Effects of Peroxisome Proliferator-Activated Receptor-Gamma Agonists on Cognitive Function: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Criteria
2.3. Data Extraction
2.4. Statistical Analysis
2.5. Data Analysis
3. Results
3.1. Effect of PPAR-γ Agonists on Cognition Based on the Observational Studies
3.2. Effect of PPAR-γ Agonists on Cognition Based on Clinical Trials
3.2.1. Neuropsychological Outcomes/Neuropsychological Scales
3.2.2. Metabolic Outcomes
3.2.3. AEs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Huang, L.; Zhu, M.; Ji, J. Association between hypoglycemia and dementia in patients with diabetes: A systematic review and meta-analysis of 1.4 million patients. Diabetol. Metab. Synd. 2022, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Gudala, K.; Bansal, D.; Schifano, F.; Bhansali, A. Diabetes mellitus and risk of dementia: A meta-analysis of prospective observational studies. J. Diabetes Investig. 2013, 4, 640–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, M.; Xu, W.; Ou, Y.N.; Cao, X.P.; Tan, M.S.; Tan, L.; Yu, J.T. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res. Rev. 2019, 55, 100944. [Google Scholar] [CrossRef] [PubMed]
- Moheet, A.; Mangia, S.; Seaquist, E.R. Impact of diabetes on cognitive function and brain structure. Ann. N. Y. Acad. Sci. 2015, 1353, 60–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawlings, A.M.; Sharrett, A.R.; Schneider, A.L.; Coresh, J.; Albert, M.; Couper, D.; Griswold, M.; Gottesman, R.F.; Wagenknecht, L.E.; Windham, B.G.; et al. Diabetes in midlife and cognitive change over 20 years: A cohort study. Ann. Intern. Med. 2014, 161, 785–793. [Google Scholar] [CrossRef] [Green Version]
- Zilliox, L.A.; Chadrasekaran, K.; Kwan, J.Y.; Russell, J.W. Diabetes and Cognitive Impairment. Curr. Diab. Rep. 2016, 16, 87. [Google Scholar] [CrossRef] [Green Version]
- Pelimanni, E.; Jehkonen, M. Type 2 Diabetes and Cognitive Functions in Middle Age: A Meta-Analysis. J. Int. Neuropsychol. Soc. 2019, 25, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Mittal, K.; Katare, D.P. Shared links between type 2 diabetes mellitus and Alzheimer’s disease: A review. Diabetes Metab. Syndr. 2016, 10, S144–S149. [Google Scholar] [CrossRef]
- Rizvi, S.M.; Shaikh, S.; Waseem, S.M.; Shakil, S.; Abuzenadah, A.M.; Biswas, D.; Tabrez, S.; Ashraf, G.M.; Kamal, M.A. Role of anti-diabetic drugs as therapeutic agents in Alzheimer’s disease. EXCLI J. 2015, 14, 684–696. [Google Scholar] [CrossRef]
- Cameron, B.; Landreth, G.E. Inflammation, microglia, and Alzheimer’s disease. Neurobiol. Dis. 2010, 37, 503–509. [Google Scholar] [CrossRef]
- Mandrekar-Colucci, S.; Landreth, G.E. Nuclear receptors as therapeutic targets for Alzheimer’s disease. Expert Opin. Ther. Targets 2011, 15, 1085–1097. [Google Scholar] [CrossRef] [Green Version]
- Silva-Abreu, M.; Calpena, A.C.; Andres-Benito, P.; Aso, E.; Romero, I.A.; Roig-Carles, D.; Gromnicova, R.; Espina, M.; Ferrer, I.; Garcia, M.L.; et al. PPARgamma agonist-loaded PLGA-PEG nanocarriers as a potential treatment for Alzheimer’s disease: In vitro and in vivo studies. Int. J. Nanomed. 2018, 13, 5577–5590. [Google Scholar] [CrossRef] [Green Version]
