Determining Thrombogenicity: Using a Modified Thrombin Generation Assay to Detect the Level of Thrombotic Event Risk in Lupus Anticoagulant-Positive Patients
Abstract
:1. Introduction
1.1. β2-Glycoprotein-I
1.2. Other Targets of Antiphospholipid Antibodies
1.3. Clinical Manifestation of Antiphospholipid Antibodies
2. Materials and Methods
2.1. Study Design and Population
2.2. Sample Collection
2.3. Coagulation Tests for Lupus Anticoagulants
2.4. Chemiluminescence Immunoassays
2.5. Thrombin Generation Assay Modified by Activated Protein C
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Devreese, K.M.J.; de Groot, P.G.; de Laat, B.; Erkan, D.; Favaloro, E.J.; Mackie, I.; Martinuzzo, M.; Ortel, T.L.; Pengo, V.; Rand, J.H.; et al. Guidance from the Scientific and Standardization Committee for lupus anticoagulant/antiphospholipid antibodies of the International Society on Thrombosis and Haemostasis. J. Thromb. Haemost. 2020, 18, 2828–2839. [Google Scholar] [CrossRef]
- Devreese, K.M.; Zuily, S.; Meroni, P.L. Role of antiphospholipid antibodies in the diagnosis of antiphospholipid syndrome. J. Transl. Autoimmun. 2021, 4, 100134. [Google Scholar] [CrossRef]
- Rasool, Z.S.; Tiwari, V. Biochemistry, Lupus Anticoagulant; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Schreiber, K.; Sciascia, S.; de Groot, P.G.; Devreese, K.; Jacobsen, S.; Ruiz-Irastorza, G.; Salmon, J.E.; Shoenfeld, Y.; Shovman, O.; Hunt, B.J. Antiphospholipid syndrome. Nat. Rev. Dis. Prim. 2018, 4, 17103. [Google Scholar] [CrossRef]
- Arachchillage, D.R.; Laffan, M. Pathogenesis and management of antiphospholipid syndrome. Br. J. Haematol. 2017, 178, 181–195. [Google Scholar] [CrossRef]
- Chaturvedi, S.; McCrae, K.R. Diagnosis and management of the antiphospholipid syndrome. Blood Rev. 2017, 31, 406–417. [Google Scholar] [CrossRef]
- Kumano, O.; Peyrafitte, M.; Amiral, J. Update on laboratory practice for the diagnosis of lupus anticoagulant and the antiphospholipid syndrome. Explor. Immunol. 2023, 3, 416–432. [Google Scholar] [CrossRef]
- Molhoek, J.E.; de Groot, P.G.; Urbanus, R.T. The Lupus Anticoagulant Paradox. Semin. Thromb. Hemost. 2018, 44, 445–452. [Google Scholar] [CrossRef]
- Tripodi, A. Laboratory Testing for Lupus Anticoagulants: A Review of Issues Affecting Results. Clin. Chem. 2007, 53, 1629–1635. [Google Scholar] [CrossRef]
- Dağlı, P.A.; Erden, A.; Babaoğlu, H.; Karakaş, Ö.; Ulusoy, B.; Konak, H.E.; Armağan, B.; Erten, Ş.; Omma, A. Non-criteria autoantibodies in antiphospholipid syndrome may be associated with underlying disease activity. Ir. J. Med. Sci. 2023, 1–9. [Google Scholar] [CrossRef]
- DE Groot, P.G.; Derksen, R.H.W.M. Pathophysiology of the antiphospholipid syndrome. J. Thromb. Haemost. 2005, 3, 1854–1860. [Google Scholar] [CrossRef]
- Sciascia, S.; Murru, V.; Sanna, G.; Roccatello, D.; Khamashta, M.A.; Bertolaccini, M.L. Clinical accuracy for diagnosis of antiphospholipid syndrome in systemic lupus erythematosus: Evaluation of 23 possible combinations of antiphospholipid antibody specificities. J. Thromb. Haemost. 2012, 10, 2512–2518. [Google Scholar] [CrossRef]
- Galli, M.; Ruggeri, L.; Barbui, T. Differential Effects of Anti–β2-Glycoprotein I and Antiprothrombin Antibodies on the Anticoagulant Activity of Activated Protein C. Blood 1998, 91, 1999–2004. [Google Scholar] [CrossRef]
