GPCR in Adipose Tissue Function—Focus on Lipolysis
Abstract
:1. Introduction
2. GPCR Signaling
3. “Classical” Activators of Lipolysis—Norepinephrine (NE) and Beta Receptors
4. Alternatives to NE—Adenosine Regulates Lipolysis
5. Dopamine and Serotonin Receptors
6. Free Fatty Acid Receptors (FFARs)
7. Endocannabinoid System and Receptors
8. Steroid- and Oxysterol Sensing GPCRs
9. Peptides GPCRs and Lipolysis
9.1. Endothelin Receptors—ETA and ETB Receptors
9.2. Chemerin
9.3. Apelin
9.4. Calcitonin Receptors
9.5. Neuropeptides
10. Frizzled/Smoothened
11. Adhesion and GPCRs Activated by Tethered Agonists
12. Olfactory and Opsin
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barneda, D.; Frontini, A.; Cinti, S.; Christian, M. Dynamic Changes in Lipid Droplet-Associated Proteins in the “Browning” of White Adipose Tissues. Biochim. et Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2013, 1831, 924–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giordano, A.; Cinti, F.; Canese, R.; Carpinelli, G.; Colleluori, G.; di Vincenzo, A.; Palombelli, G.; Severi, I.; Moretti, M.; Redaelli, C.; et al. The Adipose Organ Is a Unitary Structure in Mice and Humans. Biomedicines 2022, 10, 2275. [Google Scholar] [CrossRef] [PubMed]
- Cannon, B.; Nedergaard, J. Studies of Thermogenesis and Mitochondrial Function in Adipose Tissues. Methods Mol. Biol. 2008, 456, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Puigserver, P.; Wu, Z.; Park, C.W.; Graves, R.; Wright, M.; Spiegelman, B.M. A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis. Cell 1998, 92, 829–839. [Google Scholar] [CrossRef] [Green Version]
- Feldmann, H.M.; Golozoubova, V.; Cannon, B.; Nedergaard, J. UCP1 Ablation Induces Obesity and Abolishes Diet-Induced Thermogenesis in Mice Exempt from Thermal Stress by Living at Thermoneutrality. Cell Metab. 2009, 9, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Chouchani, E.T.; Kazak, L.; Spiegelman, B.M. New Advances in Adaptive Thermogenesis: UCP1 and Beyond. Cell Metab. 2019, 29, 27–37. [Google Scholar] [CrossRef]
- Ricquier, D.; Kader, J.C. Mitochondrial Protein Alteration in Active Brown Fat: A Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoretic Study. Biochem. Biophys. Res. Commun. 1976, 73, 577–583. [Google Scholar] [CrossRef]
- Pfeifer, A.; Hoffmann, L.S. Brown, Beige, and White: The New Color Code of Fat and Its Pharmacological Implications. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 207–227. [Google Scholar] [CrossRef]
- Kamenetsky, M.; Middelhaufe, S.; Bank, E.M.; Levin, L.R.; Buck, J.; Steegborn, C. Molecular Details of CAMP Generation in Mammalian Cells: A Tale of Two Systems. J. Mol. Biol. 2006, 362, 623–639. [Google Scholar] [CrossRef] [Green Version]
- Bender, A.T.; Beavo, J.A. Cyclic Nucleotide Phosphodiesterases: Molecular Regulation to Clinical Use. Pharmacol. Rev. 2006, 58, 488–520. [Google Scholar] [CrossRef] [Green Version]