- Quan, Q.; Qian, Y.; Li, X.; Li, M. pioglitazone Reduces beta Amyloid Levels via Inhibition of PPARgamma Phosphorylation in a Neuronal Model of Alzheimer’s Disease. Front. Aging Neurosci. 2019, 11, 178. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, W.; Fan, Y.; Liu, T.; Yu, C. Effect of rosiglitazone on amyloid precursor protein processing and Abeta clearance in streptozotocin-induced rat model of Alzheimer’s disease. Iran. J. Basic Med. Sci. 2017, 20, 474–480. [Google Scholar] [CrossRef]
- Sarathlal, K.C.; Kakoty, V.; Marathe, S.; Chitkara, D.; Taliyan, R. Exploring the Neuroprotective Potential of Rosiglitazone Embedded Nanocarrier System on Streptozotocin Induced Mice Model of Alzheimer’s Disease. Neurotox. Res. 2021, 39, 240–255. [Google Scholar] [CrossRef]
- Burns, D.K.; Alexander, R.C.; Welsh-Bohmer, K.A.; Culp, M.; Chiang, C.; O’Neil, J.; Evans, R.M.; Harrigan, P.; Plassman, B.L.; Burke, J.R.; et al. Safety and efficacy of pioglitazone for the delay of cognitive impairment in people at risk of Alzheimer’s disease (TOMMORROW): A prognostic biomarker study and a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2021, 20, 537–547. [Google Scholar] [CrossRef]
- Geldmacher, D.S.; Fritsch, T.; McClendon, M.J.; Landreth, G. A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch. Neurol. 2011, 68, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Gold, M.; Alderton, C.; Zvartau-Hind, M.; Egginton, S.; Saunders, A.M.; Irizarry, M.; Craft, S.; Landreth, G.; Linnamägi, U.; Sawchak, S. Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: Results from a randomized, double-blind, placebo-controlled phase III study. Dement. Geriatr. Cogn. Disord. 2010, 30, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Hanyu, H.; Sato, T.; Kiuchi, A.; Sakurai, H.; Iwamoto, T. Pioglitazone improved cognition in a pilot study on patients with Alzheimer’s disease and mild cognitive impairment with diabetes mellitus. J. Am. Geriatr. Soc. 2009, 57, 177–179. [Google Scholar] [CrossRef]
- Hanyu, H.; Sato, T.; Sakurai, H.; Iwamoto, T. The role of tumor necrosis factor-alpha in cognitive improvement after peroxisome proliferator-activator receptor gamma agonist pioglitazone treatment in Alzheimer’s disease. J. Am. Geriatr. Soc. 2010, 58, 1000–1001. [Google Scholar] [CrossRef]
- Harrington, C.; Sawchak, S.; Chiang, C.; Davies, J.; Donovan, C.; Saunders, A.M.; Irizarry, M.; Jeter, B.; Zvartau-Hind, M.; van Dyck, C.H.; et al. Rosiglitazone does not improve cognition or global function when used as adjunctive therapy to AChE inhibitors in mild-to-moderate Alzheimer’s disease: Two phase 3 studies. Curr. Alzheimer Res. 2011, 8, 592–606. [Google Scholar] [CrossRef] [PubMed]
- Hildreth, K.L.; Van Pelt, R.E.; Moreau, K.L.; Grigsby, J.; Hoth, K.F.; Pelak, V.; Anderson, C.A.; Parnes, B.; Kittelson, J.; Wolfe, P.; et al. Effects of pioglitazone or exercise in older adults with mild cognitive impairment and insulin resistance: A pilot study. Dement. Geriatr. Cogn. Disord. Extra 2015, 5, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Risner, M.E.; Saunders, A.M.; Altman, J.F.; Ormandy, G.C.; Craft, S.; Foley, I.M.; Zvartau-Hind, M.E.; Hosford, D.A.; Roses, A.D. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharm. J. 2006, 6, 246–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, C.M.; Freed, M.I.; Rood, J.A.; Cobitz, A.R.; Waterhouse, B.R.; Strachan, M.W. Improving metabolic control leads to better working memory in adults with type 2 diabetes. Diabetes Care 2006, 29, 345–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, T.; Hanyu, H.; Hirao, K.; Kanetaka, H.; Sakurai, H.; Iwamoto, T. Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease. Neurobiol. Aging 2011, 32, 1626–1633. [Google Scholar] [CrossRef]
- Tzimopoulou, S.; Cunningham, V.J.; Nichols, T.E.; Searle, G.; Bird, N.P.; Mistry, P.; Dixon, I.J.; Hallett, W.A.; Whitcher, B.; Brown, A.P.; et al. A multi-center randomized proof-of-concept clinical trial applying [¹⁸F]FDG-PET for evaluation of metabolic therapy with rosiglitazone XR in mild to moderate Alzheimer’s disease. J. Alzheimers Dis. 2010, 22, 1241–1256. [Google Scholar] [CrossRef]
- Watson, G.S.; Cholerton, B.A.; Reger, M.A.; Baker, L.D.; Plymate, S.R.; Asthana, S.; Fishel, M.A.; Kulstad, J.J.; Green, P.S.; Cook, D.G.; et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: A preliminary study. Am. J. Geriatr. Psychiatry 2005, 13, 950–958. [Google Scholar] [CrossRef]
- Zvartau-Hind, M.; Alderton, C.; Ritchie, S.; Saunders, A.; Irizarry, M.; Craft, S.; Landreth, G.; Linnamägi, Ü.; Sawchak, S.; Gold, M. P1-245: Safety and tolerability of rosiglitazone XR in a randomised, placebo-controlled study in APOE4-stratified subjects with mild-to-moderate Alzheimer’s disease. Alzheimer’s Dement. 2009, 5, P248. [Google Scholar] [CrossRef]
- Bohlken, J.; Jacob, L.; Kostev, K. Association Between the Use of Antihyperglycemic Drugs and Dementia Risk: A Case-Control Study. J. Alzheimers Dis. 2018, 66, 725–732. [Google Scholar] [CrossRef]
- Chou, P.S.; Ho, B.L.; Yang, Y.H. Effects of pioglitazone on the incidence of dementia in patients with diabetes. J. Diabetes Complicat. 2017, 31, 1053–1057. [Google Scholar] [CrossRef]
- Fink, A.; Heneka, M.; Doblhammer, G. P2-295: The Effect of the Prescription of Pioglitazone on the Incidence of Dementia. Alzheimer’s Dement. 2014, 10, P585–P586. [Google Scholar] [CrossRef]
- Heneka, M.T.; Fink, A.; Doblhammer, G. Effect of pioglitazone medication on the incidence of dementia. Ann. Neurol. 2015, 78, 284–294. [Google Scholar] [CrossRef]
- Imfeld, P.; Bodmer, M.; Jick, S.S.; Meier, C.R. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: A population-based case-control study. J. Am. Geriatr. Soc. 2012, 60, 916–921. [Google Scholar] [CrossRef]
- Kim, J.Y.; Ku, Y.S.; Kim, H.J.; Trinh, N.T.; Kim, W.; Jeong, B.; Heo, T.Y.; Lee, M.K.; Lee, K.E. Oral diabetes medication and risk of dementia in elderly patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2019, 154, 116–123. [Google Scholar] [CrossRef]
- Secnik, J.; Xu, H.; Schwertner, E.; Hammar, N.; Alvarsson, M.; Winblad, B.; Eriksdotter, M.; Garcia-Ptacek, S.; Religa, D. The association of antidiabetic medications and Mini-Mental State Examination scores in patients with diabetes and dementia. Alzheimer’s Res. Ther. 2021, 13, 197. [Google Scholar] [CrossRef]