- Douxfils, J.; Morimont, L.; Delvigne, A.-S.; Devel, P.; Masereel, B.; Haguet, H.; Bouvy, C.; Dogné, J.-M. Validation and standardization of the ETP-based activated protein C resistance test for the clinical investigation of steroid contraceptives in women: An unmet clinical and regulatory need. Clin. Chem. Lab. Med. 2020, 58, 294–305. [Google Scholar] [CrossRef]
- Radin, M.; Barinotti, A.; Cecchi, I.; Foddai, S.G.; Rubini, E.; Roccatello, D.; Menegatti, E.; Sciascia, S. Thrombin generation assay and lupus anticoagulant synergically distinguish populations of patients with antiphospholipid antibodies. J. Clin. Pathol. 2022, 76, 839–846. [Google Scholar] [CrossRef]
- Billoir, P.; Duchez, V.L.C.; Miranda, S.; Richard, V.; Benhamou, Y. Place du test de génération de thrombine dans les maladies auto-immunes. La Rev. Med. Interne 2021, 42, 862–868. [Google Scholar] [CrossRef]
- Cohen, H.; Hunt, B.J.; Efthymiou, M.; Arachchillage, D.R.J.; Mackie, I.J.; Clawson, S.; Sylvestre, Y.; Machin, S.J.; Bertolaccini, M.L.; Ruiz-Castellano, M.; et al. Rivaroxaban versus warfarin to treat patients with thrombotic antiphospholipid syndrome, with or without systemic lupus erythematosus (RAPS): A randomised, controlled, open-label, phase 2/3, non-inferiority trial. Lancet Haematol. 2016, 3, e426–e436. [Google Scholar] [CrossRef]
- Misasi, R.; Longo, A.; Recalchi, S.; Caissutti, D.; Riitano, G.; Manganelli, V.; Garofalo, T.; Sorice, M.; Capozzi, A. Molecular Mechanisms of “Antiphospholipid Antibodies” and Their Paradoxical Role in the Pathogenesis of “Seronegative APS”. Int. J. Mol. Sci. 2020, 21, 8411. [Google Scholar] [CrossRef]
- Chighizola, C.B.; Gerosa, M.; Meroni, P.L. New Tests to Detect Antiphospholipid Antibodies: Anti-Domain I Beta-2-Glycoprotein-I Antibodies. Curr. Rheumatol. Rep. 2014, 16, 1–9. [Google Scholar] [CrossRef]
- Giannakopoulos, B.; Krilis, S.A. The Pathogenesis of the Antiphospholipid Syndrome. N. Engl. J. Med. 2013, 368, 1033–1044. [Google Scholar] [CrossRef]
- Hulstein, J.J.J.; Lenting, P.J.; de Laat, B.; Derksen, R.H.W.M.; Fijnheer, R.; de Groot, P.G. β2-Glycoprotein I inhibits von Willebrand factor–dependent platelet adhesion and aggregation. Blood 2007, 110, 1483–1491. [Google Scholar] [CrossRef]
- Nakagawa, H.; Yasuda, S.; Matsuura, E.; Kobayashi, K.; Ieko, M.; Kataoka, H.; Horita, T.; Atsumi, T.; Koike, T. Nicked β2-glycoprotein I binds angiostatin 4.5 (plasminogen kringle 1-5) and attenuates its antiangiogenic property. Blood 2009, 114, 2553–2559. [Google Scholar] [CrossRef] [PubMed]
- Bu, C.; Gao, L.; Xie, W.; Zhang, J.; He, Y.; Cai, G.; McCrae, K.R. β2-glycoprotein i is a cofactor for tissue plasminogen activator-mediated plasminogen activation. Arthritis Rheum. 2009, 60, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Abrahams, V.M.; Chamley, L.W.; Salmon, J.E. Emerging Treatment Models in Rheumatology: Antiphospholipid Syndrome and Pregnancy: Pathogenesis to Translation. Arthritis Rheumatol. 2017, 69, 1710–1721. [Google Scholar] [CrossRef] [PubMed]
- Scambi, C.; Ugolini, S.; Tonello, M.; Bortolami, O.; De Franceschi, L.; Castagna, A.; Lotti, V.; Corbella, M.; Raffaelli, R.; Caramaschi, P.; et al. Complement activation in the plasma and placentas of women with different subsets of antiphospholipid syndrome. Am. J. Reprod. Immunol. 2019, 82, e13185. [Google Scholar] [CrossRef] [PubMed]