- Bock, A.; Annibale, P.; Konrad, C.; Hannawacker, A.; Anton, S.E.; Maiellaro, I.; Zabel, U.; Sivaramakrishnan, S.; Falcke, M.; Lohse, M.J. Optical Mapping of CAMP Signaling at the Nanometer Scale. Cell 2020, 182, 1519–1530.e17. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.J. The Ins and Outs of Adrenergic Signaling. J. Mol. Med. 2015, 93, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Edwards, H.v.; Christian, F.; Baillie, G.S. CAMP: Novel Concepts in Compartmentalised Signalling. Semin. Cell Dev. Biol. 2012, 23, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Ilouz, R.; Bubis, J.; Wu, J.; Yim, Y.Y.; Deal, M.S.; Kornev, A.P.; Ma, Y.; Blumenthal, D.K.; Taylor, S.S. Localization and Quaternary Structure of the PKA RIβ Holoenzyme. Proc. Natl. Acad. Sci. USA 2012, 109, 12443–12448. [Google Scholar] [CrossRef] [Green Version]
- Larsson, S.; Jones, H.A.; Göransson, O.; Degerman, E.; Holm, C. Parathyroid Hormone Induces Adipocyte Lipolysis via PKA-Mediated Phosphorylation of Hormone-Sensitive Lipase. Cell. Signal. 2016, 28, 204–213. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.J.; Baek, J.H.; Lee, J.A.; Kim, H.N.; Song, J.K.; Chun, K.H. A PDE1 Inhibitor Reduces Adipogenesis in Mice via Regulation of Lipolysis and Adipogenic Cell Signaling. Exp. Mol. Med. 2019, 51, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zmuda-Trzebiatowska, E.; Oknianska, A.; Manganiello, V.; Degerman, E. Role of PDE3B in Insulin-Induced Glucose Uptake, GLUT-4 Translocation and Lipogenesis in Primary Rat Adipocytes. Cell. Signal. 2006, 18, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Rogne, M.; Chu, D.T.; Küntziger, T.M.; Mylonakou, M.N.; Collas, P.; Tasken, K. OPA1-Anchored PKA Phosphorylates Perilipin 1 on S522 and S497 in Adipocytes Differentiated from Human Adipose Stem Cells. Mol. Biol. Cell. 2018, 29, 1487–1501. [Google Scholar] [CrossRef]
- Mantovani, G.; Bondioni, S.; Alberti, L.; Gilardini, L.; Invitti, C.; Corbetta, S.; Zappa, M.A.; Ferrero, S.; Lania, A.G.; Bosari, S.; et al. Protein Kinase A Regulatory Subunits in Human Adipose Tissue: Decreased R2B Expression and Activity in Adipocytes from Obese Subjects. Diabetes 2009, 58, 620–626. [Google Scholar] [CrossRef] [Green Version]
- Skalhegg, B.S. Specificity in the CAMP/PKA Signaling Pathway. Differential Expression, Regulation, and Subcellular Localization of Subunits of PKA. Front. Biosci. 2000, 5, d678. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, T.; Sakai, J.; Kajimura, S. Transcriptional and Epigenetic Control of Brown and Beige Adipose Cell Fate and Function. Nat. Rev. Mol. Cell. Biol. 2016, 17, 480–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepherd, R.E.; Bah, M.D. Cyclic AMP Regulation of Fuel Metabolism during Exercise: Regulation of Adipose Tissue Lipolysis during Exercise. Med. Sci. Sports Exerc. 1988, 20, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Mcknight, G.S.; Cummings, D.E.; Amieux, P.S.; Sikorski, M.A.; Brandon, E.P.; Planas, J.v.; Motamed, K.; Idzerda, R.L. Cyclic AMP, PKA, and the Physiological Regulation of Adiposity. Recent Prog. Horm. Res. 1998, 53, 139–159. [Google Scholar]