- Tseng, C.H. Pioglitazone Reduces Dementia Risk in Patients with Type 2 Diabetes Mellitus: A Retrospective Cohort Analysis. J. Clin. Med. 2018, 7, 306. [Google Scholar] [CrossRef] [Green Version]
- Tseng, C.H. Rosiglitazone has a neutral effect on the risk of dementia in type 2 diabetes patients. Aging 2019, 11, 2724–2734. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.N.; Jia, J.P. Peroxisome proliferator-activated receptor-gamma agonists for Alzheimer’s disease and amnestic mild cognitive impairment: A systematic review and meta-analysis. Drugs Aging 2015, 32, 57–65. [Google Scholar] [CrossRef]
- Cheng, H.; Shang, Y.; Jiang, L.; Shi, T.L.; Wang, L. The peroxisome proliferators activated receptor-gamma agonists as therapeutics for the treatment of Alzheimer’s disease and mild-to-moderate Alzheimer’s disease: A meta-analysis. Int. J. Neurosci. 2016, 126, 299–307. [Google Scholar] [CrossRef]
- Khan, M.A.; Alam, Q.; Haque, A.; Ashafaq, M.; Khan, M.J.; Ashraf, G.M.; Ahmad, M. Current Progress on Peroxisome Proliferator-activated Receptor Gamma Agonist as an Emerging Therapeutic Approach for the Treatment of Alzheimer’s Disease: An Update. Curr. Neuropharmacol. 2019, 17, 232–246. [Google Scholar] [CrossRef]
- Jojo, G.M.; Kuppusamy, G. Scope of new formulation approaches in the repurposing of pioglitazone for the management of Alzheimer’s disease. J. Clin. Pharm. Ther. 2019, 44, 337–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Chen, Z.; Cao, M.; Li, R.; Wang, Z.; Zhang, M. Pioglitazone ameliorates Abeta42 deposition in rats with diet-induced insulin resistance associated with AKT/GSK3beta activation. Mol. Med. Rep. 2017, 15, 2588–2594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biessels, G.J.; Despa, F. Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications. Nat. Rev. Endocrinol. 2018, 14, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H.Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. Nat. Rev. Neurol. 2018, 14, 168–181. [Google Scholar] [CrossRef] [PubMed]
- Biessels, G.J.; Staekenborg, S.; Brunner, E.; Brayne, C.; Scheltens, P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol. 2006, 5, 64–74. [Google Scholar] [CrossRef]
- Knight, E.M.; Ruiz, H.H.; Kim, S.H.; Harte, J.C.; Hsieh, W.; Glabe, C.; Klein, W.L.; Attie, A.D.; Buettner, C.; Ehrlich, M.E.; et al. Unexpected partial correction of metabolic and behavioral phenotypes of Alzheimer’s APP/PSEN1 mice by gene targeting of diabetes/Alzheimer’s-related Sorcs1. Acta Neuropathol. Commun. 2016, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Alagiakrishnan, K.; Sclater, A. Psychiatric disorders presenting in the elderly with type 2 diabetes mellitus. Am. J. Geriatr. Psychiatry 2012, 20, 645–652. [Google Scholar] [CrossRef]
- Prakash, A.; Kumar, A. Role of nuclear receptor on regulation of BDNF and neuroinflammation in hippocampus of amyloid β-protein animal model of Alzheimer’s disease. Neurotox. Res. 2014, 25, 335–347. [Google Scholar] [CrossRef]
