Hepcidin Reduction during Testosterone Therapy in Men with Type 2 Diabetes: A Randomized, Double-Blinded, Placebo-Controlled Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Biochemical Variables
2.3. Lean Body Mass and Total Fat Mass Evaluated with Dual-Energy X-ray Absorptiometry (DXA)
2.4. Regional Body Fat Mass Evaluated with Magnetic Resonance Imaging (MRI)
2.5. Hepatic Fat Content Evaluated with Magnetic Resonance Spectroscopy (MRS)
2.6. Whole-Body Insulin Sensitivity Estimated with a Euglycemic–Hyperinsulinemic Clamp
2.7. Statistical Methods
3. Results
Correlations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Adams, R.J.; Berry, J.D.; Brown, T.M.; Carnethon, M.R.; Dai, S.; De Simone, G.; Ford, E.S.; et al. Heart disease and stroke statistics—2011 update: A report from the American Heart Association. Circulation 2011, 123, e18–e209. [Google Scholar] [CrossRef]
- Rohm, T.V.; Meier, D.T.; Olefsky, J.M.; Donath, M.Y. Inflammation in obesity, diabetes, and related disorders. Immunity 2022, 55, 31–55. [Google Scholar] [CrossRef]
- Bhatia, V.; Chaudhuri, A.; Tomar, R.; Dhindsa, S.; Ghanim, H.; Dandona, P. Low testosterone and high C-reactive protein concentrations predict low hematocrit in type 2 diabetes. Diabetes Care 2006, 29, 2289–2294. [Google Scholar] [CrossRef]
- Nielsen, T.L.; Hagen, C.; Wraae, K.; Brixen, K.; Petersen, P.H.; Haug, E.; Larsen, R.; Andersen, M. Visceral and subcutaneous adipose tissue assessed by magnetic resonance imaging in relation to circulating androgens, sex hormone-binding globulin, and luteinizing hormone in young men. J. Clin. Endocrinol. Metab. 2007, 92, 2696–2705. [Google Scholar] [CrossRef]
- Araujo, A.B.; Esche, G.R.; Kupelian, V.; O’donnell, A.B.; Travison, T.G.; Williams, R.E.; Clark, R.V.; McKinlay, J.B. Prevalence of symptomatic androgen deficiency in men. J. Clin. Endocrinol. Metab. 2007, 92, 4241–4247. [Google Scholar] [CrossRef]
- Dhindsa, S.; Miller, M.G.; McWhirter, C.L.; Mager, D.E.; Ghanim, H.; Chaudhuri, A.; Dandona, P. Testosterone concentrations in diabetic and nondiabetic obese men. Diabetes Care 2010, 33, 1186–1192. [Google Scholar] [CrossRef]
- Ohlsson, C.; Barrett-Connor, E.; Bhasin, S.; Orwoll, E.; Labrie, F.; Karlsson, M.K.; Ljunggren, Ö.; Vandenput, L.; Mellström, D.; Tivesten, Å. High serum testosterone is associated with reduced risk of cardiovascular events in elderly men. The MrOS (Osteoporotic Fractures in Men) study in Sweden. J. Am. Coll. Cardiol. 2011, 58, 1674–1681. [Google Scholar] [CrossRef]
- Frederiksen, L.; Hojlund, K.; Hougaard, D.M.; Brixen, K.; Andersen, M. Testosterone therapy increased muscle mass and lipid oxidation in aging men. Age 2012, 34, 145–156. [Google Scholar] [CrossRef]
- Isidori, A.M.; Giannetta, E.; Greco, E.A.; Gianfrilli, D.; Bonifacio, V.; Isidori, A.; Lenzi, A.; Fabbri, A. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: A meta-analysis. Clin. Endocrinol. 2005, 63, 280–293. [Google Scholar] [CrossRef]
