Classification of First-Episode Psychosis with EEG Signals: ciSSA and Machine Learning Approach
Abstract
:1. Introduction
- EEG signals from the datasets used for FEP classification were analyzed for the first time in this study.
- The ciSSA method was applied for the first time within the scope of this study, specifically for the stated purpose, and its performance was analyzed.
- The classification performance of features obtained from both non-decomposed EEG signals and ciSSA-decomposed sub-band EEG signals was demonstrated.
- The novel entropy, statistical, and frequency features, combined with the ciSSA sub-bands of EEG signals for FEP classification, were analyzed for their performance.
- The classification performance of machine learning algorithms such as SVM, ANN, and ensemble methods in FEP classification using the new ciSSA-based model was examined.
2. Materials and Methods
2.1. Datasets
2.2. Preprocessing
2.3. Circulant Singular Spectrum Analysis
2.4. Feature Extraction
2.4.1. Entropy Features
2.4.2. Statistical Features
2.4.3. Frequency Features
2.5. Feature Selection
2.6. Classification
2.6.1. Support Vector Machines
2.6.2. Artificial Neural Network
2.6.3. Ensemble Methods
3. Results
4. Discussion and Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Psychiatric Publishing. Diagnostic and Statistical Manual of Mental Disorders: DSM-5TM, 5th ed.; American Psychiatric Publishing, Inc.: Arlington, VA, USA, 2013. [Google Scholar] [CrossRef]
- Farooq, S.; Green, D.J.; Singh, S.P. Sharing information about diagnosis and outcome of first-episode psychosis in patients presenting to early intervention services. Early Interv. Psychiatry 2019, 13, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Benli, Ş.G.; Andaç, M. Constructing the Schizophrenia Recognition Method Employing GLCM Features from Multiple Brain Regions and Machine Learning Techniques. Diagnostics 2023, 13, 2140. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Qian, X.; Liu, S.; Koh, A.J.; Sim, K.; Jiang, X.; Guan, C.; Zhou, J.H. Structural and diffusion MRI based schizophrenia classification using 2D pretrained and 3D naive Convolutional Neural Networks. Schizophr. Res. 2022, 243, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Chilla, G.S.; Yeow, L.Y.; Chew, Q.H.; Sim, K.; Prakash, K.N.B. Machine learning classification of schizophrenia patients and healthy controls using diverse neuroanatomical markers and Ensemble methods. Sci. Rep. 2022, 12, 2755. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Qiu, J.; Lu, W. Support Vector Machine-Based Schizophrenia Classification Using Morphological Information from Amygdaloid and Hippocampal Subregions. Brain Sci. 2020, 10, 562. [Google Scholar] [CrossRef]
- Vyškovský, R.; Schwarz, D.; Churová, V.; Kašpárek, T. Structural MRI-Based Schizophrenia Classification Using Autoencoders and 3D Convolutional Neural Networks in Combination with Various Pre-Processing Techniques. Brain Sci. 2022, 12, 615. [Google Scholar] [CrossRef] [PubMed]
- Squarcina, L.; Castellani, U.; Bellani, M.; Perlini, C.; Lasalvia, A.; Dusi, N.; Bonetto, C.; Cristofalo, D.; Tosato, S.; Rambaldelli, G.; et al. Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques. Neuroimage 2017, 145, 238–245. [Google Scholar] [CrossRef]
- Faria, A.V.; Zhao, Y.; Ye, C.; Hsu, J.; Yang, K.; Cifuentes, E.; Wang, L.; Mori, S.; Miller, M.; Caffo, B.; et al. Multimodal MRI assessment for first episode psychosis: A major change in the thalamus and an efficient stratification of a subgroup. Hum. Brain Mapp. 2021, 42, 1034–1053. [Google Scholar] [CrossRef]
