) [42] | 20 WoA 10 Metoprolol 10 Placebo | No prophylactic medication | 40 Trials Auditory Warning (S1) Auditory Imperative (S2) 3 s ISI | Cz | CNV (500–3000 ms) | Yes | Metoprolol < Placebo (**) | ↑ habituation eCNV Metoprolol | |
Darabaneanu, et al. (2008) [58] | 26 WoA/Mg (Women) 14 Pregnant Migraine 12 Non-Pregnant Migraine 30 HC (Women) 15 Pregnant Healthy 16 Non-Pregnant Healthy | No prophylactic medication | 40 Trials Auditory Warning (S1) Auditory Imperative (S2) 3 s ISI | Cz | eCNV (550–750 ms) | No Yes | Pregnant Migraine = Pregnant Healthy (Third period of pregnancy) Pregnant Migraine > Pregnant Healthy (**) (After delivery) | ↑ habituation eCNV WoA Pregnant | |
De Tommaso, et al. (2008) [61] | 45 WoA: 18 Topiramate 18 Levetiracetam 9 Placebo 24 HC | No prophylactic medication | 48 Trials Auditory Warning (S1) Auditory Imperative (S2) 3 s ISI | Fz, Cz, Pz | eCNV (550–750 ms) | Yes | MG > HC (**) Topiramate/Levetiracepam < Placebo (**) | ↓ habituation eCNV WoA ↑ habituation eCNV WoA Post Treatment | |
Oelkers-Ax, et al. (2008) [52] | 46 Children-Adolescent MG 28 WoA 18 WA 57 Children-Adolescent HC | No prophylactic medication | 60 Trials Auditory Warning (S1) Auditory Imperative (S2) 3 s ISI | 64 leads | CNV (0–3000 ms) | Yes | WoA < HC (***) | ↓ habituation eCNV MG | |
eCNV (550–750 ms) | No | WoA < HC (T) | |||||||
lCNV (200 ms pre S2-2800–3000 ms) | Yes | WoA < HC (***) | |||||||
Siniatchkin, et al. (2010) [25] | 27 Children WoA 9 Migraine Remission 12 Migraine Improved 6 Migraine Worsened 23 Children HC | No prophylactic medication | 40 Trials Warning Auditory (S1) Imperative Auditory (S2) 3 s ISI | Cz | eCNV (550–750 ms) | Yes | Migraine Worsened > Migraine Remission (**) Migraine Worsened > HC (**) Migraine Remission = Healthy Controls | ↓ habituation eCNV Migraine Worsened > Improved ↓ habituation eCNV Migraine Worsened > Healthy Children | |
Siniatchkin, et al. (2011) [43] | 26 Children-Adolescents WoA 13 Behavioural Programme MIPAS 13 Biofeedback (BF) Treatment Group | No medication (Prophylactic or analgesic) | Auditory Warning (S1) Auditory Imperative (S2) 3 s ISI | FC1/FC2/FC5/FC6/CP1/CP2/CP5/CP6/TP9/TP10 | eCNV (550–750 ms) | Yes | MIPAS < BF in frontal areas (**) | ↑ habituation eCNV WoA MIPAS after treatment in frontal and central areas | |
lCNV (200 ms pre S2-2800–3000 ms) | Yes | MIPAS < BF in central areas (**) | |||||||
Kropp, et al. (2012) [88] | 24 WoA 24 HC | Unspecified | 24 Trials Auditory Warning (S1) Auditory Target (S2) 3 s ISI | Cz, C3, C4 | CNV (0–3000 ms) | Yes | WoA > HC (*) | --- | |
eCNV (550–750 ms) | Yes | WoA > HC (**) | |||||||
lCNV (200 ms pre S2-2800–3000 ms) | Yes | WoA < HC (**) | |||||||
Overath, et al. (2014) [89] | 28 MG Aerobic Endurance Program 22 WoA 6 WA | No medication | 40 Trials Warning Auditory (S1) Imperative Auditory (S2) 3 s ISI | Cz | eCNV (550–750 ms) | Yes | After aerobic program < before aerobic program (**) | ↑ habituation eCNV WoA After Aerobic Program | |