- Papadopoulos, P.; Rosa-Neto, P.; Rochford, J.; Hamel, E. pioglitazone improves reversal learning and exerts mixed cerebrovascular effects in a mouse model of Alzheimer’s disease with combined amyloid-beta and cerebrovascular pathology. PLoS ONE 2013, 8, e68612. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Zhu, L.; Sha, L.; Yang, S.; Wei, J.; Ji, L.; Tang, X.; Mao, K.; Cao, L.; et al. Insulin degrading enzyme contributes to the pathology in a mixed model of Type 2 diabetes and Alzheimer’s disease: Possible mechanisms of IDE in T2D and AD. Biosci. Rep. 2018, 38, BSR20170862. [Google Scholar] [CrossRef]
- Yu, Y.; Li, X.; Blanchard, J.; Li, Y.; Iqbal, K.; Liu, F.; Gong, C.X. Insulin sensitizers improve learning and attenuate tau hyperphosphorylation and neuroinflammation in 3xTg-AD mice. J. Neural Transm. 2015, 122, 593–606. [Google Scholar] [CrossRef]
- Secnik, J.; Xu, H.; Schwertner, E.; Hammar, N.; Alvarsson, M.; Winblad, B.; Eriksdotter, M.; Garcia-Ptacek, S.; Religa, D. Dementia Diagnosis Is Associated with Changes in Antidiabetic Drug Prescription: An Open-Cohort Study of Approximately 130,000 Swedish Subjects over 14 Years. J. Alzheimers Dis. 2020, 76, 1581–1594. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Zhang, F.; Petersen, M.; Johnson, L.; Hall, J.; Rissman, R.A. A Precision Medicine Approach to Treating Alzheimer’s Disease Using Rosiglitazone Therapy: A Biomarker Analysis of the REFLECT Trials. J. Alzheimers Dis. 2021, 81, 557–568. [Google Scholar] [CrossRef]
- Didsbury, J.; Gabriel, H.; Strittmatter, W.; Chamberlain, S. Abstracts of 20th Annual ASENT Meeting. Neurotherapeutics 2018, 15, 819–835. [Google Scholar] [CrossRef]
Design/Reference | Participants | Drugs | Outcome Measure | Effect on Cognition | ||||
---|---|---|---|---|---|---|---|---|
Number | Median Age | Basic Disease | Name | Treatment Dose | Duration | |||
Case–Control [29] | 8276 | 79.7 | DM | Glitazone | NR | NR | (ICD-10: F01, F03, G30) | OR = 0.80 [0.68–0.95] |
Cohort [30] | 19,203 | ≥60 | DM | pioglitazone | >0.83 DDDs | >252 days | ICD-9-CM | pioglitazone user HR = 0.77 [0.62–0.95] <0.83 DDDs HR = 0.90 [0.66–1.23] 0.83–1.00 DDDs HR = 0.89 (0.58–1.36) >1.00 DDDs HR = 0.64 (0.47–0.87) |
Cohort [31] | 145,717 | 60 | DM | Rosiglitazone | NR | NR | NR | HR = 0.94, p = 0.004 |
Cohort [32] | 145,928 | ≥60 | DM and non-DM | Rosiglitazonepioglitazone | NR | NR | Tenth Revision [ICD-10] | Diabetes & PIO < 8 HR = 1.16 [0.87–1.55] Diabetes & PIO ≥ 8 HR = 0.53 [0.30–0.94] Rosiglitazone HR = 0.84 [0.59–1.18] |
Case–Control [33] | 7086 | ≥65 | DM | Thiazolidinedione | Prescriptions 1–9 10–9 ≥30 | 45–90 days | NR | Thiazolidinedione prescriptions 1–9 OR = 0.89 [0.42–1.86] 10–9 OR = 0.97 [0.45–2.07] ≥30 OR = 0.87 [0.31–2.40] |
Cohort [34] | 91,219 | ≥60 | T2DM | Thiazolidinedione | NR | 11 years | Tenth Revision [ICD-10] | Dementia HR=0.79 [0.77, 0.81] Alzheimer’s dementia HR = 0.80 [0.77, 0.83] Vascular dementia HR = 0.78 [0.75, 0.82] Thiazolidinedione HR = 0.76 [0.55, 1.05] |
Cohort [35] | 335 | 79.7 | DM | Thiazolidinedione | NR | NR | Tenth Revision [ICD-10] | HR = 0.64 [0.40–1.03] |
Cohort [36] | 11,011 | 58.7 | T2DM | pioglitazone | NR | 20 months | Tenth Revision [ICD-10] | HR = 0.72 [0.54–0.94] |
Cohort [37] | 5048 | 61.2 | T2DM | Rosiglitazone | NR | NR | Tenth Revision [ICD-10] | HR = 0.89 [0.69–1.15] |