- Petri, M. Improvements in diagnosis and risk assessment of primary and secondary antiphospholipid syndrome. Hematology 2019, 2019, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Dong, Y.; Zhang, Y.; Shen, D.; Wang, X.; Ge, R.; Zhang, M.; Xia, Y.; Wang, X. Antiphospholipid antibody-activated NETs exacerbate trophoblast and endothelial cell injury in obstetric antiphospholipid syndrome. J. Cell. Mol. Med. 2020, 24, 6690–6703. [Google Scholar] [CrossRef]
- Semeraro, F.; Ammollo, C.T.; Morrissey, J.H.; Dale, G.L.; Friese, P.; Esmon, N.L.; Esmon, C.T. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: Involvement of platelet TLR2 and TLR4. Blood 2011, 118, 1952–1961. [Google Scholar] [CrossRef]
- Ammollo, C.T.; Semeraro, F.; Xu, J.; Esmon, N.L.; Esmon, C.T. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J. Thromb. Haemost. 2011, 9, 1795–1803. [Google Scholar] [CrossRef]
- Sikara, M.P.; Routsias, J.G.; Samiotaki, M.; Panayotou, G.; Moutsopoulos, H.M.; Vlachoyiannopoulos, P.G. β2 Glycoprotein I (β2GPI) binds platelet factor 4 (PF4): Implications for the pathogenesis of antiphospholipid syndrome. Blood 2010, 115, 713–723. [Google Scholar] [CrossRef]
- Choi, H.; Ahn, S.S.; Song, J.J.; Park, Y.-B.; Song, J.; Lee, S.-W. Anti-phospholipid antibody syndrome occurrence in patients with persistent anti-phospholipid antibodies. Rheumatol. Int. 2019, 39, 1359–1367. [Google Scholar] [CrossRef]
- Mankee, A.; Petri, M.; Magder, L.S. Lupus anticoagulant, disease activity and low complement in the first trimester are predictive of pregnancy loss. Lupus Sci. Med. 2015, 2, e000095. [Google Scholar] [CrossRef] [PubMed]
- Shaikhomar, O.A.; Ali, S.T. A Comparative Analysis of Anticardiolipin, Anti-Β2-Glycoprotein-1, and Lupus Anticoagulants in Saudi Women with Recurrent Spontaneous Abortions. J. Pers. Med. 2022, 13, 2. [Google Scholar] [CrossRef] [PubMed]
- Walter, I.J.; Haneveld, M.J.K.; Lely, A.T.; Bloemenkamp, K.W.M.; Limper, M.; Kooiman, J. Pregnancy outcome predictors in antiphospholipid syndrome: A systematic review and meta-analysis. Autoimmun. Rev. 2021, 20, 102901. [Google Scholar] [CrossRef] [PubMed]
- Demir, S.; Li, J.; Magder, L.S.; Petri, M. Antiphospholipid patterns predict risk of thrombosis in systemic lupus erythematosus. Rheumatology 2021, 60, 3770–3777. [Google Scholar] [CrossRef] [PubMed]
- Silpa, S.R.; Sankar, S.; Anju, C.K.; Irshad, K.M. Lupus anticoagulant in systemic lupus erythematosus and its association with complications. Int. J. Res. Med. Sci. 2022, 10, 1651–1656. [Google Scholar] [CrossRef]
- Tripodi, A.; Scalambrino, E.; Clerici, M.; Peyvandi, F. Laboratory Diagnosis of Antiphospholipid Syndrome in Anticoagulated Patients. Biomedicines 2023, 11, 1760. [Google Scholar] [CrossRef] [PubMed]
- Slavik, L.; Jacova, J.; Friedecky, D.; Ulehlova, J.; Tauber, Z.; Prochazkova, J.; Hlusi, A.; Palova, M. Evaluation of the DOAC-Stop Procedure by LC-MS/MS Assays for Determining the Residual Activity of Dabigatran, Rivaroxaban, and Apixaban. Clin. Appl. Thromb./Hemostasis Off. J. Int. Acad. Clin. Appl. Thromb./Hemost. 2019, 25, 1076029619872556. [Google Scholar] [CrossRef]