- Carey, G.B. Mechanisms Regulating Adipocyte Lipolysis. Adv. Exp. Med. Biol. 1998, 441, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Zechner, R.; Zimmermann, R.; Eichmann, T.O.; Kohlwein, S.D.; Haemmerle, G.; Lass, A.; Madeo, F. FAT SIGNALS—Lipases and Lipolysis in Lipid Metabolism and Signaling. Cell Metab. 2012, 15, 279–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olzmann, J.A.; Carvalho, P. Dynamics and Functions of Lipid Droplets. Nat. Rev. Mol. Cell Biol 2018, 20, 137–155. [Google Scholar] [CrossRef]
- Nielsen, T.S.; Jessen, N.; Jørgensen, J.O.L.; Møller, N.; Lund, S. Dissecting Adipose Tissue Lipolysis: Molecular Regulation and Implications for Metabolic Disease. J. Mol. Endocrinol. 2014, 52, R199–R222. [Google Scholar] [CrossRef] [Green Version]
- Klepac, K.; Kilić, A.; Gnad, T.; Brown, L.M.; Herrmann, B.; Wilderman, A.; Balkow, A.; Glöde, A.; Simon, K.; Lidell, M.E.; et al. The Gq Signalling Pathway Inhibits Brown and Beige Adipose Tissue. Nat. Commun. 2016, 7, 10895. [Google Scholar] [CrossRef] [Green Version]
- Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schiöth, H.B.; Gloriam, D.E. Trends in GPCR Drug Discovery: New Agents, Targets and Indications. Nat. Rev. Drug Discov. 2017, 16, 829–842. [Google Scholar] [CrossRef]
- Schiöth, H.B.; Fredriksson, R. The GRAFS Classification System of G-Protein Coupled Receptors in Comparative Perspective. Gen. Comp. Endocrinol. 2005, 142, 94–101. [Google Scholar] [CrossRef]
- Hughes, J.W.; Ustione, A.; Lavagnino, Z.; Piston, D.W. Regulation of Islet Glucagon Secretion: Beyond Calcium. Diabetes Obes. Metab. 2018, 20, 127–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Röder, P.v.; Wu, B.; Liu, Y.; Han, W. Pancreatic Regulation of Glucose Homeostasis. Exp. Mol. Med. 2016, 48, e219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Röthe, J.; Kraft, R.; Schöneberg, T.; Thor, D. Exploring G Protein-Coupled Receptor Signaling in Primary Pancreatic Islets. Biol. Proced. Online 2020, 22, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amisten, S.; Neville, M.; Hawkes, R.; Persaud, S.J.; Karpe, F.; Salehi, A. An Atlas of G-Protein Coupled Receptor Expression and Function in Human Subcutaneous Adipose Tissue. Pharmacol. Ther. 2015, 146, 61–93. [Google Scholar] [CrossRef]
- Ceddia, R.P.; Collins, S. A Compendium of G-Protein-Coupled Receptors and Cyclic Nucleotide Regulation of Adipose Tissue Metabolism and Energy Expenditure. Clin. Sci. 2020, 134, 473–512. [Google Scholar] [CrossRef] [Green Version]
- Grundmann, M.; Merten, N.; Malfacini, D.; Inoue, A.; Preis, P.; Simon, K.; Rüttiger, N.; Ziegler, N.; Benkel, T.; Schmitt, N.K.; et al. Lack of Beta-Arrestin Signaling in the Absence of Active G Proteins. Nat. Commun. 2018, 9, 341. [Google Scholar] [CrossRef] [Green Version]
- Varian, B.J.; Poutahidis, T.; Haner, G.; Hardas, A.; Lau, V.; Erdman, S.E. Consuming Cholera Toxin Counteracts Age-Associated Obesity. Oncotarget 2019, 10, 5497–5509. [Google Scholar] [CrossRef] [Green Version]
- Kanfer, J.N.; Carter, T.P.; Katzen, H.M. Lipolytic Action of Cholera Toxin on Fat Cells. Reexamination of the Concept Implicating G(M1) Ganglioside as the Native Membrane Receptor. Available online: https://pubmed.ncbi.nlm.nih.gov/1002701/ (accessed on 30 April 2021).