- Magnussen, L.V.; Glintborg, D.; Hermann, P.; Hougaard, D.M.; Højlund, K.; Andersen, M. Effect of testosterone on insulin sensitivity, oxidative metabolism and body composition in aging men with type 2 diabetes on metformin monotherapy. Diabetes Obes. Metab. 2016, 18, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, L.; Hojlund, K.; Hougaard, D.M.; Mosbech, T.H.; Larsen, R.; Flyvbjerg, A.; Frystyk, J.; Brixen, K.; Andersen, M. Testosterone therapy decreases subcutaneous fat and adiponectin in aging men. Eur. J. Endocrinol. Eur. Fed. Endocr. Soc. 2012, 166, 469–476. [Google Scholar] [CrossRef]
- Magnussen, L.V.; Andersen, P.E.; Diaz, A.; Ostojic, J.; Højlund, K.; Hougaard, D.M.; Christensen, A.N.; Nielsen, T.L.; Andersen, M. MR spectroscopy of hepatic fat and adiponectin and leptin levels during testosterone therapy in type 2 diabetes: A randomized, double-blinded, placebo-controlled trial. Eur. J. Endocrinol. 2017, 177, 157–168. [Google Scholar] [CrossRef]
- Gianatti, E.J.; Dupuis, P.; Hoermann, R.; Strauss, B.J.; Wentworth, J.M.; Zajac, J.D.; Grossmann, M. Effect of testosterone treatment on glucose metabolism in men with type 2 diabetes: A randomized controlled trial. Diabetes Care 2014, 37, 2098–2107. [Google Scholar] [CrossRef]
- Basaria, S.; Coviello, A.D.; Travison, T.G.; Storer, T.W.; Farwell, W.R.; Jette, A.M.; Eder, R.; Tennstedt, S.; Ulloor, J.; Zhang, A.; et al. Adverse events associated with testosterone administration. N. Engl. J. Med. 2010, 363, 109–122. [Google Scholar] [CrossRef]
- Nguyen, C.P.; Hirsch, M.S.; Moeny, D.; Kaul, S.; Mohamoud, M.; Joffe, H.V. Testosterone and “Age-Related Hypogonadism”—FDA Concerns. N. Engl. J. Med. 2015, 373, 689–691. [Google Scholar] [CrossRef]
- Hudson, J.; Cruickshank, M.; Quinton, R.; Aucott, L.; Aceves-Martins, M.; Gillies, K.; Bhasin, S.; Snyder, P.J.; Ellenberg, S.S.; Grossmann, M.; et al. Adverse cardiovascular events and mortality in men during testosterone treatment: An individual patient and aggregate data meta-analysis. Lancet Healthy Longev. 2022, 3, e381–e393. [Google Scholar] [CrossRef]
- Dhindsa, S.; Ghanim, H.; Batra, M.; Kuhadiya, N.D.; Abuaysheh, S.; Green, K.; Makdissi, A.; Chaudhuri, A.; Dandona, P. Effect of testosterone on hepcidin, ferroportin, ferritin and iron binding capacity in patients with hypogonadotropic hypogonadism and type 2 diabetes. Clin. Endocrinol. 2016, 85, 772–780. [Google Scholar] [CrossRef]
- Kapoor, D.; Clarke, S.; Stanworth, R.; Channer, K.S.; Jones, T.H. The effect of testosterone replacement therapy on adipocytokines and C-reactive protein in hypogonadal men with type 2 diabetes. Eur. J. Endocrinol. Eur. Fed. Endocr. Soc. 2007, 156, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Gianatti, E.J.; Dupuis, P.; Hoermann, R.; Zajac, J.D.; Grossmann, M. Effect of testosterone treatment on constitutional and sexual symptoms in men with type 2 diabetes in a randomized, placebo-controlled clinical trial. J. Clin. Endocrinol. Metab. 2014, 99, 3821–3828. [Google Scholar] [CrossRef] [PubMed]
