CD39+CD55− Fb Subset Exhibits Myofibroblast-Like Phenotype and Is Associated with Pain in Osteoarthritis of the Knee
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Methods
2.2. Flow Cytometric Analysis and Cell Sorting
2.3. Transcriptome Analysis
2.4. LC-MS/MS Analysis
2.5. Correlation between the Proportion of Fb Subsets and OA Pathology
2.6. Statistical Analysis
3. Results
3.1. Fb Subsets in the Synovium and OA Pathology in KOA Patients
3.2. Characterization of CD39+CD55− and CD39−CD55+ Using RNA-Seq and LC/MS
3.3. Correlation between the Proportion of Fb Subsets and OA Pathology
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iwanaga, T.; Shikichi, M.; Kitamura, H.; Yanase, H.; Nozawa-Inoue, K. Morphology and functional roles of synoviocytes in the joint. Arch. Histol. Cytol. 2000, 63, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Hong, H.; Sun, Y.; Chen, C.; Wu, C.; Xu, G.; Bao, G.; Cui, Z. Role of macrophage polarization in osteoarthritis (Review). Exp. Ther. Med. 2022, 24, 757. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Yuan, Q.; Wan, X.; Yang, M.; Xu, P. Effects of Immune Cells and Cytokines on Different Cells in OA. J. Inflamm. Res. 2023, 16, 2329–2343. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chu, Y.; Zhang, P.; Liang, Z.; Fan, Z.; Guo, X.; Zhou, G.; Ren, W. Targeting macrophage polarization as a promising therapeutic strategy for the treatment of osteoarthritis. Int. Immunopharmacol. 2023, 116, 109790. [Google Scholar] [CrossRef] [PubMed]
- Nanus, D.E.; Wijesinghe, S.N.; Pearson, M.J.; Hadjicharalambous, M.R.; Rosser, A.; Davis, E.T.; Lindsay, M.A.; Jones, S.W. Regulation of the Inflammatory Synovial Fibroblast Phenotype by Metastasis-Associated Lung Adenocarcinoma Transcript 1 Long Noncoding RNA in Obese Patients with Osteoarthritis. Arthritis Rheumatol. 2020, 72, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Pearson, M.J.; Herndler-Brandstetter, D.; Tariq, M.A.; Nicholson, T.A.; Philp, A.M.; Smith, H.L.; Davis, E.T.; Jones, S.W.; Lord, J.M. IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity. Sci. Rep. 2017, 7, 3451. [Google Scholar] [CrossRef]
- Knights, A.J.; Farrell, E.C.; Ellis, O.M.; Lammlin, L.; Junginger, L.M.; Rzeczycki, P.M.; Bergman, R.F.; Pervez, R.; Cruz, M.; Knight, E.; et al. Synovial fibroblasts assume distinct functional identities and secrete R-spondin 2 in osteoarthritis. Ann. Rheum. Dis. 2023, 82, 272–282. [Google Scholar] [CrossRef]
- Nanus, D.E.; Badoume, A.; Wijesinghe, S.N.; Halsey, A.M.; Hurley, P.; Ahmed, Z.; Botchu, R.; Davis, E.T.; Lindsay, M.A.; Jones, S.W. Synovial tissue from sites of joint pain in knee osteoarthritis patients exhibits a differential phenotype with distinct fibroblast subsets. EBioMedicine 2021, 72, 103618. [Google Scholar] [CrossRef]
- Han, C.K.; Lee, W.F.; Hsu, C.J.; Huang, Y.L.; Lin, C.Y.; Tsai, C.H.; Huang, C.C.; Fong, Y.C.; Wu, M.H.; Liu, J.F.; et al. DPP4 reduces proinflammatory cytokine production in human rheumatoid arthritis synovial fibroblasts. J. Cell Physiol. 2021, 236, 8060–8069. [Google Scholar] [CrossRef]