- Forns-Nadal, M.; Bergé, D.; Sem, F.; Mané, A.; Igual, L.; Guinart, D.; Vilarroya, O. Increased nucleus accumbens volume in first-episode psychosis. Psychiatry Res. Neuroimaging 2017, 263, 57–60. [Google Scholar] [CrossRef]
- Missonnier, P.; Prévot, A.; Herrmann, F.R.; Ventura, J.; Padée, A.; Merlo, M.C.G. Disruption of gamma-delta relationship related to working memory deficits in first-episode psychosis. J. Neural Transm. 2020, 127, 103–115. [Google Scholar] [CrossRef]
- Renaldi, R.; Kim, M.; Lee, T.H.; Kwak, Y.B.; Tanra, A.J.; Kwon, J.S. Predicting Symptomatic and Functional Improvements over 1 Year in Patients with First-Episode Psychosis Using Resting-State Electroencephalography. Psychiatry Investig. 2019, 16, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Kim, M.; Hwang, W.J.; Kim, T.; Kwak, Y.B.; Kwon, J.S. Relationship between resting-state theta phase-gamma amplitude coupling and neurocognitive functioning in patients with first-episode psychosis. Schizophr. Res. 2020, 216, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Garakh, Z.; Zaytseva, Y.; Kapranova, A.; Fiala, O.; Horacek, J.; Shmukler, A.; Gurovich, I.Y.; Strelets, V.B. EEG correlates of a mental arithmetic task in patients with first episode schizophrenia and schizoaffective disorder. Clin. Neurophysiol. 2015, 126, 2090–2098. [Google Scholar] [CrossRef] [PubMed]
- Newson, J.J.; Thiagarajan, T.C. EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies. Front. Hum. Neurosci. 2018, 12, 521. [Google Scholar] [CrossRef] [PubMed]
- Zülfikar, A.; Mehmet, A. Empirical mode decomposition and convolutional neural network-based approach for diagnosing psychotic disorders from eeg signals. Appl. Intell. 2022, 52, 12103–12115. [Google Scholar] [CrossRef]
- Khare, S.K.; Bajaj, V. A hybrid decision support system for automatic detection of Schizophrenia using EEG signals. Comput. Biol. Med. 2022, 141, 105028. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, D.; Seebold, D.; Coffman, B. EEG: First Episode Psychosis vs. Control Resting Task 2; Dataset; OpenNeuro: Stanford, CA, USA, 2022. [Google Scholar] [CrossRef]
- Salisbury, D.; Seebold, D.; Coffman, B. EEG: First Episode Psychosis vs. Control Resting Task 1; Dataset; OpenNeuro: Stanford, CA, USA, 2022. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Bógalo, J.; Poncela, P.; Senra, E. Circulant singular spectrum analysis: A new automated procedure for signal extraction. Signal Process. 2021, 179, 107824. [Google Scholar] [CrossRef]
- Hu, H.; Pu, Z.; Wang, P. A flexible and accurate method for electroencephalography rhythms extraction based on circulant singular spectrum analysis. PeerJ 2022, 10, e13096. [Google Scholar] [CrossRef]
- Chaitanya, M.K.; Sharma, L.D. Electrocardiogram signal filtering using circulant singular spectrum analysis and cascaded Savitzky-Golay filter. Biomed. Signal Process. Control 2022, 75, 103583. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Sneddon, R. The Tsallis entropy of natural information. Phys. A Stat. Mech. Its Appl. 2007, 386, 101–118. [Google Scholar] [CrossRef]
- Aydin, S.; Saraoğlu, H.M.; Kara, S. Log energy entropy-based EEG classification with multilayer neural networks in seizure. Ann. Biomed. Eng. 2009, 37, 2626–2630. [Google Scholar] [CrossRef] [PubMed]