Design/Reference | Participants | Intervention | Drugs | Outcome Measure | AEs | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Number | Median Age | Cognitive Function | APOE- 4 | Control | Case | Dose | Duration | Cognitive | Metabolic | ||
RCT [16] | 56 | 74.5 | MCI | NR | 1507 | 1531 | PIO 0.8 mg/day | 6 months | MMSE | NR | √ |
RCT [17] | 29 | 74.9 | AD | NR | 15 | 14 | PIO 15 mg | 6 months 12 months 18 months | ADAS-Cog NPI NOSGER ADFACS CDR-SB | NR | √ |
RCT [18] | 693 | 72.5 | Mild to moderate AD | √ | 165 | 166 | PIO 2/8/10 mg | 24 weeks | MMSE ADAS-Cog | NR | √ |
RCT [19] | 32 | 76.5 | 12 AD/3 MCI | NR | 17 | 15 | PIO 15–30 mg | 6 months | MMSE ADAS-Cog WMSR | FPG Insulin HOMA% | √ |
RCT [20] | 34 | 77 | mild AD with T2DM | √ | 17 | 17 | PIO 15–30 mg | 6 months | ADAS-Cog | TNF CRP IL-6 | NR |
RCT [21] | 1393 | 74.1 | AD | √ | 496 | 494 | RSG 2, 8 mg | 48 weeks | MMSE ADAS-Cog CDR-SB | NR | √ |
RCT [21] | 1429 | 73.2 | AD | √ | 487 | 790 | RSG 2, 8 mg | 48 weeks | MMSE ADAS-Cog CDR-SB | NR | √ |
RCT [22] | 49 | 66.0 | MCI | √ | 25 | 25 | RSG 30 mg | 6 months | MMSE ADAS-Cog DST | TNF FPG Insulin CRP IL-6 | NR |
RCT [23] | 511 | 70.7 | Mild to moderate AD | NR | 122 | 131 | RSG 2, 4, 8 mg | 24 weeks | ADAS-Cog MMSE | NR | √ |
RCT [24] | 145 | 60.2 | T2DM | NR | 70 | 66 | RSG 4 mg | 4 weeks | DST SWMR RAVLT | Insulin FPG HOMA % | NR |
RCT [25] | 42 | 77.5 | mild AD DM | NR | 21 | 21 | PIO 15–30mg | 6 months | MMSE ADAS-cog WMSR | FPG Insulin HOMA% | NR |
RCT [26] | 80 | 72.2 | Mild to moderate AD | NR | 29 | 31 | RSG 8 mg | 12 months | ADAS-cog | FDG-PET | NR |
RCT [27] | 30 | 73.0 | AD | NR | 10 | 20 | RSG 4 mg | 6 months | MMSE | Insulin FPG | NR |
RCT [28] | 579 | NR | Mild to moderate AD | √ | 165 | 166 | RSG 2, 8 mg | 24 weeks | NR | NR | √ |
Neuropsychological | Results | |||
---|---|---|---|---|
SMD | 95% CI | I2 | ||
1. ADAS-COG | −0.07 | −0.13, −0.01 | 11.5% | |
Drug | PIO | −0.39 | −0.70, −0.08 | 28.6% |
RSG | −0.06 | −0.12, 0.00 | 0% | |
Dose | L | −0. 08 | −0.16, 0.00 | 0% |
M | −0.03 | −0.12, 0.06 | 0% | |
H | −0.39 | −0.70, −0.08 | 28.6% | |
Disease | Mild to moderate AD | −0.05 | −0.12, 0.01 | 0% |
AD with DM | −0.82 | −1.35, −0.28 | 33.3% | |
AD | −0.11 | −0.27, 0.05 | 0% | |
Duration | 24 weeks | −0.11 | −0.21, 0.00 | 31.8% |
L | −0.05 | −0.22, 0.12 | 0% | |
M | −0.09 | −0.26, 0.09 | 0% | |
H | −0.53 | −0.90, −0.16 | 43.2% | |
48 weeks | −0.05 | −0.12, 0.02 | 0% | |
L | −0.09 | −0.19, 0.01 | 46.7% | |
M | −0.01 | −0.11, 0.09 | 0% | |
H | −0.13 | −0.91, 0.64 | - | |
72 weeks | −0.04 | −0.82, 0.75 | - | |
M | 0.29 | −0.22, 0.80 | - | |
H | −0.04 | −0.82, 0.75 | - | |
Region | America | −0.06 | −0.12, −0.00 | 0% |
Europe | 0.29 | −0.22, 0.80 | - | |
Asia | −0.73 | −1.16, −0.30 | 0% | |
2.CDR-SB | −0.06 | −0.14, 0.01 | 43.3% | |
Drug | PIO | 0.22 | −0.14, 0.58 | 0% |
RSG | −0.07 | −0.15, −0.00 | 60.8% | |
Dose | L | −0.14 | −0.25, −0.04 | 72.0% |
M | −0.00 | −0.11, 0.10 | 0% | |
H | 0.22 | −0.14, 0.58 | 0% | |
Disease | Mild to moderate AD | −0.07 | −0.15, −0.00 | 60.8% |
AD with DM | 0.40 | −0.21, 1.02 | - | |
AD | 0.12 | −0.33, 0.57 | 0% | |
Duration | 24 weeks | 0.17 | −0.30, 0.65 | 28.6% |
48 weeks | −0.07 | −0.14, −0.00 | 59.6% | |
72 weeks | 0.04 | −0.74, 0.83 | - | |
Region | America | −0.07 | −0.14, 0.00 | 40.4% |
