Development of a 3D Printed Brain Model with Vasculature for Neurosurgical Procedure Visualisation and Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulator Design and Construction
2.2. Cost Analysis
2.3. Data Collection and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouras, T.; Sgouros, S. Complications of endoscopic third ventriculostomy. J. Neurosurg. Pediatr. 2011, 7, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; Narayanan, M.K.; Umana, G.E.; Montemurro, N.; Chaurasia, B.; Deora, H. Virtual Reality in Neurosurgery: Beyond Neurosurgical Planning. Int. J. Environ. Res. Public Health 2022, 19, 1719. [Google Scholar] [CrossRef]
- Shen, W.; Syed, H.R.; Gandhoke, G.; Garcia, R.; Pundy, T.; Tomita, T. Endoscopic third ventriculostomy in children with a fiber optic neuroendoscopy. Child’s Nerv. Syst. 2017, 34, 837–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demerdash, A.; Rocque, B.G.; Johnston, J.; Rozzelle, C.J.; Yalcin, B.; Oskouian, R.J.; Delashaw, J.; Tubbs, R.S. Endoscopic third ventriculostomy: A historical review. Br. J. Neurosurg. 2016, 31, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Musa, G.; Simfukwe, K.; Gots, A.; Chmutin, G.; Chmutin, E.; Chaurasia, B. Clinical and radiological characteristics in fatal third ventricle colloid cyst. Literature review. J. Clin. Neurosci. 2020, 82, 52–55. [Google Scholar] [CrossRef]
- Weinstock, P.; Rehder, R.; Prabhu, S.P.; Forbes, P.W.; Roussin, C.J.; Cohen, A.R. Creation of a novel simulator for minimally invasive neurosurgery: Fusion of 3D printing and special effects. J. Neurosurg. Pediatr. 2017, 20, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Panesar, S.S.; Magnetta, M.; Mukherjee, D.; Abhinav, K.; Branstetter, B.F.; Gardner, P.A.; Iv, M.; Fernandez-Miranda, J.C. Patient-specific 3-dimensionally printed models for neurosurgical planning and education. Neurosurg. Focus 2019, 47, E12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waran, V.; Narayanan, V.; Karuppiah, R.; Thambynayagam, H.C.; Muthusamy, K.A.; Rahman, Z.A.A.; Kirollos, R.W. Neurosurgical Endoscopic Training via a Realistic 3-Dimensional Model With Pathology. Simul. Health J. Soc. Simul. Health 2015, 10, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Garling, R.J.; Jin, X.; Yang, J.; Khasawneh, A.H.; Harris, C.A. Low-cost endoscopic third ventriculostomy simulator with mimetic endoscope. J. Neurosurg. Pediatr. 2018, 22, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Hooten, K.G.; Lister, J.R.; Lombard, G.; Lizdas, D.E.; Lampotang, S.; Rajon, D.A.; Bova, F.; Murad, G.J.A. Mixed reality ventriculostomy simulation: Experience in neurosurgical residency. Neurosurgery 2014, 10 (Suppl. 4), 576–581. [Google Scholar] [CrossRef]
- Ryan, J.R.; Chen, T.; Nakaji, P.; Frakes, D.H.; Gonzalez, L.F. Ventriculostomy Simulation Using Patient-Specific Ventricular Anatomy, 3D Printing, and Hydrogel Casting. World Neurosurg. 2015, 84, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yang, J.; Tang, C.; Cong, Z.; Cai, X.; Ma, C. Design and validation of a 3D-printed simulator for endoscopic third ventriculostomy. Child’s Nerv. Syst. 2019, 36, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Kahol, K.; Vankipuram, M.; Smith, M.L. Cognitive simulators for medical education and training. J. Biomed. Inform. 2009, 42, 593–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ploch, C.C.; Mansi, C.S.; Jayamohan, J.; Kuhl, E. Using 3D Printing to Create Personalized Brain Models for Neurosurgical Training and Preoperative Planning. World Neurosurg. 2016, 90, 668–674. [Google Scholar] [CrossRef]