- Baraniuk, R.G.; Flandrin, P.; Janssen, A.J.E.M.; Michel, O.J.J. Measuring time-frequency information content using the Renyi entropies. IEEE Trans. Inf. Theory 2001, 47, 1391–1409. [Google Scholar] [CrossRef]
- Atyabi, A.; Shic, F.; Naples, A. Mixture of autoregressive modeling orders and its implication on single trial EEG classification. Expert Syst. Appl. 2016, 65, 164–180. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. Available online: http://www.jstor.org/stable/2346178 (accessed on 19 November 2023). [CrossRef]
- Lanillos, P.; Oliva, D.; Philippsen, A.; Yamashita, Y.; Nagai, Y.; Cheng, G. A review on neural network models of schizophrenia and autism spectrum disorder. Neural Netw. 2020, 122, 338–363. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.-P.; Hosseini, A.; Ahi, K. A Review on Machine Learning for EEG Signal Processing in Bioengineering. IEEE Rev. Biomed. Eng. 2021, 14, 204–218. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Altınkaynak, M.; Dolu, N.; Güven, A.; Pektaş, F.; Özmen, S.; Demirci, E.; İzzetoğlu, M. Diagnosis of Attention Deficit Hyperactivity Disorder with combined time and frequency features. Biocybern. Biomed. Eng. 2020, 40, 927–937. [Google Scholar] [CrossRef]
- Miras, R.; Molina, A.J.; Soriano, M.F.; Parro, S.I. Schizophrenia classification using machine learning on resting state EEG signal. Biomed. Signal Proces. Control 2023, 79, 104233. [Google Scholar] [CrossRef]
- Zhang, G.; Hu, M.Y.; Patuwo, B.E.; Indro, D.C. Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis. Eur. J. Oper. Res. 1999, 116, 16–32. [Google Scholar] [CrossRef]
- Gu, Y.; Liang, Z.; Hagihira, S. Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia. Sensors 2019, 19, 2499. [Google Scholar] [CrossRef] [PubMed]
- Li, R.C.; George, S.T.; Rajan, A.A.; Subathra, M.S.P. Detection of ADHD from EEG Signals Using Different Entropy Measures and ANN. Clin. EEG Neurosci. 2022, 53, 12–23. [Google Scholar] [CrossRef]
- Ju, C.; Bibaut, A.; van der Laan, M. The relative performance of ensemble methods with deep convolutional neural networks for image classification. J. Appl. Stat. 2018, 45, 2800–2818. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-L.; Kim, B.-G. Few-shot learning for facial expression recognition: A comprehensive survey. J. Real-Time Image Process. 2023, 20, 52. [Google Scholar] [CrossRef]
- Brown, G. Ensemble Learning. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2010; pp. 312–320. [Google Scholar] [CrossRef]
- Dominicus, L.S.; Oranje, B.; Otte, W.M.; Ambrosen, K.S.; Düring, S.; Scheepers, F.E.; Stam, C.J.; Glenthøj, B.Y.; Ebdrup, B.H.; van Dellen, E. Macroscale EEG characteristics in antipsychotic-naïve patients with first-episode psychosis and healthy controls. Schizophrenia 2023, 9, 5. [Google Scholar] [CrossRef]
- de Bock, R.; Mackintosh, A.J.; Maier, F.; Borgwardt, S.; Riecher-Rössler, A.; Andreou, C. EEG microstates as biomarker for psychosis in ultra-high-risk patients. Transl. Psychiatry 2020, 10, 300. [Google Scholar] [CrossRef]
- Mackintosh, A.J.; Borgwardt, S.; Studerus, E.; Riecher-Rössler, A.; de Bock, R.; Andreou, C. EEG Microstate Differences in Medicated vs. Medication-Naïve First-Episode Psychosis Patients. Front. Psychiatry 2020, 11, 600606. [Google Scholar] [CrossRef]
- Qu, X.; Liukasemsarn, S.; Tu, J.; Higgins, A.; Hickey, T.J.; Hall, M.-H. Identifying Clinically and Functionally Distinct Groups Among Healthy Controls and First Episode Psychosis Patients by Clustering on EEG Patterns. Front. Psychiatry 2020, 11, 541659. [Google Scholar] [CrossRef]