- Olansky, L.; Myers, G.A.; Pohl, S.L.; Hewlett, E.L. Promotion of Lipolysis in Rat Adipocytes by Pertussis Toxin: Reversal of Endogenous Inhibition. Proc. Natl. Acad. Sci. USA 1983, 80, 6547–6551. [Google Scholar] [CrossRef] [Green Version]
- Moreno, F.J.; Mills, I.; Garcia Sainz, J.A.; Fain, J.N. Effects of Pertussis Toxin Treatment on the Metabolism of Rat Adipocytes. J. Biol. Chem. 1983, 258, 10938–10943. [Google Scholar] [CrossRef]
- Kimura, T.; Pydi, S.P.; Wang, L.; Haspula, D.; Cui, Y.; Lu, H.; König, G.M.; Kostenis, E.; Steinberg, G.R.; Gavrilova, O.; et al. Adipocyte Gq Signaling Is a Regulator of Glucose and Lipid Homeostasis in Mice. Nat. Commun. 2022, 13, 1652. [Google Scholar] [CrossRef]
- Lafontan, M.; Berlan, M. Evidence for the A2 Nature of the α-Adrenergic Receptor Inhibiting Lipolysis in Human Fat Cells. Eur. J. Pharmacol. 1980, 66, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Reckless, J.P.D.; Gilbert, C.H.; Galton, D.J. Alpha Adrenergic Receptor Activity, Cyclic AMP and Lipolysis in Adipose Tissue of Hypothyroid Man and Rat. J. Endocrinol. 1976, 68, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Chruscinski, A.J.; Rohrer, D.K.; Schauble, E.; Desai, K.H.; Bernstein, D.; Kobilka, B.K. Targeted Disruption of the Β2 Adrenergic Receptor Gene. J. Biol. Chem. 1999, 274, 16694–16700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revelli, J.P.; Preitner, F.; Samec, S.; Muniesa, P.; Kuehne, F.; Boss, O.; Vassalli, J.D.; Dulloo, A.; Seydoux, J.; Giacobino, J.P.; et al. Targeted Gene Disruption Reveals a Leptin-Independent Role for the Mouse Β3-Adrenoceptor in the Regulation of Body Composition. J. Clin. Investig. 1997, 100, 1098–1106. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, D.K.; Desai, K.H.; Jasper, J.R.; Stevens, M.E.; Regula, D.P.; Barsh, G.S.; Berstein, D.; Kobilka, B.K. Targeted Disruption of the Mouse Β1-Adrenergic Receptor Gene: Developmental and Cardiovascular Effects. Proc. Natl. Acad. Sci. USA 1996, 93, 7375–7380. [Google Scholar] [CrossRef] [Green Version]
- Susulic, V.S.; Frederich, R.C.; Lawitts, J.; Tozzo, E.; Kahn, B.B.; Harper, M.E.; Himms-Hagen, J.; Flier, J.S.; Lowell, B.B. Targeted Disruption of the Β3-Adrenergic Receptor Gene. J. Biol. Chem. 1995, 270, 29483–29492. [Google Scholar] [CrossRef] [Green Version]
- Bachman, E.S.; Dhillon, H.; Zhang, C.Y.; Cinti, S.; Bianco, A.C.; Kobilka, B.K.; Lowell, B.B. ΒAR Signaling Required for Diet-Induced Thermogenesis and Obesity Resistance. Science 2002, 297, 843–845. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, M.; Léger, B.; Canola, K.; Lehr, L.; Arboit, P.; Seydoux, J.; Russell, A.P.; Giacobino, J.P.; Muzzin, P.; Preitner, F. Β1/Β2/Β3-Adrenoceptor Knockout Mice Are Obese and Cold-Sensitive but Have Normal Lipolytic Responses to Fasting. FEBS Lett. 2002, 530, 37–40. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.A.; Palmiter, R.D. Thermoregulatory and Metabolic Phenotypes of Mice Lacking Noradrenaline and Adrenaline. Nature 1997, 387, 94–97. [Google Scholar] [CrossRef]
- Rothwell, N.J.; Stock, M.J. Effects of Denervating Brown Adipose Tissue on the Responses to Cold, Hyperphagia and Noradrenaline Treatment in the Rat. J. Physiol. 1984, 355, 457–463. [Google Scholar] [CrossRef]