Kropp, et al. (2015) [38] | 32 WoA 17 Short Duration of Migraine Disease (<120 months) 15 Long Duration of Migraine Disease (≥120 months) 16 HC | Unspecified | 40 Trials Warning Auditory (S1) Imperative Auditory (S2) 3 s ISI | Cz | CNV (0–3000 ms) | Yes | WoA > HC (*) | ↓ habituation eCNV WoA | |
eCNV (550–750) | Yes | WoA > HC > Long Duration Disease (***) | |||||||
Keller, et al. (2016) [44] | 46 MG 35 WoA 11 WA 45 Migraine Meditation Group 46 HC | No prophylactic medication | 40 Trials Warning Auditory (S1) Imperative Auditory (S2) 3 s ISI *Stress Coping: SVF-78 | Cz | CNV (0–3000 ms) | Yes | MG > Migraine Meditation (***) Migraine Meditation < HC (***) MG > HC (**) | ↓ habituation eCNV MG | |
eCNV (550–750 ms) | Yes | MG > Migraine Meditation (***) Migraine Meditation < HC (**) MG > HC (**) | |||||||
Meyer, et al. (2016) [45] | 35 MG /WA/WoA/ 16 Migraine Progressive Muscle Relaxation (PMR) Training 19 Migraine Waiting-List 46 HC 21 Healthy PMR Training 25 Healthy Waiting List | No prophylactic medication | Acoustic Warning (S1)—Imperative (S2) | Cz | CNV (0–3000 ms) | Yes | Pre-PMR training: MG > HC (***) | No significant differences | |
eCNV (550–750 ms) | Yes | Pre-PMR training: MG > HC (**) Post-PMR training: < Pre-PMR (**) | |||||||
Tian, et al. (2019) [26] | 34 WoA 31 HC | No prophylactic medication | 40 Trials Auditory Warning (S1) Auditory Imperative (S2) 2 s ISI | Fz, Cz, C3, C4 | CNV (0–3000 ms) | No | WoA = HC | No significant differences | |
eCNV (550–750 ms) | No | ||||||||
lCNV (200 ms pre S2-1800–2000 ms) | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lahoz, M.E.; Barjola, P.; Peláez, I.; Ferrera, D.; Fernandes-Magalhaes, R.; Mercado, F. Unveiling the Role of Contingent Negative Variation (CNV) in Migraine: A Review of Electrophysiological Studies in Adults and Children. Biomedicines 2023, 11, 3030. https://doi.org/10.3390/biomedicines11113030
de Lahoz ME, Barjola P, Peláez I, Ferrera D, Fernandes-Magalhaes R, Mercado F. Unveiling the Role of Contingent Negative Variation (CNV) in Migraine: A Review of Electrophysiological Studies in Adults and Children. Biomedicines. 2023; 11(11):3030. https://doi.org/10.3390/biomedicines11113030
Chicago/Turabian Stylede Lahoz, María E., Paloma Barjola, Irene Peláez, David Ferrera, Roberto Fernandes-Magalhaes, and Francisco Mercado. 2023. "Unveiling the Role of Contingent Negative Variation (CNV) in Migraine: A Review of Electrophysiological Studies in Adults and Children" Biomedicines 11, no. 11: 3030. https://doi.org/10.3390/biomedicines11113030
APA Stylede Lahoz, M. E., Barjola, P., Peláez, I., Ferrera, D., Fernandes-Magalhaes, R., & Mercado, F. (2023). Unveiling the Role of Contingent Negative Variation (CNV) in Migraine: A Review of Electrophysiological Studies in Adults and Children. Biomedicines, 11(11), 3030. https://doi.org/10.3390/biomedicines11113030