CDC25C Protein Expression Correlates with Tumor Differentiation and Clinical Outcomes in Lung Adenocarcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lung Cancer Tissue Array
2.2. Patients and Tissue Collection
2.3. Clinical Data Collection and Determination of Tumor Characteristics in the KMC Cohort
2.4. Surgical Procedures and Follow-up
2.5. CDC25C Immunostaining and Scoring of CDC25C Staining
2.6. Statistical Analysis
3. Results
3.1. CDC25C Expression in the LC Tissue Array
3.2. CDC25C Expression in the KMC LUAD Cohort
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and acronyms
AEC | 3-amino-9-ethylcarbazole |
CDC25 | Cell Division Cycle 25 |
CDC25A | Cell Division Cycle 25A |
CDC25B | Cell Division Cycle 25B |
CDC25C | Cell Division Cycle 25C |
COPD | chronic obstructive pulmonary disease |
DFS | disease-free survival |
DM | diabetes mellitus |
FEV1% | forced expiratory volume in 1 s precent from predicted |
HGB | hemoglobin |
IQR | Inter-quartile range |
KMC | Kaplan Medical Center |
LC | Lung cancer |
LUAD | lung adenocarcinoma |
LUSC | lung squamous cell carcinoma |
NSCLC | non-small cell lung cancers |
OS | overall survival |
SD | standard deviation |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Chaaya, G.; Abdelghani, R.; Kheir, F.; Komiya, T.; Velde, N.V. NSCLC: State of the Art Diagnosis, Treatment, and Outcomes. Curr. Pulmonol. Rep. 2018, 7, 29–41. [Google Scholar] [CrossRef]
- Liang, W.; Cai, K.; Chen, C.; Chen, H.; Chen, Q.; Fu, J.; Hu, J.; Jiang, T.; Jiao, W.; Li, S.; et al. Expert consensus on neoadjuvant immunotherapy for non-small cell lung cancer. Transl. Lung Cancer Res. 2020, 9, 2696–2715. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Fareed, R.; Zafar, A.; Saleem, K.; Huang, T.; Duan, Y.; Rehman, M.U. State-of-the-art combination treatment strategies for advanced stage non–small cell lung cancer. Front. Oncol. 2022, 12, 958505. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Lou, G. Neoadjuvant immunotherapy in non-small-cell lung cancer: A narrative review on mechanisms, efficacy and safety. J. Thorac. Dis. 2022, 14, 3565–3574. [Google Scholar] [CrossRef] [PubMed]
- Puderecki, M.; Szumiło, J.; Marzec-Kotarska, B. Novel prognostic molecular markers in lung cancer (Review). Oncol. Lett. 2020, 20, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 2017, 17, 93–115. [Google Scholar] [CrossRef] [Green Version]
- Esposito, V.; Baldi, A.; De Luca, A.; Tonini, G.; Vincenzi, B.; Santini, D.; Persichetti, P.; Mancini, A.; Citro, G.; Baldi, F.; et al. Cell cycle related proteins as prognostic parameters in radically resected non-small cell lung cancer. J. Clin. Pathol. 2005, 58, 734–739. [Google Scholar] [CrossRef]
- Gopalan, P.K.; Villegas, A.G.; Cao, C.; Pinder-Schenck, M.; Chiappori, A.; Hou, W.; Zajac-Kaye, M.; Ivey, A.M.; Kaye, F.J. CDK4/6 inhibition stabilizes disease in patients with p16-null non-small cell lung cancer and is synergistic with mTOR inhibition. Oncotarget 2018, 9, 37352–37366. [Google Scholar] [CrossRef]