- Breimer, G.E.; Bodani, V.; Looi, T.; Drake, J.M. Design and evaluation of a new synthetic brain simulator for endoscopic third ventriculostomy. J. Neurosurg. Pediatr. 2015, 15, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Thiong’O, G.M.; Bernstein, M.; Drake, J.M. 3D printing in neurosurgery education: A review. 3D Print Med. 2021, 7, 9. [Google Scholar] [CrossRef]
- Rox, M.F.; Ropella, D.S.; Hendrick, R.J.; Blum, E.; Naftel, R.P.; Bow, H.C.; Herrell, S.D.; Weaver, K.D.; Chambless, L.B.; Webster, R.J. Mechatronic Design of a Two-Arm Concentric Tube Robot System for Rigid Neuroendoscopy. IEEE/ASME Trans. Mechatron. 2020, 25, 1432–1443. [Google Scholar] [CrossRef]
- Barber, S.R.; Kozin, E.D.; Dedmon, M.; Lin, B.M.; Lee, K.; Sinha, S.; Black, N.; Remenschneider, A.K.; Lee, D.J. 3D-printed pediatric endoscopic ear surgery simulator for surgical training. Int. J. Pediatr. Otorhinolaryngol. 2016, 90, 113–118. [Google Scholar] [CrossRef]
- Lizana, J.; Montemurro, N.; Aliaga, N.; Marani, W.; Tanikawa, R. From textbook to patient: A practical guide to train the end-to-side microvascular anastomosis. Br. J. Neurosurg. 2021, 7, 1–5. [Google Scholar] [CrossRef]
- Drake, J.M.; Canadian Pediatric Neurosurgery Study Group. Endoscopic third ventriculostomy in pediatric patients: The Canadian experience. Neurosurgery 2007, 60, 881–886. [Google Scholar] [CrossRef] [Green Version]
- Rudnik, M.; Hanon, M.M.; Szot, W.; Beck, K.; Gogolewski, D.; Zmarzły, P.; Kozior, T. Tribological Properties of Medical Material (MED610) Used in 3D Printing PJM Technology. Teh. Vjesn. Tech. Gaz. 2022, 29, 1100–1108. [Google Scholar] [CrossRef]
- Gogolewski, D.; Kozior, T.; Zmarzły, P.; Mathia, T.G. Morphology of Models Manufactured by SLM Technology and the Ti6Al4V Titanium Alloy Designed for Medical Applications. Materials 2021, 14, 6249. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, N.; Condino, S.; Carbone, M.; Cattari, N.; D’Amato, R.; Cutolo, F.; Ferrari, V. Brain Tumor and Augmented Reality: New Technologies for the Future. Int. J. Environ. Res. Public Health 2022, 19, 6347. [Google Scholar] [CrossRef] [PubMed]
- Ivan, M.E.; Eichberg, D.G.; Di, L.; Shah, A.H.; Luther, E.M.; Lu, V.M.; Komotar, R.J.; Urakov, T.M. Augmented reality head-mounted display–based incision planning in cranial neurosurgery: A prospective pilot study. Neurosurg. Focus 2021, 51, E3. [Google Scholar] [CrossRef]
- Filho, F.V.G.; Coelho, G.; Cavalheiro, S.; Lyra, M.; Zymberg, S. Quality assessment of a new surgical simulator for neuroendoscopic training. Neurosurg. Focus 2011, 30, E17. [Google Scholar] [CrossRef] [Green Version]
- Low, D.; Lee, C.K.; Dip, L.L.T.; Ng, W.H.; Ang, B.T.; Ng, I. Augmented reality neurosurgical planning and navigation for surgical excision of parasagittal, falcine and convexity meningiomas. Br. J. Neurosurg. 2010, 24, 69–74. [Google Scholar] [CrossRef]
- Dho, Y.-S.; Lee, D.; Ha, T.; Ji, S.Y.; Kim, K.M.; Kang, H.; Kim, M.-S.; Kim, J.W.; Cho, W.-S.; Kim, Y.H.; et al. Clinical application of patient-specific 3D printing brain tumor model production system for neurosurgery. Sci. Rep. 2021, 11, 7005. [Google Scholar] [CrossRef]
- Doughty, M.; Ghugre, N.R.; Wright, G.A. Augmenting Performance: A Systematic Review of Optical See-Through Head-Mounted Displays in Surgery. J. Imaging 2022, 8, 203. [Google Scholar] [CrossRef]
- Charbonnier, G.; Primikiris, P.; Billottet, B.; Louvrier, A.; Vancheri, S.; Ferhat, S.; Biondi, A. Pre-Interventional 3D-Printing-Assisted Planning of Flow Disrupter Implantation for the Treatment of an Intracranial Aneurysm. J. Clin. Med. 2022, 11, 2950. [Google Scholar] [CrossRef]