- Huang, X.; Gu, S.; Liu, C.; Zhang, L.; Zhang, Z.; Zhao, Y.; Khoong, Y.; Li, H.; Gao, Y.; Liu, Y.; et al. CD39(+) Fibroblasts Enhance Myofibroblast Activation by Promoting IL-11 Secretion in Hypertrophic Scars. J. Investig. Dermatol. 2022, 142, 1065–1076.e19. [Google Scholar] [CrossRef]
- Kang, S.; Hur, J.K.; Kim, D. Advances in diagnostic methods for keloids and biomarker-targeted fluorescent probes. Analyst 2019, 144, 1866–1875. [Google Scholar] [CrossRef] [PubMed]
- Sromova, L.; Mareckova, H.; Sedova, L.; Balaziova, E.; Sedo, A. Dipeptidyl peptidase-IV in synovial fluid and in synovial fluid mononuclear cells of patients with rheumatoid arthritis. Clin. Chim. Acta 2010, 411, 1046–1050. [Google Scholar] [CrossRef] [PubMed]
- Tabib, T.; Morse, C.; Wang, T.; Chen, W.; Lafyatis, R. SFRP2/DPP4 and FMO1/LSP1 Define Major Fibroblast Populations in Human Skin. J. Investig. Dermatol. 2018, 138, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lin, X.; Wang, W.; Zhang, X.; Lu, M.; Shao, Z.; Shi, D.; Zhang, R.; Shi, H.; Zhang, Y.; et al. Evaluation of (18)F-FAPI-04 Imaging in Assessing the Therapeutic Response of Rheumatoid Arthritis. Mol. Imaging Biol. 2023, 25, 630–637. [Google Scholar] [CrossRef]
- Hamann, J.; Wishaupt, J.O.; van Lier, R.A.; Smeets, T.J.; Breedveld, F.C.; Tak, P.P. Expression of the activation antigen CD97 and its ligand CD55 in rheumatoid synovial tissue. Arthritis Rheum. 1999, 42, 650–658. [Google Scholar] [CrossRef]
- Borsellino, G.; Kleinewietfeld, M.; Di Mitri, D.; Sternjak, A.; Diamantini, A.; Giometto, R.; Hopner, S.; Centonze, D.; Bernardi, G.; Dell’Acqua, M.L.; et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: Hydrolysis of extracellular ATP and immune suppression. Blood 2007, 110, 1225–1232. [Google Scholar] [CrossRef]
- Gullo, F.; De Bari, C. Prospective purification of a subpopulation of human synovial mesenchymal stem cells with enhanced chondro-osteogenic potency. Rheumatology 2013, 52, 1758–1768. [Google Scholar] [CrossRef]
- Boldt, J.G.; Munzinger, U.K.; Zanetti, M.; Hodler, J. Arthrofibrosis associated with total knee arthroplasty: Gray-scale and power Doppler sonographic findings. AJR Am. J. Roentgenol. 2004, 182, 337–340. [Google Scholar] [CrossRef]
- Maglaviceanu, A.; Wu, B.; Kapoor, M. Fibroblast-like synoviocytes: Role in synovial fibrosis associated with osteoarthritis. Wound Repair Regen. 2021, 29, 642–649. [Google Scholar] [CrossRef]
- Watson, R.S.; Gouze, E.; Levings, P.P.; Bush, M.L.; Kay, J.D.; Jorgensen, M.S.; Dacanay, E.A.; Reith, J.W.; Wright, T.W.; Ghivizzani, S.C. Gene delivery of TGF-beta1 induces arthrofibrosis and chondrometaplasia of synovium in vivo. Lab. Investig. 2010, 90, 1615–1627. [Google Scholar] [CrossRef]
- Kuroda, A.; Mineo, A.; Shoji, S.; Inoue, G.; Saito, W.; Sekiguchi, H.; Takaso, M.; Uchida, K. Effect of spheroid size on gene expression profiles of a mouse mesenchymal stem cell line in spheroid culture. Biomed. Mater. Eng. 2023, 34, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Zhao, Y.; Kurt, Z.; Byars, S.G.; Tukiainen, T.; Kettunen, J.; Orozco, L.D.; Pellegrini, M.; Lusis, A.J.; Ripatti, S.; et al. Mergeomics: Multidimensional data integration to identify pathogenic perturbations to biological systems. BMC Genom. 2016, 17, 874. [Google Scholar] [CrossRef]