- Brown, J.D.; Naples, S.P.; Booth, F.W. Effects of Voluntary Running on Oxygen Consumption, RQ, and Energy Expenditure during Primary Prevention of Diet-Induced Obesity in C57BL/6N Mice. J. Appl. Physiol. 2012, 113, 473–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.R.; Tong, Q. Oxygen Consumption Rate and Energy Expenditure in Mice: Indirect Calorimetry. Methods Mol. Biol. 2017, 1566, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Cypess, A.M.; Weiner, L.S.; Roberts-Toler, C.; Elía, E.F.; Kessler, S.H.; Kahn, P.A.; English, J.; Chatman, K.; Trauger, S.A.; Doria, A.; et al. Activation of Human Brown Adipose Tissue by a Β3-Adrenergic Receptor Agonist. Cell Metab. 2015, 21, 33–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mund, R.A.; Frishman, W.H. Brown Adipose Tissue Thermogenesis: Β3 Adrenoreceptors as a Potential Target for the Treatment of Obesity in Humans. Cardiol. Rev. 2013, 21, 265–269. [Google Scholar] [CrossRef]
- Riis-Vestergaard, M.J.; Richelsen, B.; Bruun, J.M.; Li, W.; Hansen, J.B.; Pedersen, S.B. Beta-1 and Not Beta-3 Adrenergic Receptors May Be the Primary Regulator of Human Brown Adipocyte Metabolism. J. Clin. Endocrinol. Metab. 2020, 105, E994–E1005. [Google Scholar] [CrossRef]
- Blondin, D.P.; Nielsen, S.; Kuipers, E.N.; Severinsen, M.C.; Jensen, V.H.; Miard, S.; Jespersen, N.Z.; Kooijman, S.; Boon, M.R.; Fortin, M.; et al. Human Brown Adipocyte Thermogenesis Is Driven by Β2-AR Stimulation. Cell. Metab 2020, 32, 287–300.e7. [Google Scholar] [CrossRef]
- Cero, C.; Lea, H.J.; Zhu, K.Y.; Shamsi, F.; Tseng, Y.H.; Cypess, A.M. Β3-Adrenergic Receptors Regulate Human Brown/Beige Adipocyte Lipolysis and Thermogenesis. JCI Insight 2021, 6, e139160. [Google Scholar] [CrossRef]
- Kannabiran, S.A.; Gosejacob, D.; Niemann, B.; Nikolaev, V.O.; Pfeifer, A. Real-Time Monitoring of CAMP in Brown Adipocytes Reveals Differential Compartmentation of Β1 and Β3-Adrenoceptor Signalling. Mol. Metab. 2020, 37, 100986. [Google Scholar] [CrossRef]
- Braun, K.; Oeckl, J.; Westermeier, J.; Li, Y.; Klingenspor, M.; Suarez, R.K.; Hoppeler, H.H. Non-Adrenergic Control of Lipolysis and Thermogenesis in Adipose Tissues. J. Exp. Biol. 2018, 221, jeb165381. [Google Scholar] [CrossRef] [Green Version]
- Niemann, B.; Haufs-Brusberg, S.; Puetz, L.; Feickert, M.; Jaeckstein, M.Y.; Hoffmann, A.; Zurkovic, J.; Heine, M.; Trautmann, E.M.; Müller, C.E.; et al. Apoptotic Brown Adipocytes Enhance Energy Expenditure via Extracellular Inosine. Nature 2022, 609, 361–368. [Google Scholar] [CrossRef]
- Gnad, T.; Scheibler, S.; von Kügelgen, I.; Scheele, C.; Kilić, A.; Glöde, A.; Hoffmann, L.S.; Reverte-Salisa, L.; Horn, P.; Mutlu, S.; et al. Adenosine Activates Brown Adipose Tissue and Recruits Beige Adipocytes via A2A Receptors Thorsten. Nature 2014, 516, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Salmaso, V.; Jacobson, K.A. Purinergic Signaling: Impact of GPCR Structures on Rational Drug Design. ChemMedChem 2020, 15, 1958–1973. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, K.A.; IJzerman, A.P.; Müller, C.E. Medicinal Chemistry of P2 and Adenosine Receptors: Common Scaffolds Adapted for Multiple Targets. Biochem. Pharmacol. 2021, 187, 114311. [Google Scholar] [CrossRef] [PubMed]
- Ijzerman, A.P.; Jacobson, K.A.; Müller, C.E.; Cronstein, B.N.; Cunha, R.A. International Union of Basic and Clinical Pharmacology. CXII: Adenosine Receptors: A Further UpdateS. Pharmacol. Rev. 2022, 74, 340–372. [Google Scholar] [CrossRef]