- Algin, O.; Keles, A.; Oto, C. Cerebrovascular modelling for the management of aneurysm embolization using an intrasaccular flow diverter made by 3D printing. Pol. J. Radiol. 2022, 87, 557–562. [Google Scholar] [CrossRef]
- Lan, Q.; Zhu, Q.; Xu, L.; Xu, T. Application of 3D-Printed Craniocerebral Model in Simulated Surgery for Complex Intracranial Lesions. World Neurosurg. 2019, 134, e761–e770. [Google Scholar] [CrossRef]
- Montemurro, N.; Condino, S.; Cattari, N.; D’Amato, R.; Ferrari, V.; Cutolo, F. Augmented Reality-Assisted Craniotomy for Parasagittal and Convexity En Plaque Meningiomas and Custom-Made Cranio-Plasty: A Preliminary Laboratory Report. Int. J. Environ. Res. Public Health 2021, 18, 9955. [Google Scholar] [CrossRef] [PubMed]
- Cogswell, P.M.; Rischall, M.A.; Alexander, A.E.; Dickens, H.J.; Lanzino, G.; Morris, J.M. Intracranial vasculature 3D printing: Review of techniques and manufacturing processes to inform clinical practice. 3D Print Med. 2020, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Rahimpour, S.; Cutler, A.; Goodwin, C.R.; Lad, S.P.; Codd, P. Enhancing Reality: A Systematic Review of Augmented Reality in Neuronavigation and Education. World Neurosurg. 2020, 139, 186–195. [Google Scholar] [CrossRef] [PubMed]
Detail List | Price (USD) | Quantity |
---|---|---|
Silicon Ecoflex™ 00-10 | 44.00 | 2 |
Kelant S400S DLP 3D printers 8.9” LCD 2K laser 3D printer UV Resin SLA light-cure | 469.00 | 1 |
Silicon DragonSkin™ | 44.00 | 1 |
Anycubic photopolymer - universal WHITE resin for 3D printing, 1 LITER | 26.00 | 1 |
Silicone Tooldecor 25 | 23.86 | 1 |
SILICONE TOOL DECORATOR 40 | 23.86 | 1 |
Silicon paste coating silicone | 22.00 | 1 |
Silc pink polymer paste pigment | 8.00 | 1 |
Silc red polymer paste pigment | 8.00 | 1 |
Silc blue polymer paste pigment | 8.00 | 1 |
Silc yellow polymer paste pigment | 8.00 | 1 |
Silc white polymer paste pigment | 8.00 | 1 |
Automatic Dosing Pump JEBAO Automatic Water Dosing Pump Aquarium Fish Tank Marine Reef Filtration Peristaltic Pump | 30.00 | 1 |
Plaster Bandage Cast Orthopedic Tape Cloth Gauze | 2.00 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Encarnacion Ramirez, M.; Ramirez Pena, I.; Barrientos Castillo, R.E.; Sufianov, A.; Goncharov, E.; Soriano Sanchez, J.A.; Colome-Hidalgo, M.; Nurmukhametov, R.; Cerda Céspedes, J.R.; Montemurro, N. Development of a 3D Printed Brain Model with Vasculature for Neurosurgical Procedure Visualisation and Training. Biomedicines 2023, 11, 330. https://doi.org/10.3390/biomedicines11020330
Encarnacion Ramirez M, Ramirez Pena I, Barrientos Castillo RE, Sufianov A, Goncharov E, Soriano Sanchez JA, Colome-Hidalgo M, Nurmukhametov R, Cerda Céspedes JR, Montemurro N. Development of a 3D Printed Brain Model with Vasculature for Neurosurgical Procedure Visualisation and Training. Biomedicines. 2023; 11(2):330. https://doi.org/10.3390/biomedicines11020330
Chicago/Turabian StyleEncarnacion Ramirez, Manuel, Issael Ramirez Pena, Rossi E. Barrientos Castillo, Albert Sufianov, Evgeniy Goncharov, Jose A. Soriano Sanchez, Manuel Colome-Hidalgo, Renat Nurmukhametov, José Rafael Cerda Céspedes, and Nicola Montemurro. 2023. "Development of a 3D Printed Brain Model with Vasculature for Neurosurgical Procedure Visualisation and Training" Biomedicines 11, no. 2: 330. https://doi.org/10.3390/biomedicines11020330
APA StyleEncarnacion Ramirez, M., Ramirez Pena, I., Barrientos Castillo, R. E., Sufianov, A., Goncharov, E., Soriano Sanchez, J. A., Colome-Hidalgo, M., Nurmukhametov, R., Cerda Céspedes, J. R., & Montemurro, N. (2023). Development of a 3D Printed Brain Model with Vasculature for Neurosurgical Procedure Visualisation and Training. Biomedicines, 11(2), 330. https://doi.org/10.3390/biomedicines11020330