- Tran, L.M.; Zhang, B.; Zhang, Z.; Zhang, C.; Xie, T.; Lamb, J.R.; Dai, H.; Schadt, E.E.; Zhu, J. Inferring causal genomic alterations in breast cancer using gene expression data. BMC Syst. Biol. 2011, 5, 121. [Google Scholar] [CrossRef] [PubMed]
- Rappsilber, J.; Ishihama, Y.; Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 2003, 75, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, Y.; Watanabe, E.; Umeyama, T.; Nakajima, D.; Hattori, M.; Honda, K.; Ohara, O. Optimization of Data-Independent Acquisition Mass Spectrometry for Deep and Highly Sensitive Proteomic Analysis. Int. J. Mol. Sci. 2019, 20, 5932. [Google Scholar] [CrossRef]
- Demichev, V.; Messner, C.B.; Vernardis, S.I.; Lilley, K.S.; Ralser, M. DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 2020, 17, 41–44. [Google Scholar] [CrossRef]
- Kellgren, J.H.; Lawrence, J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef]
- Chan, E.F.; Cockman, M.D.; Goel, P.; Newman, P.S.; Hipp, J.A. Characterization of the mid-coronal plane method for measurement of radiographic change in knee joint space width across different levels of image parallax. Osteoarthr. Cartil. 2021, 29, 1306–1313. [Google Scholar] [CrossRef]
- Ohashi, Y.; Uchida, K.; Fukushima, K.; Satoh, M.; Koyama, T.; Tsuchiya, M.; Saito, H.; Uchiyama, K.; Takahira, N.; Inoue, G.; et al. Correlation between CD163 expression and resting pain in patients with hip osteoarthritis: Possible contribution of CD163+ monocytes/macrophages to pain pathogenesis. J. Orthop. Res. 2022, 40, 1365–1374. [Google Scholar] [CrossRef]
- Yao, W.; Liu, H.; Xu, F.; Cai, Z.; Hang, L.; Lu, M.; Zhao, Y.; Yang, C.; Zong, Y. C1QC is a prognostic biomarker with immune-related value in kidney renal clear cell carcinoma. Front. Genet. 2023, 14, 1109991. [Google Scholar] [CrossRef]
- Zheng, F.; Luo, S.; Ouyang, Z.; Zhou, J.; Mo, H.; Schoonooghe, S.; Muyldermans, S.; De Baetselier, P.; Raes, G.; Wen, Y. NIRF-Molecular Imaging with Synovial Macrophages-Targeting Vsig4 Nanobody for Disease Monitoring in a Mouse Model of Arthritis. Int. J. Mol. Sci. 2019, 20, 3347. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cheng, B. Knockdown of LncRNA NEAT1 inhibits myofibroblast activity in oral submucous fibrosis through miR-760/TPM1 axis. J. Dent. Sci. 2022, 17, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.X.; Huang, S.; Zhang, Q.Q.; Liu, Y.; Zhang, D.M.; Guo, X.H.; Han, D.W. Insulin-like growth factor binding protein-7 induces activation and transdifferentiation of hepatic stellate cells in vitro. World J. Gastroenterol. 2009, 15, 3246–3253. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Dong, F.; Li, H.; Hou, Y. Induced differentiation of human gingival fibroblasts into VSMC-like cells. Differentiation 2017, 95, 1–9. [Google Scholar] [CrossRef]