- Turpin, B.P.; Duckworth, W.C.; Solomon, S.S. Perifusion of Isolated Rat Adipose Cells. Modulation of Lipolysis by Adenosine. J. Clin. Investig. 1977, 60, 442–448. [Google Scholar] [CrossRef] [Green Version]
- Gnad, T.; Navarro, G.; Lahesmaa, M.; Reverte-Salisa, L.; Copperi, F.; Cordomi, A.; Naumann, J.; Hochhäuser, A.; Haufs-Brusberg, S.; Wenzel, D.; et al. Adenosine/A2B Receptor Signaling Ameliorates the Effects of Aging and Counteracts Obesity. Cell Metab. 2020, 32, 56–70.e7. [Google Scholar] [CrossRef]
- Zhang, Y.; Scislowski, P.W.D.; Prevelige, R.; Phaneuf, S.; Cincotta, A.H. Bromocriptine/SKF38393 Treatment Ameliorates Dyslipidemia in Ob/Ob Mice. Metabolism 1999, 48, 1033–1040. [Google Scholar] [CrossRef]
- Kok, P.; Roelfsema, F.; Frölich, M.; van Pelt, J.; Stokkel, M.P.M.; Meinders, A.E.; Pijl, H. Activation of Dopamine D2 Receptors Simultaneously Ameliorates Various Metabolic Features of Obese Women. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E1038–E1043. [Google Scholar] [CrossRef] [Green Version]
- Hansson, B.; Medina, A.; Fryklund, C.; Fex, M.; Stenkula, K.G. Serotonin (5-HT) and 5-HT2A Receptor Agonists Suppress Lipolysis in Primary Rat Adipose Cells. Biochem. Biophys. Res. Commun. 2016, 474, 357–363. [Google Scholar] [CrossRef]
- Oh, C.M.; Namkung, J.; Go, Y.; Shong, K.E.; Kim, K.; Kim, H.; Park, B.Y.; Lee, H.W.; Jeon, Y.H.; Song, J.; et al. Regulation of Systemic Energy Homeostasis by Serotonin in Adipose Tissues. Nat. Commun. 2015, 6, 6794. [Google Scholar] [CrossRef] [Green Version]
- Fain, J.N.; Shepherd, R.E. Free Fatty Acids as Feedback Regulators of Adenylate Cyclase and Cyclic 3′:5′ AMP Accumulation in Rat Fat Cells. J. Biol. Chem. 1975, 250, 6586–6592. [Google Scholar] [CrossRef]
- Burns, T.W.; Langley, P.E.; Terry, B.E.; Robinson, G.A. The Role of Free Fatty Acids in the Regulation of Lipolysis by Human Adipose Tissue Cells. Metabolism 1978, 27, 1755–1762. [Google Scholar] [CrossRef] [PubMed]
- Kalderon, B.; Azazmeh, N.; Azulay, N.; Vissler, N.; Valitsky, M.; Bar-Tana, J. Suppression of Adipose Lipolysis by Long-Chain Fatty Acid Analogs. J. Lipid Res. 2012, 53, 868–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briscoe, C.; Brown, A.; Holliday, N.; Jenkinson, S.; Milligan, G.; Monaghan, A.E.; Stoddart, L. Free Fatty Acid Receptors (Version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide Pharmacol. CITE 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Song, T.; Yang, Y.; Zhou, Y.; Wei, H.; Peng, J. GPR120: A Critical Role in Adipogenesis, Inflammation, and Energy Metabolism in Adipose Tissue. Cell. Mol. Life Sci. 2017, 74, 2723–2733. [Google Scholar] [CrossRef]
- Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.Q.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-Inflammatory and Insulin-Sensitizing Effects. Cell 2010, 142, 687–698. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Pacheco, F.; Garcia-Serrano, S.; Garcia-Escobar, E.; Gutierrez-Repiso, C.; Garcia-Arnes, J.; Valdes, S.; Gonzalo, M.; Soriguer, F.; Moreno-Ruiz, F.J.; Rodriguez-Cañete, A.; et al. Effects of Obesity/Fatty Acids on the Expression of GPR120. Mol. Nutr. Food Res. 2014, 58, 1852–1860. [Google Scholar] [CrossRef]