- Xia, Z.; Ou-Yang, W.; Hu, T.; Du, K. Prognostic significance of CDC25C in lung adenocarcinoma: An analysis of TCGA data. Cancer Genet. 2019, 233–234, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sur, S.; Agrawal, D.K. Phosphatases and kinases regulating CDC25 activity in the cell cycle: Clinical implications of CDC25 overexpression and potential treatment strategies. Mol. Cell. Biochem. 2016, 416, 33–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Lu, R.; Zhao, Q.; Du, J.; Li, Y.; Zheng, M.; Zhang, S. Association and clinicopathologic significance of p38MAPK-ERK-JNK-CDC25C with polyploid giant cancer cell formation. Med. Oncol. 2020, 37, 6. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Hao, X.; Ding, X.; Cherukupalli, S.; Song, Y.; Liu, X.; Zhan, P. Medicinal chemistry insights into novel CDC25 inhibitors. Eur. J. Med. Chem. 2020, 201, 112374. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zheng, M.; Lu, R.; Du, J.; Zhao, Q.; Li, Z.; Li, Y.; Zhang, S. The role of CDC25C in cell cycle regulation and clinical cancer therapy: A systematic review. Cancer Cell Int. 2020, 20, 213. [Google Scholar] [CrossRef]
- Grossman, R.L.; Heath, A.P.; Ferretti, V.; Varmus, H.E.; Lowy, D.R.; Kibbe, W.A.; Staudt, L.M. Toward a Shared Vision for Cancer Genomic Data. N. Engl. J. Med. 2016, 375, 1109–1112. [Google Scholar] [CrossRef]
- Uhlén, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; et al. A pathology atlas of the human cancer transcriptome. Science 2017, 357, 2507. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Cao, Y.; Wei, Z.; Jia, Q.; Yu, S.; Zhong, J.; Wang, A.; Woodgett, J.R.; Lu, Y. Xanthatin triggers Chk1-mediated DNA damage response and destabilizes Cdc25C via lysosomal degradation in lung cancer cells. Toxicol. Appl. Pharmacol. 2017, 337, 85–94. [Google Scholar] [CrossRef]
- Horibe, S.; Matsuda, A.; Tanahashi, T.; Inoue, J.; Kawauchi, S.; Mizuno, S.; Ueno, M.; Takahashi, K.; Maeda, Y.; Maegouchi, T.; et al. Cisplatin resistance in human lung cancer cells is linked with dysregulation of cell cycle associated proteins. Life Sci. 2015, 124, 31–40. [Google Scholar] [CrossRef]
- Chatterjee, S.; Huang, E.H.-B.; Christie, I.; Burns, T.F. Reactivation of the p90RSK–CDC25C Pathway Leads to Bypass of the Ganetespib-Induced G2–M Arrest and Mediates Acquired Resistance to Ganetespib in KRAS-Mutant NSCLC. Mol. Cancer Ther. 2017, 16, 1658–1668. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, X.-L.; Liu, H.-S.; Luo, X.Y.; Yuan, Y.; Ji, Y.M.; Liu, T.; Guo, J.L.; Zhang, J. The Risk Model Based on the Three Oxidative Stress-Related Genes Evaluates the Prognosis of LAC Patients. Oxidative Med. Cell. Longev. 2022, 2022, 4022896. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Shang, X.; Yang, F.; Han, W.; Xia, H.; Liu, N.; Liu, Y.; Wang, X. CDC25C as a Predictive Biomarker for Immune Checkpoint Inhibitors in Patients With Lung Adenocarcinoma. Front. Oncol. 2022, 12, 867788. [Google Scholar] [CrossRef] [PubMed]
- Detterbeck, F.C.; Boffa, D.J.; Kim, A.W.; Tanoue, L.T. The Eighth Edition Lung Cancer Stage Classification. Chest 2017, 151, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Y.; Xu, S.; Li, W.; Chen, Z.; Wang, Z.; Han, X.; Zhao, Y.; Li, S. Prognostic significance of G2/M arrest signaling pathway proteins in advanced non-small cell lung cancer patients. Oncol. Lett. 2015, 9, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
- Xun, R.; Lu, H.; Wang, X. Identification of CDC25C as a Potential Biomarker in Hepatocellular Carcinoma Using Bioinformatics Analysis. Technol. Cancer Res. Treat. 2020, 19, 1533033820967474. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wang, L.; Hu, W.; Tang, L.; Zhang, P.; Gao, Y.; Du, J.; Li, Y.; Wang, Y. CDC25C is a prognostic biomarker and correlated with mitochondrial homeostasis in pancreatic adenocarcinoma. Bioengineered 2022, 13, 13089–13107. [Google Scholar] [CrossRef] [PubMed]