- Muraoka, A.; Suzuki, M.; Hamaguchi, T.; Watanabe, S.; Iijima, K.; Murofushi, Y.; Shinjo, K.; Osuka, S.; Hariyama, Y.; Ito, M.; et al. Fusobacterium infection facilitates the development of endometriosis through the phenotypic transition of endometrial fibroblasts. Sci. Transl. Med. 2023, 15, eadd1531. [Google Scholar] [CrossRef] [PubMed]
- Yeung, K.K.; Bogunovic, N.; Keekstra, N.; Beunders, A.A.; Pals, J.; van der Kuij, K.; Overwater, E.; Wisselink, W.; Blankensteijn, J.D.; van Hinsbergh, V.W.; et al. Transdifferentiation of Human Dermal Fibroblasts to Smooth Muscle-Like Cells to Study the Effect of MYH11 and ACTA2 Mutations in Aortic Aneurysms. Hum. Mutat. 2017, 38, 439–450. [Google Scholar] [CrossRef]
- Micheroli, R.; Elhai, M.; Edalat, S.; Frank-Bertoncelj, M.; Burki, K.; Ciurea, A.; MacDonald, L.; Kurowska-Stolarska, M.; Lewis, M.J.; Goldmann, K.; et al. Role of synovial fibroblast subsets across synovial pathotypes in rheumatoid arthritis: A deconvolution analysis. RMD Open 2022, 8, e001949. [Google Scholar] [CrossRef]
- Remst, D.F.; Blaney Davidson, E.N.; van der Kraan, P.M. Unravelling osteoarthritis-related synovial fibrosis: A step closer to solving joint stiffness. Rheumatology 2015, 54, 1954–1963. [Google Scholar] [CrossRef]
- Bonnevie, E.D.; Scanzello, C.R.; Mauck, R.L. Modulating Mechanobiology as a Therapeutic Target for Synovial Fibrosis to Restore Joint Lubrication. Osteoarthr. Cartil. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Alquraini, A.; Garguilo, S.; D’Souza, G.; Zhang, L.X.; Schmidt, T.A.; Jay, G.D.; Elsaid, K.A. The interaction of lubricin/proteoglycan 4 (PRG4) with toll-like receptors 2 and 4: An anti-inflammatory role of PRG4 in synovial fluid. Arthritis Res. Ther. 2015, 17, 353. [Google Scholar] [CrossRef]
- Waller, K.A.; Zhang, L.X.; Elsaid, K.A.; Fleming, B.C.; Warman, M.L.; Jay, G.D. Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc. Natl. Acad. Sci. USA 2013, 110, 5852–5857. [Google Scholar] [CrossRef]
- Jones, A.R.; Flannery, C.R. Bioregulation of lubricin expression by growth factors and cytokines. Eur. Cell Mater. 2007, 13, 40–45; discussion 45. [Google Scholar] [CrossRef] [PubMed]
- Qadri, M.M.; Jay, G.D.; Ostrom, R.S.; Zhang, L.X.; Elsaid, K.A. cAMP attenuates TGF-beta’s profibrotic responses in osteoarthritic synoviocytes: Involvement of hyaluronan and PRG4. Am. J. Physiol. Cell Physiol. 2018, 315, C432–C443. [Google Scholar] [CrossRef] [PubMed]
- Philpott, H.T.; Birmingham, T.B.; Pinto, R.; Primeau, C.A.; Arsenault, D.; Lanting, B.A.; Zhu, Y.; Appleton, C.T.; Group, W.K.S. Synovitis Is Associated With Constant Pain in Knee Osteoarthritis: A Cross-Sectional Study of OMERACT Knee Ultrasound Scores. J. Rheumatol. 2022, 49, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Benito, M.J.; Veale, D.J.; FitzGerald, O.; van den Berg, W.B.; Bresnihan, B. Synovial tissue inflammation in early and late osteoarthritis. Ann. Rheum. Dis. 2005, 64, 1263–1267. [Google Scholar] [CrossRef]
- Ohashi, Y.; Uchida, K.; Fukushima, K.; Satoh, M.; Koyama, T.; Tsuchiya, M.; Saito, H.; Uchiyama, K.; Takahira, N.; Inoue, G.; et al. Increased Synovial CD14 mRNA Expression and Proportion of CD14(high) Subsets in Early-Stage Hip Osteoarthritis: Propensity Matched Score Analysis. Int. J. Mol. Sci. 2022, 23, 13622. [Google Scholar] [CrossRef]