- Quesada-López, T.; Cereijo, R.; Turatsinze, J.V.; Planavila, A.; Cairó, M.; Gavaldà-Navarro, A.; Peyrou, M.; Moure, R.; Iglesias, R.; Giralt, M.; et al. The Lipid Sensor GPR120 Promotes Brown Fat Activation and FGF21 Release from Adipocytes. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Ichimura, A.; Hirasawa, A.; Poulain-Godefroy, O.; Bonnefond, A.; Hara, T.; Yengo, L.; Kimura, I.; Leloire, A.; Liu, N.; Iida, K.; et al. Dysfunction of Lipid Sensor GPR120 Leads to Obesity in Both Mouse and Human. Nature 2012, 483, 350–354. [Google Scholar] [CrossRef] [Green Version]
- Bonnefond, A.; Lamri, A.; Leloire, A.; Vaillant, E.; Roussel, R.; Lévy-Marchal, C.; Weill, J.; Galan, P.; Hercberg, S.; Ragot, S.; et al. Contribution of the Low-Frequency, Loss-of-Function p. R270H Mutation in FFAR4 (GPR120) to Increased Fasting Plasma Glucose Levels. J. Med. Genet. 2015, 52, 595–598. [Google Scholar] [CrossRef]
- Vestmar, M.A.; Andersson, E.A.; Christensen, C.R.; Hauge, M.; Glümer, C.; Linneberg, A.; Witte, D.R.; Jørgensen, M.E.; Christensen, C.; Brandslund, I.; et al. Functional and Genetic Epidemiological Characterisation of the FFAR4 (GPR120) p.R270H Variant in the Danish Population. J. Med. Genet. 2016, 53, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Lamri, A.; Bonnefond, A.; Meyre, D.; Balkau, B.; Roussel, R.; Marre, M.; Froguel, P.; Fumeron, F. Interaction between GPR120 p.R270H Loss-of-Function Variant and Dietary Fat Intake on Incident Type 2 Diabetes Risk in the D.E.S.I.R. Study. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, H.; Tsukui, M.; Takada, S.; Kurashina, K.; Choi, Y.L.; Soda, M.; Yamashita, Y.; Haruta, H.; Hamada, T.; Ueno, T.; et al. Identification of Transforming Activity of Free Fatty Acid Receptor 2 by Retroviral Expression Screening. Cancer Sci. 2010, 101, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Mieczkowska, A.; Baslé, M.F.; Chappard, D.; Mabilleau, G. Thiazolidinediones Induce Osteocyte Apoptosis by a G Protein-Coupled Receptor 40-Dependent Mechanism. J. Biol. Chem. 2012, 287, 23517–23526. [Google Scholar] [CrossRef] [Green Version]
- Schilperoort, M.; van Dam, A.D.; Hoeke, G.; Shabalina, I.G.; Okolo, A.; Hanyaloglu, A.C.; Dib, L.H.; Mol, I.M.; Caengprasath, N.; Chan, Y.; et al. The GPR120 Agonist TUG-891 Promotes Metabolic Health by Stimulating Mitochondrial Respiration in Brown Fat. EMBO Mol. Med. 2018, 10, e8047. [Google Scholar] [CrossRef] [PubMed]
- Hudson, B.D.; Shimpukade, B.; Mackenzie, A.E.; Butcher, A.J.; Pediani, J.D.; Christiansen, E.; Heathcote, H.; Tobin, A.B.; Ulven, T.; Milligan, G. The Pharmacology of TUG-891, a Potent and Selective Agonist of the Free Fatty Acid Receptor 4 (FFA4/GPR120), Demonstrates Both Potential Opportunity and Possible Challenges to Therapeutic Agonism. Mol. Pharmacol. 2013, 84, 710–725. [Google Scholar] [CrossRef] [Green Version]
- Satapati, S.; Qian, Y.; Wu, M.S.; Petrov, A.; Dai, G.; Wang, S.P.; Zhu, Y.; Shen, X.; Muise, E.S.; Chen, Y.; et al. GPR120 Suppresses Adipose Tissue Lipolysis and Synergizes with GPR40 in Antidiabetic Efficacy. J. Lipid Res. 2017, 58, 1561–1578. [Google Scholar] [CrossRef] [Green Version]
- Hilgendorf, K.I.; Johnson, C.T.; Mezger, A.; Rice, S.L.; Norris, A.M.; Demeter, J.; Greenleaf, W.J.; Reiter, J.F.; Kopinke, D.; Jackson, P.K. Omega-3 Fatty Acids Activate Ciliary FFAR4 to Control Adipogenesis. Cell 2019, 179, 1289–1305.e21. [Google Scholar] [CrossRef]