Europe | 0.40 | −0.21, 1.02 | - | |
3. DST | 1.01 | 0.78, 1.42 | 95.7% | |
4. MMSE | 0.37 | −0.09, 0.83 | 0% | |
5. RAVLT | −0.15 | −0.44, 0.13 | 0% | |
Metabolic | Results | |||
SMD | 95% CI | I2 | ||
1. FPG (mg/dL) | −0.07 | −0.13, −0.01 | 0% | |
2. HOMA %(-) | 0.13 | −0.14, 0.41 | 85.5% | |
3. Insulin (μU/mL) | 0.02 | −0.29, 0.32 | 80.4% | |
4. TNF-α (pg/mL) | −0.60 | −1.04, −0.15 | 19.8% | |
5. IL-6 (pg/mL) | −0.30 | −0.73, 0.14 | 0% | |
6. CRP (mg/L) | −0.18 | −0.62, 0.25 | 73.4% |
AEs | Results | ||||
---|---|---|---|---|---|
RR | 95% CI | I2 | Risk | ||
1. Any AEs | 0.82 | 0.78, 0.86 | 96.9% | ||
Drug | PIO | 0.21 | 0.17, 0.25 | 85.0% | |
RSG | 1.06 | 1.01, 1.11 | 57.3% | ||
Dose | 0.8 mg | 0.98 | 0.94, 1.03 | - | |
2 mg | 1.02 | 0.99, 1.05 | 0% | ||
15 mg | 7.42 | 0.96, 57.44 | 0% | ||
Duration | 24 weeks | 0.97 | 0.88, 1.06 | 57.7% | |
48 weeks | 1.05 | 1.00, 1.11 | 74.8% | ||
72 weeks | 9.60 | 0.56, 163.58 | - | ||
Disease | Mild to moderate AD | 1.06 | 1.01, 1.12 | 28.3% | |
AD with DM | 7.00 | 0.38, 127.69 | - | ||
AD | 0.35 | 0.30, 0.40 | 98.2% | ||
2. Anaemia | 5.96 | 3.25, 10.95 | 35.3% | high | |
Drug | PIO | 1.61 | 0.31, 8.24 | - | |
RSG | 6.80 | 3.51, 13.18 | 28.8% | ||
3. Peripheral oedema | 4.35 | 3.29, 5.75 | 79.9% | high | |
Dose | 2 mg RSG | 2.31 | 1.50, 3.54 | 72.7% | |
8 mg RSG | 6.39 | 4.36, 9.38 | 72.0% | ||
4. Bone fractures | 0.86 | 0.67, 1.11 | 0% | ||
5. Cardiac failure | 0.66 | 0.34, 1.29 | 0% | ||
Drug | PIO | 0.62 | 0.30, 1.28 | - | |
RSG | 1.00 | 0.14, 7.04 | 0% | ||
6. Diarrhoea | 1.05 | 0.78, 1.42 | 0% | ||
7. Dizziness | 1.19 | 0.84, 1.68 | 0% | ||
8. Hepatic disorders | 0.61 | 0.38, 0.98 | 0% | ||
9. Headache | 0.77 | 0.40, 1.48 | 38.3% | ||
10. Hyperlipidaemia | 4.98 | 1.71, 14.50 | 6.8% | high | |
11. Hypoglycaemia | 0.81 | 0.55, 1.19 | 0% | ||
12. Insomnia | 0.64 | 0.23, 1.79 | 0% | ||
13. Muscle pain | 3.26 | 1.81, 5.87 | 37.9% | ||
14. Nasopharyngitis | 1.23 | 0.92, 1.65 | 0% | ||
15. Nausea | 2.07 | 0.75, 5.70 | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, H.; Geng, R.; Zhang, Y.; Ding, J.; Liu, M.; Deng, S.; Tu, Q. Effects of Peroxisome Proliferator-Activated Receptor-Gamma Agonists on Cognitive Function: A Systematic Review and Meta-Analysis. Biomedicines 2023, 11, 246. https://doi.org/10.3390/biomedicines11020246
Zhong H, Geng R, Zhang Y, Ding J, Liu M, Deng S, Tu Q. Effects of Peroxisome Proliferator-Activated Receptor-Gamma Agonists on Cognitive Function: A Systematic Review and Meta-Analysis. Biomedicines. 2023; 11(2):246. https://doi.org/10.3390/biomedicines11020246
Chicago/Turabian StyleZhong, Hongfei, Rulin Geng, Yu Zhang, Jingwen Ding, Miao Liu, Shengfeng Deng, and Qiuyun Tu. 2023. "Effects of Peroxisome Proliferator-Activated Receptor-Gamma Agonists on Cognitive Function: A Systematic Review and Meta-Analysis" Biomedicines 11, no. 2: 246. https://doi.org/10.3390/biomedicines11020246
APA StyleZhong, H., Geng, R., Zhang, Y., Ding, J., Liu, M., Deng, S., & Tu, Q. (2023). Effects of Peroxisome Proliferator-Activated Receptor-Gamma Agonists on Cognitive Function: A Systematic Review and Meta-Analysis. Biomedicines, 11(2), 246. https://doi.org/10.3390/biomedicines11020246