- Pengo, V.; Tripodi, A.; Reber, G.; Rand, J.H.; Ortel, T.L.; Galli, M.; DE Groot, P.G. Update of the guidelines for lupus anticoagulant detection. Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibody of the Scientific and Standardisation Committee of the International Society on Thrombosis and Haemostasis. J. Thromb. Haemost. 2009, 7, 1737–1740. [Google Scholar] [CrossRef]
- Molinari, A.C.; Martini, T.; Banov, L.; Ierardi, A.; Leotta, M.; Strangio, A.; Santoro, R.C. Lupus Anticoagulant Detection under the Magnifying Glass. J. Clin. Med. 2023, 12, 6654. [Google Scholar] [CrossRef]
- McDonnell, T.C.R.; Willis, R.; Pericleous, C.; Ripoll, V.M.; Giles, I.P.; Isenberg, D.A.; Brasier, A.R.; Gonzalez, E.B.; Papalardo, E.; Romay-Penabad, Z.; et al. PEGylated Domain I of Beta-2-Glycoprotein I Inhibits the Binding, Coagulopathic, and Thrombogenic Properties of IgG from Patients with the Antiphospholipid Syndrome. Front. Immunol. 2018, 9, 2413. [Google Scholar] [CrossRef]
- Linnemann, B. Antiphospholipid syndrome—An update. Vasa 2018, 47, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Devreese, K.M.J. How to Interpret Antiphospholipid Laboratory Tests. Curr. Rheumatol. Rep. 2020, 22, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Hou, X.; Zhang, H.; Wang, T.; Cui, L. The Clinical Performance of a New Chemiluminescent Immunoassay in Measuring Anti-β2 Glycoprotein 1 and Anti-Cardiolipin Antibodies. Experiment 2018, 24, 6816–6822. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; de Laat, B.; Devreese, K.M.; Kelchtermans, H. The clinical value of assays detecting antibodies against domain I of β2-glycoprotein I in the antiphospholipid syndrome. Autoimmun. Rev. 2018, 17, 1210–1218. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Oku, K.; Amengual, O.; Ohmura, K.; Fujieda, Y.; Kato, M.; Bohgaki, T.; Yasuda, S.; Atsumi, T. First-Line, Non-Criterial Antiphospholipid Antibody Testing for the Diagnosis of Antiphospholipid Syndrome in Clinical Practice: A Combination of Anti-β2-Glycoprotein I Domain I and Anti-Phosphatidylserine/Prothrombin Complex Antibodies Tests. Arthritis Care Rheum. 2018, 70, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, A. Thrombin Generation Assay and Its Application in the Clinical Laboratory. Clin. Chem. 2016, 62, 699–707. [Google Scholar] [CrossRef]
- Depasse, F.; Binder, N.B.; Mueller, J.; Wissel, T.; Schwers, S.; Germer, M.; Hermes, B.; Turecek, P.L. Thrombin generation assays are versatile tools in blood coagulation analysis: A review of technical features, and applications from research to laboratory routine. J. Thromb. Haemost. 2021, 19, 2907–2917. [Google Scholar] [CrossRef]
- Binder, N.B.; Depasse, F.; Mueller, J.; Wissel, T.; Schwers, S.; Germer, M.; Hermes, B.; Turecek, P.L. Clinical use of thrombin generation assays. J. Thromb. Haemost. 2021, 19, 2918–2929. [Google Scholar] [CrossRef]
- Billoir, P.; Miranda, S.; Levesque, H.; Benhamou, Y.; Duchez, V.L.C. Hypercoagulability Evaluation in Antiphospholipid Syndrome without Anticoagulation Treatment with Thrombin Generation Assay: A Preliminary Study. J. Clin. Med. 2021, 10, 2728. [Google Scholar] [CrossRef]
- Bradáčová, P.; Slavík, L.; Skoumalová, A.; Úlehlová, J.; Kriegová, E.; Manukyan, G.; Friedecký, D.; Piskláková, B.; Ullrychová, J.; Procházková, J.; et al. Determination of Thrombogenicity Levels of Various Antiphospholipid Antibodies by a Modified Thrombin Generation Assay in Patients with Suspected Antiphospholipid Syndrome. Int. J. Mol. Sci. 2022, 23, 8973. [Google Scholar] [CrossRef]