NCBI RNA ID | Symbol | log2 | p Value | NCBI RNA ID | Symbol | log2 | p Value |
---|---|---|---|---|---|---|---|
NM_001613 | ACTA2 | 4.33 | 3.1 × 10−5 | NM_002474 | MYH11 *14 | 4.74 | 1.6 × 10−3 |
NM_001615 | ACTG2 | 6.16 | 5.9 × 10−4 | NM_022844 | MYH11 *15 | 9.56 | 8.1 × 10−7 |
NM_001130005 | ACTN1 *1 | 3.78 | 2.0 × 10−2 | NM_002473 | MYH9 | 1.53 | 1.9 × 10−1 |
NM_001102 | ACTN1 *2 | 1.58 | 2.1 × 10−1 | NM_079423 | MYL6 | 1.56 | 1.6 × 10−1 |
NM_004342 | CALD1 *3 | 2.73 | 4.6 × 10−3 | NM_006097 | MYL9 | 2.76 | 6.0 × 10−3 |
NM_033138 | CALD1 *4 | 2.62 | 2.6 × 10−2 | NM_053032 | MYLK *16 | 5.61 | 1.4 × 10−3 |
NM_001299 | CNN1 | 5.59 | 2.9 × 10−3 | NM_053031 | MYLK *17 | 5.73 | 7.5 × 10−3 |
XM_005273081 | CNST | 0.89 | 4.5 × 10−1 | NM_002508 | NID1 | 1.68 | 7.5 × 10−2 |
NM_001855 | COL15A1 | 2.35 | 4.2 × 10−2 | NM_001204376 | NPR3 | 1.53 | 1.5 × 10−1 |
NM_030582 | COL18A1 | 2.80 | 7.9 × 10−2 | NM_033430 | PDE5A | 5.17 | 2.5 × 10−4 |
NM_001845 | COL4A1 *5 | 2.26 | 4.8 × 10−2 | NM_001135936 | POSTN *18 | 1.90 | 2.1 × 10−1 |
NM_001303110 | COL4A1 *6 | 2.14 | 4.1 × 10−2 | NM_001286667 | POSTN *19 | 2.88 | 1.2 × 10−1 |
NM_001846 | COL4A2 | 2.20 | 8.3 × 10−2 | NM_001197131 | PPP1R12B | 2.85 | 5.6 × 10−2 |
NM_004078 | CSRP1 | 1.43 | 1.5 × 10−1 | NM_001098512 | PRKG1 *20 | 2.65 | 6.6 × 10−3 |
NM_004006 | DMD *7 | 3.76 | 1.0 × 10−1 | NM_006258 | PRKG1 *21 | 1.07 | 4.4 × 10−1 |
NM_004015 | DMD *8 | 3.54 | 1.8 × 10−2 | NM_001321643 | ROCK2 | 0.89 | 4.7 × 10−1 |
NM_004016 | DMD *9 | 4.30 | 2.6 × 10−3 | NM_000602 | SERPINE1 | 3.61 | 2.3 × 10−2 |
NM_001130684 | GUCY1A1 | 9.55 | 7.7 × 10−7 | NM_003118 | SPARC | 0.89 | 3.5 × 10−1 |
NM_000855 | GUCY1A2 | 2.27 | 2.7 × 10−2 | NM_001001522 | TAGLN *22 | 2.15 | 1.5 × 10−1 |
NM_000857 | GUCY1B1 | 2.83 | 1.3 × 10−3 | NM_003186 | TAGLN *23 | 3.20 | 7.8 × 10−3 |
NM_014571 | HEYL | 3.96 | 4.6 × 10−3 | NM_001018004 | TPM1 *24 | 3.64 | 4.3 × 10−2 |
NM_001553 | IGFBP7 *10 | 2.37 | 4.8 × 10−3 | NM_001018007 | TPM1 *25 | 3.27 | 6.3 × 10−3 |
NM_001253835 | IGFBP7 *11 | 2.30 | 2.0 × 10−1 | NM_001018020 | TPM1 *26 | 9.78 | 2.8 × 10−7 |
NM_001100163 | IRAG1 | 5.44 | 1.5 × 10−3 | NM_213674 | TPM2 | 3.76 | 8.4 × 10−5 |
NM_002222 | ITPR1 *12 | 2.02 | 3.9 × 10−2 | NM_001043351 | TPM3 *27 | 2.30 | 2.8 × 10−1 |
NM_001099952 | ITPR1 *13 | 1.64 | 1.2 × 10−1 | NM_001278188 | TPM3 *28 | 2.75 | 1.1 × 10−1 |
NM_012134 | LMOD1 | 4.03 | 1.2 × 10−3 |
RNA ID | Symbol | log2 | p Value | RNA ID | Symbol | log2 | p Value |
---|---|---|---|---|---|---|---|
NM_007038 | ADAMTS5 | 3.26 | 4.84 × 10−4 | NM_002422 | MMP3 | 3.74 | 1.00 × 10−2 |
NM_052866 | ADAMTSL1 | 3.14 | 1.56 × 10−2 | NM_003872 | NRP2 *7 | 1.68 | 1.50 × 10−1 |
XM_006718223 | CD82 | 2.82 | 4.82 × 10−2 | NM_201267 | NRP2 *8 | 1.53 | 8.30 × 10−2 |
NM_001293304 | CEMIP | 2.98 | 1.25 × 10−1 | NM_002593 | PCOLCE | 1.86 | 1.09 × 10−1 |
NM_016929 | CLIC5 | 2.98 | 9.98 × 10−2 | NM_006474 | PDPN *9 | 2.50 | 1.87 × 10−1 |