- Topno, R.; Nazam, N.; Kumari, P.; Kumar, M.; Agarwal, P. Integrative genome wide analysis of protein tyrosine phosphatases identifies CDC25C as prognostic and predictive marker for chemoresistance in breast cancer. Cancer Biomark. 2021, 32, 491–504. [Google Scholar] [CrossRef]
Patient Characteristics | |
---|---|
Cases (n = 58) | |
Age (years) | |
Mean +/− SD | 57.06 +/− 10.38 |
Sex | |
Male/Female | 46(79.3%)/12 (20.7%) |
Pathological Characteristics | |
Pathology | |
LUAD/LUSC | 27(46.5%)/31 (53.5%) |
Pathological T | |
1 | 5 (8.6%) |
2 | 49 (84.5%) |
3 | 4 (6.9%) |
Pathological N | |
0 | 35 (60.3%) |
1 | 18 (31%) |
2 | 5 (8.6%) |
Pathological stage | |
Stage I (IA/IB) | 34 (58.6%) |
Stage II (IIB) | 18 (31%) |
Stage III (IIIA) | 6 (10.3%) |
Tumor differentiation | |
Well | 14 (24.1%) |
Moderate | 28 (48.3%) |
Poor | 14 (24.1%) |
N/A | 2 (0.3%) |
Patient Characteristics | |
---|---|
Cases (n = 61) | |
Age (years) | |
Mean +/− SD | 70.07 +/− 8.23 |
Sex | |
Male/Female | 29 (47.5%)/32 (52.5%) |
Smoking status | |
Ever/Never | 36 (59%)/25 (31%) |
FEV1% of predicted | |
Mean +/− SD | 75% +/− 20% |
Comorbidities | |
COPD | 21 (34.4%) |
DM | 16 (26.2%) |
Hemoglobin level (gr%) | |
Mean +/− SD | 12.69 +/− 1.67 |
Pathological Characteristics | |
Pathological T | |
1a | 16 (26.2%) |
1b | 14 (22.9%) |
1c | 7 (11.5%) |
2a | 15 (24.6%) |
2b | 2 (3.3%) |
3 | 5 (8.2%) |
4 | 2 (3.3%) |
Pathological N | |
0 | 51 (83.6%) |
1 | 5 (8.2%) |
2 | 5 (8.2%) |
Pathological stage | |
Stage I (IA1/IA2/IA3/IB) | 44 (72.1%) |
Stage II (IIA/IIB) | 11 (18%) |
Stage III (IIIA/IIIB) | 6 (9.8%) |
Tumor differentiation | |
Well | 24 (39.3%) |
Moderate | 22 (36%) |
Poor | 11 (18%) |
N/A | 4 (6.6%) |
Pleural invasion | |
Present/Absent | 17 (27.9%)/44 (72.1%) |
Lymphovascular invasion | |
Present/Absent | 10 (16.4%)/51 (83.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stern, E.; Pines, G.; Lazar, L.O.; Vainer, G.W.; Beltran, N.; Dodi, O.; Gamaev, L.; Hikri Simon, O.; Abraham, M.; Wald, H.; et al. CDC25C Protein Expression Correlates with Tumor Differentiation and Clinical Outcomes in Lung Adenocarcinoma. Biomedicines 2023, 11, 362. https://doi.org/10.3390/biomedicines11020362
Stern E, Pines G, Lazar LO, Vainer GW, Beltran N, Dodi O, Gamaev L, Hikri Simon O, Abraham M, Wald H, et al. CDC25C Protein Expression Correlates with Tumor Differentiation and Clinical Outcomes in Lung Adenocarcinoma. Biomedicines. 2023; 11(2):362. https://doi.org/10.3390/biomedicines11020362
Chicago/Turabian StyleStern, Esther, Guy Pines, Li Or Lazar, Gilad W. Vainer, Nitzan Beltran, Omri Dodi, Lika Gamaev, Ofir Hikri Simon, Michal Abraham, Hanna Wald, and et al. 2023. "CDC25C Protein Expression Correlates with Tumor Differentiation and Clinical Outcomes in Lung Adenocarcinoma" Biomedicines 11, no. 2: 362. https://doi.org/10.3390/biomedicines11020362
APA StyleStern, E., Pines, G., Lazar, L. O., Vainer, G. W., Beltran, N., Dodi, O., Gamaev, L., Hikri Simon, O., Abraham, M., Wald, H., Peled, A., & Wald, O. (2023). CDC25C Protein Expression Correlates with Tumor Differentiation and Clinical Outcomes in Lung Adenocarcinoma. Biomedicines, 11(2), 362. https://doi.org/10.3390/biomedicines11020362