- Zhang, Y.; Geyfman, A.; Coffman, B.; Gill, K.; Ferrarelli, F. Distinct alterations in resting-state electroencephalogram during eyes closed and eyes open and between morning and evening are present in first-episode psychosis patients. Schizophr. Res. 2021, 228, 36–42. [Google Scholar] [CrossRef]
- Yadav, S.; Nizamie, S.H.; Das, B.; Das, J.; Tikka, S.K. Resting state quantitative electroencephalogram gamma power spectra in patients with first episode psychosis: An observational study. Asian J. Psychiatry 2021, 57, 102550. [Google Scholar] [CrossRef]
- Ferrarelli, F.; Kaskie, R.E.; Graziano, B.; Reis, C.C.; Casali, A.G. Abnormalities in the evoked frontal oscillatory activity of first-episode psychosis: A TMS/EEG study. Schizophr. Res. 2019, 206, 436–439. [Google Scholar] [CrossRef]
- Aydın, S.; Demirtaş, S.; Yetkin, S. Cortical correlations in wavelet domain for estimation of emotional dysfunctions. Neural Comput. Appl. 2018, 30, 1085–1094. [Google Scholar] [CrossRef]
EEG Signals Not Decomposed into Subbands | ||||
---|---|---|---|---|
Entropy | Statictical | Frequency | Hybrid | |
Number of feature set | 60 × 6 = 360 | 60 × 17 = 1020 | 60 × 15 = 900 | 60 × 38 = 2280 |
Number of selected features | 70 | 104 | 106 | 128 |
EEG Signals Secomposed into ciSSA Subbands | ||||
Entropy | Statistical | Frequency | Hybrid | |
Number of feature set | 60 × 6 × 9 = 3240 | 60 × 17 × 9 = 9180 | 60 × 15 × 9 = 8100 | 60 × 38 × 9 = 20,520 |
Number of selected features | 164 | 153 | 141 | 181 |
Features | Classification Methods | AUC | Accuracy | Sensitivity | Specificity | Precision | F-Score |
---|---|---|---|---|---|---|---|
Entropy | Ensemble | 0.5477 | 0.5731 | 0.7333 | 0.365 | 0.606 | 0.6552 |
SVM | 0.6470 | 0.6050 | 0.6410 | 0.5583 | 0.6617 | 0.6429 | |
ANN | 0.5893 | 0.5862 | 0.6346 | 0.5233 | 0.6407 | 0.6302 | |
Statistical | Ensemble | 0.6123 | 0.5920 | 0.7038 | 0.4466 | 0.6230 | 0.6604 |
SVM | 0.9074 | 0.8492 | 0.8448 | 0.855 | 0.883 | 0.8636 | |
ANN | 0.9250 | 0.85 | 0.8410 | 0.8616 | 0.8878 | 0.8634 | |
Frequency | Ensemble | 0.5166 | 0.5471 | 0.8076 | 0.2083 | 0.5724 | 0.6605 |
SVM | 0.7501 | 0.7050 | 0.7128 | 0.695 | 0.7540 | 0.7324 | |
ANN | 0.7549 | 0.6985 | 0.7217 | 0.6683 | 0.7385 | 0.7298 | |
Hybrid | Ensemble | 0.5747 | 0.5623 | 0.6589 | 0.4366 | 0.6034 | 0.6278 |
SVM | 0.9555 | 0.9036 | 0.9076 | 0.8983 | 0.9207 | 0.9140 | |
ANN | 0.9549 | 0.9057 | 0.9038 | 0.9083 | 0.9280 | 0.9156 |
Features | Classification Methods | AUC | Accuracy | Sensitivity | Specificity | Precision | F-Score |
---|---|---|---|---|---|---|---|
Entropy | Ensemble | 0.5945 | 0.5862 | 0.6846 | 0.4583 | 0.6222 | 0.6513 |
SVM | 0.8941 | 0.8644 | 0.9025 | 0.815 | 0.8641 | 0.8827 | |
ANN | 0.9043 | 0.8666 | 0.9115 | 0.8083 | 0.8609 | 0.8852 | |
Statistical | Ensemble | 0.6336 | 0.5971 | 0.7128 | 0.4466 | 0.6268 | 0.5439 |
SVM | 0.9454 | 0.9050 | 0.9307 | 0.8716 | 0.9039 | 0.9170 | |
ANN | 0.9675 | 0.9253 | 0.9320 | 0.9166 | 0.9359 | 0.9337 | |
Frequency | Ensemble | 0.5391 | 0.5485 | 0.6615 | 0.4016 | 0.5925 | 0.6161 |
SVM | 0.9492 | 0.9159 | 0.9256 | 0.9033 | 0.9257 | 0.9255 | |
ANN | 0.9592 | 0.9202 | 0.9179 | 0.9233 | 0.9389 | 0.9279 | |
Hybrid | Ensemble | 0.6327 | 0.6079 | 0.7269 | 0.4533 | 0.6340 | 0.6763 |
SVM | 0.9893 | 0.9623 | 0.9666 | 0.9566 | 0.9667 | 0.9666 | |
ANN | 0.9880 | 0.9601 | 0.9564 | 0.965 | 0.9725 | 0.9643 |