- Durcan, L.; Petri, M. Chapter 2—Epidemiology of the Antiphospholipid Syndrome. In Handbook of Systemic Autoimmune Diseases; Cervera, R., Espinosa, G., Khamashta, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 12, pp. 17–30. [Google Scholar] [CrossRef]
- Galli, M.; Luciani, D.; Bertolini, G.; Barbui, T. Lupus anticoagulants are stronger risk factors for thrombosis than anticardiolipin antibodies in the antiphospholipid syndrome: A systematic review of the literature. Blood 2003, 101, 1827–1832. [Google Scholar] [CrossRef] [PubMed]
- Chandler, W.L.; Roshal, M. Optimization of Plasma Fluorogenic Thrombin-Generation Assays. Am. J. Clin. Pathol. 2009, 132, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Galli, M.; Dlott, J.; Norbis, F.; Ruggeri, L.; Cler, L.; Triplett, D.A.; Barbui, T. Lupus anticoagulants and thrombosis: Clinical association of different coagulation and immunologic tests. Thromb. Haemost. 2000, 84, 1012–1016. [Google Scholar] [PubMed]
- DE Groot, P.G.; Lutters, B.; Derksen, R.H.W.M.; Lisman, T.; Meijers, J.C.M.; Rosendaal, F.R. Lupus anticoagulants and the risk of a first episode of deep venous thrombosis. J. Thromb. Haemost. 2005, 3, 1993–1997. [Google Scholar] [CrossRef] [PubMed]
- Boeer, K.; Cuznetov, L.; Loesche, W. Thrombin generation as marker to estimate thrombosis risk in patients with abnormal test results in lupus anticoagulant routine diagnostics. Thromb. J. 2013, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Pengo, V.; Bison, E.; Banzato, A.; Zoppellaro, G.; Jose, S.P.; Denas, G. Lupus Anticoagulant Testing: Diluted Russell Viper Venom Time (dRVVT). Methods Mol. Biol. 2017, 1646, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Misasi, R.; Capozzi, A.; Longo, A.; Recalchi, S.; Lococo, E.; Alessandri, C.; Conti, F.; Valesini, G.; Sorice, M. “New” Antigenic Targets and Methodological Approaches for Refining Laboratory Diagnosis of Antiphospholipid Syndrome. J. Immunol. Res. 2015, 2015, 858542. [Google Scholar] [CrossRef]
- Perdan-Pirkmajer, K.; Žigon, P.; Boc, A.; Podovšovnik, E.; Čučnik, S.; Mavri, A.; Rotar, Ž.; Ambrožič, A. The Predictive Value of the aCL and Anti-β2GPI at the Time of Acute Deep Vein Thrombosis—A Two-Year Prospective Study. Biomedicines 2021, 9, 901. [Google Scholar] [CrossRef]
- Pengo, V.; Ruffatti, A.; Legnani, C.; Testa, S.; Fierro, T.; Marongiu, F.; De Micheli, V.; Gresele, P.; Tonello, M.; Ghirarduzzi, A.; et al. Incidence of a first thromboembolic event in asymptomatic carriers of high-risk antiphospholipid antibody profile: A multicenter prospective study. Blood 2011, 118, 4714–4718. [Google Scholar] [CrossRef]
- Fabris, M.; Giacomello, R.; Poz, A.; Pantarotto, L.; Tanzi, N.; Curcio, F.; Tonutti, E. The introduction of anti-phosphatidylserine/prothrombin autoantibodies in the laboratory diagnostic process of anti-phospholipid antibody syndrome: 6 months of observation. Autoimmun. Highlights 2014, 5, 63–67. [Google Scholar] [CrossRef]
- Meroni, P.L.; Chighizola, C.B.; Rovelli, F.; Gerosa, M. Antiphospholipid syndrome in 2014: More clinical manifestations, novel pathogenic players and emerging biomarkers. Arthritis Res. Ther. 2014, 16, 209. [Google Scholar] [CrossRef] [PubMed]