XM_006713500 | CP | 2.52 | 2.55 × 10−1 | NM_198389 | PDPN *10 | 2.36 | 4.50 × 10−2 |
NM_001511 | CXCL1 | 2.98 | 8.95 × 10−4 | NM_001127708 | PRG4 *11 | 4.85 | 1.93 × 10−4 |
NM_001291807 | FAP | 9.82 | 2.04 × 10−5 | NM_001127709 | PRG4 *12 | 3.05 | 3.12 × 10−3 |
NM_004464 | FGF5 | 3.72 | 3.88 × 10−2 | NM_001127710 | PRG4 *13 | 2.94 | 4.36 × 10−3 |
NM_002026 | FN1 *1 | 2.84 | 2.74 × 10−3 | NM_002999 | SDC4 | 2.47 | 2.36 × 10−1 |
NM_054034 | FN1 *2 | 4.22 | 2.84 × 10−2 | NM_003005 | SELP | 2.53 | 1.08 × 10−1 |
NM_212474 | FN1 *3 | 3.49 | 3.28 × 10−4 | XM_005245440 | SELP *14 | 4.22 | 1.56 × 10−3 |
NM_212476 | FN1 *4 | 3.46 | 3.98 × 10−4 | NM_006080 | SEMA3A | 3.75 | 8.78 × 10−4 |
NM_005708 | GPC6 | 2.27 | 2.25 × 10−2 | XM_005250110 | SEMA3A *15 | 11.07 | 1.64 × 10−6 |
NM_002775 | HTRA1 | 3.01 | 6.57 × 10−3 | XM_006715839 | SEMA3A *16 | 9.96 | 1.58 × 10−7 |
NM_002192 | INHBA | 2.85 | 1.14 × 10−2 | NM_006379 | SEMA3C | 3.02 | 4.81 × 10−3 |
NM_001166449 | ITIH4 *5 | 2.51 | 1.58 × 10−2 | NM_012431 | SEMA3E | 3.33 | 3.65 × 10−3 |
NM_002218 | ITIH4 *6 | 3.03 | 4.00 × 10−2 | NM_004787 | SLIT2 | 2.68 | 7.93 × 10−2 |
XM_006715990 | MET | 2.13 | 2.15 × 10−1 | NM_007115 | TNFAIP6 | 2.64 | 2.79 × 10−2 |
NM_002421 | MMP1 | 3.14 | 1.06 × 10−2 | NM_001078 | VCAM1 *17 | 1.97 | 3.47 × 10−2 |
NM_002426 | MMP12 | 3.51 | 2.91 × 10−2 | NM_080682 | VCAM1 *18 | 2.92 | 2.58 × 10−2 |
NM_002427 | MMP13 | 5.42 | 2.63 × 10−5 | NM_005429 | VEGFC | 2.73 | 2.00 × 10−2 |
Age (years) | 74.5 ± 8.6 |
Sex, male/female, N | 6/19 |
BMI (kg/m2) | 29.5 ± 7.4 |
KL grade (3/4), N | 6/19 |
JSW (mm) | 2.4 ± 1.9 |
VAS resting pain (mm) | 22.2 ± 31.2 |
VAS at active pain (mm) | 56.4 ± 29.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuchiya, M.; Ohashi, Y.; Kodera, Y.; Satoh, M.; Matsui, T.; Fukushima, K.; Iwase, D.; Aikawa, J.; Mukai, M.; Inoue, G.; et al. CD39+CD55− Fb Subset Exhibits Myofibroblast-Like Phenotype and Is Associated with Pain in Osteoarthritis of the Knee. Biomedicines 2023, 11, 3047. https://doi.org/10.3390/biomedicines11113047
Tsuchiya M, Ohashi Y, Kodera Y, Satoh M, Matsui T, Fukushima K, Iwase D, Aikawa J, Mukai M, Inoue G, et al. CD39+CD55− Fb Subset Exhibits Myofibroblast-Like Phenotype and Is Associated with Pain in Osteoarthritis of the Knee. Biomedicines. 2023; 11(11):3047. https://doi.org/10.3390/biomedicines11113047
Chicago/Turabian StyleTsuchiya, Maho, Yoshihisa Ohashi, Yoshio Kodera, Masashi Satoh, Takashi Matsui, Kensuke Fukushima, Dai Iwase, Jun Aikawa, Manabu Mukai, Gen Inoue, and et al. 2023. "CD39+CD55− Fb Subset Exhibits Myofibroblast-Like Phenotype and Is Associated with Pain in Osteoarthritis of the Knee" Biomedicines 11, no. 11: 3047. https://doi.org/10.3390/biomedicines11113047
APA StyleTsuchiya, M., Ohashi, Y., Kodera, Y., Satoh, M., Matsui, T., Fukushima, K., Iwase, D., Aikawa, J., Mukai, M., Inoue, G., Takaso, M., & Uchida, K. (2023). CD39+CD55− Fb Subset Exhibits Myofibroblast-Like Phenotype and Is Associated with Pain in Osteoarthritis of the Knee. Biomedicines, 11(11), 3047. https://doi.org/10.3390/biomedicines11113047