- Sangkhae, V.; Nemeth, E. Regulation of the Iron Homeostatic Hormone Hepcidin. Adv. Nutr. 2017, 8, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Chambers, K.A.M.; Sharma, S. Physiology, Hepcidin; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Sullivan, J.L. Iron in arterial plaque: Modifiable risk factor for atherosclerosis. Biochim. Biophys. Acta 2009, 1790, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Andrews, M.; Soto, N.; Arredondo-Olguín, M. Association between ferritin and hepcidin levels and inflammatory status in patients with type 2 diabetes mellitus and obesity. Nutrition 2015, 31, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Artz, A.S.; Stephens-Shields, A.J.; Bhasin, S.; Ellenberg, S.S.; Cohen, H.J.; Snyder, P.J. Markers of Iron Flux during Testosterone-Mediated Erythropoiesis in Older Men with Unexplained or Iron-Deficiency Anemia. J. Clin. Endocrinol. Metab. 2020, 105, 3396–3403. [Google Scholar] [CrossRef] [PubMed]
- Bachman, E.; Travison, T.G.; Basaria, S.; Davda, M.N.; Guo, W.; Li, M.; Westfall, J.C.; Bae, H.; Gordeuk, V.; Bhasin, S. Testosterone induces erythrocytosis via increased erythropoietin and suppressed hepcidin: Evidence for a new erythropoietin/hemoglobin set point. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.M.H.; Binnenmars, S.H.; Gant, C.M.; Navis, G.; Gansevoort, R.T.; Bakker, S.J.; de Borst, M.H.; Laverman, G.D. Fibroblast Growth Factor 23 and Mortality in Patients With Type 2 Diabetes and Normal or Mildly Impaired Kidney Function. Diabetes Care 2019, 42, 2151–2153. [Google Scholar] [CrossRef] [PubMed]
- Nie, F.; Wu, D.; Du, H.; Yang, X.; Yang, M.; Pang, X.; Xu, Y. Serum klotho protein levels and their correlations with the progression of type 2 diabetes mellitus. J. Diabetes Complicat. 2017, 31, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, L.; Nybo, M.; Poulsen, M.K.; Henriksen, J.E.; Dahl, J.; Rasmussen, L.M. Plasma calprotectin and its association with cardiovascular disease manifestations, obesity and the metabolic syndrome in type 2 diabetes mellitus patients. BMC Cardiovasc. Disord. 2014, 14, 196. [Google Scholar] [CrossRef]
- Pedersen, L.; Christensen, L.L.; Pedersen, S.M.; Andersen, M. Reduction of calprotectin and phosphate during testosterone therapy in aging men: A randomized controlled trial. J. Endocrinol. Investig. 2017, 40, 529–538. [Google Scholar] [CrossRef]
- Pagani, A.; Nai, A.; Silvestri, L.; Camaschella, C. Hepcidin and Anemia: A Tight Relationship. Front. Physiol. 2019, 10, 1294. [Google Scholar] [CrossRef]
- Aregbesola, A. Serum hepcidin concentrations and type 2 diabetes. World J. Diabetes 2015, 6, 978. [Google Scholar] [CrossRef]
- Zaritsky, J.; Young, B.; Wang, H.J.; Westerman, M.; Olbina, G.; Nemeth, E.; Ganz, T.; Rivera, S.; Nissenson, A.R.; Salusky, I.B. Hepcidin—A potential novel biomarker for iron status in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2009, 4, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.H.; Arver, S.; Behre, H.M.; Buvat, J.; Meuleman, E.; Moncada, I.; Morales, A.M.; Volterrani, M.; Yellowlees, A.; Howell, J.D.; et al. Testosterone replacement in hypogonadal men with type 2 diabetes and/or metabolic syndrome (the TIMES2 study). Diabetes Care 2011, 34, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Fabbrini, E.; Sullivan, S.; Klein, S. Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications. Hepatology 2010, 51, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Kandel, S.E.; Han, L.W.; Mao, Q.; Lampe, J.N. Digging Deeper into CYP3A Testosterone Metabolism: Kinetic, Regioselectivity, and Stereoselectivity Differences between CYP3A4/5 and CYP3A7. Drug Metab. Dispos. 2017, 45, 1266–1275. [Google Scholar] [CrossRef]
Testosterone Therapy (TRT) | Placebo | ||||||||
---|---|---|---|---|---|---|---|---|---|
n | Baseline | 24 Weeks | ∆ | n | Baseline | 24 Weeks | ∆ | p-Value | |
Age (years) * | 20 | 61.6 ± 5.7 | 19 | 59.4 ± 6.6 | |||||
Duration of T2D * | 20 | 3.0 ± 2.2 | 19 | 3.9 ± 2.8 | |||||
BMI (kg/m2) * | 20 | 30.6 (28.9−32.3) | 30.7 (29.0−32.4) | 0.1 (−0.2; 0.7) | 19 | 30.8 (28.9−32.6) | 30.7 (28.8−32.5) | −0.1 (−0.5; 0.6) | 0.46 |
Luteinizing hormone (IU/L) * | 20 | 4.2 (3.3–5.4) | 19 | 3.1 (2.6−3.8) | |||||
Hepcidin (µg/L) | 20 | 20.6 ± 11.6 | 8.1 ± 6.1 | −9.3 (−18.8; −5.2) | 19 | 24.4 ± 11.4 | 18.6 ± 7.9 | −5.0 (−11.4; 2.6) | <0.01 |
Iron (µmol/L) | 20 | 11.1 (8.7; 13.1) | 10.7 (9.6; 14.0) | 0.9 (−3.1; 3.4) | 19 | 11.1 (9.1; 12.1) | 9.9 (8.5; 14.2) | −0.9 (−2.4; 1.9) | 0.79 |
FGF23 (pmol/L) | 20 | 0.9 (0.6; 1.3) | 1.3 (0.9; 1.8) | 0.2 (0.0; 0.6) | 18 | 0.9 (0.5; 1.3) | 0.9 (0.5; 1.4) | 0.1 (−0.3; 0.3) | 0.14 |
Phosphate (mmol/L) | 20 | 1.1 (1.0; 1.2) | 1.1 (1.0; 1.2) | −0.0 (−0.1; 0.1) | 19 | 1.1 (1.0; 1.2) | 1.1 (1.0; 1.2) | 0.0 (−0.1; 0.1) | 0.10 |
Klotho (ng/L) | 20 | 439.5 (326.0; 529.5) | 418.5 (354.0; 503.5) | −1.0 (−42.0; 19.5) | 19 | 409.0 (315.0; 448.0) | 399.0 (364.0; 558.0) | 3.0 (−29.0; 74.0) | 0.10 |
Calprotectin (µg/L) | 20 | 22.0 (11.1; 29.3) | 26.0 (16.4; 35.8) | 5.8 (−3.4; 12.7) | 19 | 25.1 (12.2; 32.2) | 27.3 (16.7; 43.2) | 2.3 (−4.7; 9.7) | 0.78 |
Lean body mass (kg) * | 20 | 61.9 ± 8.9 | 63.6 ± 8.4 | 1.9 (0.9; 2.6) | 19 | 61.7 ± 7.5 | 61.5 ± 8.0 | −0.2 (−0.8; 0.5) | <0.01 |
Total fat mass (kg) * | 20 | 28.4 (24.7−32.6) | 27.1 (23.3−31.6) | −1.2 (−1.9; 0.1) | 19 | 27.1 (24.1−30.6) | 27.2 (23.9−30.9) | 0.1 (−1.0; 1.2) | <0.01 |
VAT/TAT (%) * | 12 | 22.0 (18.4–26.3) | 21.4 (17.1–26.6) | −0.1 (−2.3; 1.5) | 13 | 23.2 (20.8–25.8) | 22.6 (20.3–25.1) | −0.4 (−1.4; 0.2) | 0.91 |
SAT/TAT (%) * | 12 | 32.1 (28.0–36.7) | 28.7 (24.7–33.5) | −2.6 (−4.9; −1.2) | 13 | 31.4 (28.7–34.5) | 31.2 (28.7–33.8) | −0.8 (−1.9; 1.0) | <0.01 |
TFA/TTA (%) * | 12 | 30.7 (26.1–36.1) | 27.3 (22.8–32.7) | −3.7 (−4.9; −2.4) | 13 | 27.9 (24.0–32.3) | 28.0 (24.2–32.4) | −0.8 (−1.7; −1.2) | <0.01 |
Hepatic fat/water ratio * | 11 | 0.4 (0.1; 0 0.6) | 0.3 (0.1; 0.7) | 0.0 (−0.1; 0.0) | 13 | 0.4 (0.2; 0.7) | 0.2 (0.2; 0.5) | −0.10 (−0.3; 0.0) | 0.12 |
Rd clamp (mg/min/kg fat-free mass) * | 20 | 5.9 (5.1−6.8) | 6.2 (5.3−7.2) | 0.4 (−0.8; 1.2) | 19 | 6.0 (5.3−6.8) | 5.8 (5.0−6.6) | 0.08 (−1.0; 0.5) | 0.29 |
HbA1c (mmol/mol) * | 20 | 47 (45−50) | 50 (46−53) | 2 (1; 4) | 19 | 48 (44–51) | 48 (44–52) | 0 (−4; 4) | 0.13 |
Haemoglobin, mmol/L * | 20 | 9.0 (8.7–9.2) | 9.3 (9.1–9.5) | 0.4 (−0.1; 0.8) | 19 | 9.1 (8.9–9.3) | 8.9 (8.6–9.1) | −0.2 (−0.5; 0.0) | <0.01 |