- Radin, M.; Barinotti, A.; Foddai, S.G.; Cecchi, I.; Rubini, E.; Roccatello, D.; Menegatti, E.; Sciascia, S. Cerebrovascular events in patients with isolated anti-phosphatidyl-serine/prothrombin antibodies. Immunol. Res. 2021, 69, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zheng, H.; Yin, Y.-F.; Hu, Q.-Y.; Teng, J.-L.; Sun, Y.; Liu, H.-L.; Cheng, X.-B.; Ye, J.-N.; Su, Y.-T.; et al. Antiphosphatidylserine/prothrombin antibodies (aPS/PT) as potential diagnostic markers and risk predictors of venous thrombosis and obstetric complications in antiphospholipid syndrome. Clin. Chem. Lab. Med. 2018, 56, 614–624. [Google Scholar] [CrossRef] [PubMed]
N = 85 | |
---|---|
Sex (women/men) | 31/54 |
Single-positivity LA | 65 |
Double positivity | 11 |
Positivity LA and aCL IgG | 5 |
Positivity LA and anti-β2GPI IgG | 6 |
Triple-positivity LA and aCL and anti-β2GPI | 9 |
LA Positive N = 85 | TGA Positive, Cut-off ≤4.5/ TGA Negative, Cut-off >4.5 | |
---|---|---|
APS classification | ||
Thrombotic APS | 52/85 | 29/23 |
Obstetric APS | 5/85 | 3/2 |
Thrombotic and obstetric APS | 1/85 | 1/0 |
Thrombotic APS | 52/85 | 29/23 |
Venous thrombosis | 44 | 24/20 |
Deep vein thrombosis | 29 | 16/13 |
Pulmonary thromboembolism | 7 | 4/3 |
PTE + DVT Portal vein thrombosis + DVT | 7 | 4/3 |
1 | 0/1 | |
Arterial thrombosis | 6 | 4/2 |
Cerebrovascular Event | 6 | 4/2 |
Arterial and venous thrombosis | 2 | 1/1 |
Myocardial infarction + DVT | 1 | 0/1 |
Myocardial infarction + PTE | 1 | 1/0 |
Obstetric APS | 5/85 | 3/2 |
Foetal loss | 5 | 3/2 |
Thrombotic and obstetric APS | 1/85 | 1/0 |
Foetal loos + DVT | 1 | 1/0 |
Without manifestations APS | 27/85 | 7/20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bradáčová, P.; Slavík, L.; Úlehlová, J.; Kriegová, E.; Jará, E.; Bultasová, L.; Friedecký, D.; Ullrychová, J.; Procházková, J.; Hluší, A.; et al. Determining Thrombogenicity: Using a Modified Thrombin Generation Assay to Detect the Level of Thrombotic Event Risk in Lupus Anticoagulant-Positive Patients. Biomedicines 2023, 11, 3329. https://doi.org/10.3390/biomedicines11123329
Bradáčová P, Slavík L, Úlehlová J, Kriegová E, Jará E, Bultasová L, Friedecký D, Ullrychová J, Procházková J, Hluší A, et al. Determining Thrombogenicity: Using a Modified Thrombin Generation Assay to Detect the Level of Thrombotic Event Risk in Lupus Anticoagulant-Positive Patients. Biomedicines. 2023; 11(12):3329. https://doi.org/10.3390/biomedicines11123329
Chicago/Turabian StyleBradáčová, Pavla, Luděk Slavík, Jana Úlehlová, Eva Kriegová, Eliška Jará, Lenka Bultasová, David Friedecký, Jana Ullrychová, Jana Procházková, Antonín Hluší, and et al. 2023. "Determining Thrombogenicity: Using a Modified Thrombin Generation Assay to Detect the Level of Thrombotic Event Risk in Lupus Anticoagulant-Positive Patients" Biomedicines 11, no. 12: 3329. https://doi.org/10.3390/biomedicines11123329
APA StyleBradáčová, P., Slavík, L., Úlehlová, J., Kriegová, E., Jará, E., Bultasová, L., Friedecký, D., Ullrychová, J., Procházková, J., Hluší, A., Manukyan, G., & Štefaničková, L. (2023). Determining Thrombogenicity: Using a Modified Thrombin Generation Assay to Detect the Level of Thrombotic Event Risk in Lupus Anticoagulant-Positive Patients. Biomedicines, 11(12), 3329. https://doi.org/10.3390/biomedicines11123329