Refs. | Dataset | Ch Size | FEP/Ctrl | Tasks/Duration | Signal Processing Methods/Features | Machine Learning Techniques/Statistics | Accuracy |
---|---|---|---|---|---|---|---|
[41] | Collected data | 64 Ch | 62/106 | Resting state/45 min | Several features (60) of four fequency subbands (spectral power, phase-based and amplitude-based functional connectivity, and macroscale network characteristics were analyzed) | a random forest (RF) classifier/Mann–Whitney U test and RF regression were used for statistical analysis | 50.2% |
[42] | Collected data | 19 Ch | 29/25 | Resting state | Microstate analysis/EEG microstate dynamics | ANOVAs | Between-group comparisons at baseline indicated significant differences |
[43] | Collected data | 19 Ch | 17/30 mFEP/uFEP | Several tasks during 20 min | Microstate analysis/EEG microstates dynamics | ANOVA and t-test | Statistically significant differences were found |
[44] | Collected data | 64 Ch | 20/33 | Mismatch negativity (MMN) paradigm | Various measures from alpha, delta, and theta | k-means | Not presented |
[45] | Collected data | 64 Ch | 26/17 | Resting state/eyes open (EO) and eyes close (EC): EO (3 min), EC (3 min), EO (3 min), EC (3 min) | Power spectral density (PSD)/PSD vaues of EEG frequency subbands | channel-wise permutation-based statistics (paired Student’s t-tests and two-tailed were used; 1000 permutations) | There was no significant difference in EEG power between FEP and healthy controls in the following bands and conditions: AM/EC delta, theta, and higher alpha bands; PM/EC delta and alpha bands; AM/EO delta, theta, and alpha bands; PM/EO delta, theta, and lower alpha bands |
[46] | Collected data | 192 Ch | 29/30 | Resting state/10 min | Spectral power analysis/gamma spectral power | MANOVA and one-way ANOVA | The gamma spectral power in 31−50 Hz and 51–70 Hz frequency bands was found to be significantly higher in patients in most brain regions. |
[47] | Collected data | 64 Ch | 16/11 | After transcranial magnetic stimulation/na | not given detail | found no differences | |
[48] | Collected data | 16 Ch | 10/10 | Emotional state (pleasant, unpleasant, neutral) | Wavelet coherence | Least-squares support-vector machine/ANOVA | 83.89%, 86.39%, 88.06%, respectively/statistically significant differences were found |
This proposed study | FEP1 [19] and FEP2 [18] | 60 Ch | 78/60 | Resting state/3 min | ciSSA/Entropy, statistical, and frequency features | SVM, Ensemble classifier, Multi-layer perceptron-ANN | Given binary classifier results at Table 2 and Table 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gengeç Benli, Ş. Classification of First-Episode Psychosis with EEG Signals: ciSSA and Machine Learning Approach. Biomedicines 2023, 11, 3223. https://doi.org/10.3390/biomedicines11123223
Gengeç Benli Ş. Classification of First-Episode Psychosis with EEG Signals: ciSSA and Machine Learning Approach. Biomedicines. 2023; 11(12):3223. https://doi.org/10.3390/biomedicines11123223
Chicago/Turabian StyleGengeç Benli, Şerife. 2023. "Classification of First-Episode Psychosis with EEG Signals: ciSSA and Machine Learning Approach" Biomedicines 11, no. 12: 3223. https://doi.org/10.3390/biomedicines11123223
APA StyleGengeç Benli, Ş. (2023). Classification of First-Episode Psychosis with EEG Signals: ciSSA and Machine Learning Approach. Biomedicines, 11(12), 3223. https://doi.org/10.3390/biomedicines11123223