Haematocrit, % * | 20 | 43.1 ± 0.02 | 45.4 ± 0.02 | 2.5 (−0.5; 4.0) | 19 | 43.3 ± 0.02 | 42.7 ± 0.02 | −1.0 (−2.0; 1.0) | <0.01 |
HDL cholesterol (mmol/L) * | 20 | 1.0 (0.9–1.1) | 1.0 (0.8–1.1) | −0.1 (−0.1; 0.0) | 19 | 0.9 (0.9–1.0) | 1.0 (0.9–1.1) | 0.1 (0.0; 0.2) | <0.01 |
Adiponectin (mg/L) * | 20 | 7.5 (6.1–9.3) | 6.8 (5.5–8.4) | −0.7 (−1.2; −0.2) | 19 | 6.2 (5.1–7.6) | 6.1 (5.2–7.2) | −0.2 (−0.8; 0.4) | <0.05 |
Leptin (µg/L) * | 20 | 13.2 (10.0–17.5) | 9.5 (6.8–13.2) | −3.7 (−5.4; −1.3) | 19 | 11.6 (9.0–14.9) | 12.4 (9.6–16.0) | 0.4 (−1.8; 3.6) | <0.01 |
Testosterone (n = 20) | Placebo (n = 19) | p-Value | |
---|---|---|---|
Total testosterone (nmol/L) Baseline 3 weeks 24 weeks ∆24 weeks-baseline | 7.1 (6.6; 11.9) 11.9 (9.8; 16.7) 22.1 (8.2; 34.3) 13.1 (−1.6; 23.3) | 9.4 (8.1; 12.5) 9.8 (8.8; 11.7) 10.2 (8.4; 12.1) 1.4 (−0.02; 2.2) | 0.056 |
Bioavailable testosterone (nmol/L) Baseline 3 weeks 24 weeks ∆24 weeks-baseline | 4.0 (2.9; 4.9) 5.8 (3.9; 6.9) 10.2 (3.7; 23.9) 6.8 (−0.5; 18.2) | 4.7 (4.0; 5.2) 4.9 (4.4; 5.3) 5.7 (4.6; 6.1) 0.8 (−0.1; 1.5) | 0.046 |
Free testosterone (nmol/L) Baseline 3 weeks 24 weeks ∆24 weeks-baseline | 0.20 (0.15; 0.26) 0.30 (0.24; 0.40) 0.54 (0.19; 1.11) 0.36 (−0.02; 0.85) | 0.24 (0.21; 0.28) 0.25 (0.24; 0.27) 0.29 (0.23; 0.31) 0.04 (−0.00; 0.07) | 0.046 |
SHBG (nmol/L) Baseline 3 weeks 24 weeks ∆24 weeks-baseline | 32 (28–37) 30 (25–35) 27 (23–32) −5 (−10; −3) | 29 (24–35) 27 (22–34) 29 (23–36) −3 (−6; 2) | 0.03 |
17β-Estradiol (pmol/L) Baseline 24 weeks ∆24 weeks-baseline | 12 (0; 48) 84 (36; 135) 43 (15; 97) | 34 (0; 55) 35 (26; 52) 8 (−22; 29) | 0.003 |
Dihydrotestosterone (nmol/L) Baseline 24 weeks ∆24 weeks-baseline | 0.61 (0.47–0.80) 3.01 (1.95–4.65) 2.67 (0.71; 4.76) | 0.59 (0.44–0.78) 0.59 (0.44–0.78) −0.01 (−0.14; 0.20) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magnussen, L.V.; Helskov Jørgensen, L.; Glintborg, D.; Andersen, M.S. Hepcidin Reduction during Testosterone Therapy in Men with Type 2 Diabetes: A Randomized, Double-Blinded, Placebo-Controlled Study. Biomedicines 2023, 11, 3184. https://doi.org/10.3390/biomedicines11123184
Magnussen LV, Helskov Jørgensen L, Glintborg D, Andersen MS. Hepcidin Reduction during Testosterone Therapy in Men with Type 2 Diabetes: A Randomized, Double-Blinded, Placebo-Controlled Study. Biomedicines. 2023; 11(12):3184. https://doi.org/10.3390/biomedicines11123184
Chicago/Turabian StyleMagnussen, Line Velling, Louise Helskov Jørgensen, Dorte Glintborg, and Marianne Skovsager Andersen. 2023. "Hepcidin Reduction during Testosterone Therapy in Men with Type 2 Diabetes: A Randomized, Double-Blinded, Placebo-Controlled Study" Biomedicines 11, no. 12: 3184. https://doi.org/10.3390/biomedicines11123184
APA StyleMagnussen, L. V., Helskov Jørgensen, L., Glintborg, D., & Andersen, M. S. (2023). Hepcidin Reduction during Testosterone Therapy in Men with Type 2 Diabetes: A Randomized, Double-Blinded, Placebo-Controlled Study. Biomedicines, 11(12), 3184. https://doi.org/10.3390/biomedicines11123184