- Buettner, C.; Muse, E.D.; Cheng, A.; Chen, L.; Scherer, T.; Pocai, A.; Su, K.; Cheng, B.; Li, X.; Harvey-White, J.; et al. Leptin Controls Adipose Tissue Lipogenesis via Central, STAT3-Independent Mechanisms. Nat. Med. 2008, 14, 667–675. [Google Scholar] [CrossRef]
- Krott, L.M.; Piscitelli, F.; Heine, M.; Borrino, S.; Scheja, L.; Silvestri, C.; Heeren, J.; di Marzo, V. Endocannabinoid Regulation in White and Brown Adipose Tissue Following Thermogenic Activation. J. Lipid Res. 2016, 57, 464–473. [Google Scholar] [CrossRef] [Green Version]
- D’Eon, T.M.; Pierce, K.A.; Roix, J.J.; Tyler, A.; Chen, H.; Teixeira, S.R. The Role of Adipocyte Insulin Resistance in the Pathogenesis of Obesity-Related Elevations in Endocannabinoids. Diabetes 2008, 57, 1262–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Eenige, R.; van der Stelt, M.; Rensen, P.C.N.; Kooijman, S. Regulation of Adipose Tissue Metabolism by the Endocannabinoid System. Trends Endocrinol. Metab. 2018, 29, 326–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matias, I.; Belluomo, I.; Cota, D. The Fat Side of the Endocannabinoid System: Role of Endocannabinoids in the Adipocyte. Cannabis Cannabinoid Res. 2016, 1, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Vettor, R.; Pagano, C. The Role of the Endocannabinoid System in Lipogenesis and Fatty Acid Metabolism. Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.A.; Herling, A.W.; Wied, S.; Müller, T. CB1 Receptor-Dependent and Independent Induction of Lipolysis in Primary Rat Adipocytes by the Inverse Agonist Rimonabant (SR141716A). Molecules 2020, 25, 896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eid, B.G.; Neamatallah, T.; Hanafy, A.; El-Bassossy, H.M.; Aldawsari, H.M.; Vemuri, K.; Makriyannis, A. Effects of the CB1 Receptor Antagonists AM6545 and AM4113 on Insulin Resistance in a High-Fructose High-Salt Rat Model of Metabolic Syndrome. Medicina 2020, 56, 573. [Google Scholar] [CrossRef] [PubMed]
- Barth, F.; Rinaldi-Carmona, M. The Development of Cannabinoid Antagonists. Curr. Med. Chem. 2022, 6, 745–755. [Google Scholar] [CrossRef]
- Despres, J.-P. Pleiotropic Effects of Rimonabant: Clinical Implications. Curr. Pharm. Des. 2009, 15, 553–570. [Google Scholar] [CrossRef]
- Verty, A.N.A.; Allen, A.M.; Oldfield, B.J. The Effects of Rimonabant on Brown Adipose Tissue in Rat: Implications for Energy Expenditure. Obesity 2009, 17, 254–261. [Google Scholar] [CrossRef]
- Boon, M.R.; Kooijman, S.; van Dam, A.D.; Pelgrom, L.R.; Berbée, J.F.P.; Visseren, C.A.R.; van Aggele, R.C.; van den Hoek, A.M.; Sips, H.C.M.; Lombès, M.; et al. Peripheral Cannabinoid 1 Receptor Blockade Activates Brown Adipose Tissue and Diminishes Dyslipidemia and Obesity. FASEB J. 2014, 28, 5361–5375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deveaux, V.; Cadoudal, T.; Ichigotani, Y.; Teixeira-Clerc, F.; Louvet, A.; Manin, S.; van Nhieu, J.T.; Belot, M.P.; Zimmer, A.; Even, P.; et al. Cannabinoid CB2 Receptor Potentiates Obesity-Associated Inflammation, Insulin Resistance and Hepatic Steatosis. PLoS One 2009, 4, e5844. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Bellini, G.; Luongo, L.; Manzo, I.; Tolone, S.; Tortora, C.; Bernardo, M.E.; Grandone, A.; Conforti, A.; Docimo, L.; et al. Cannabinoid Receptor 2 as Antiobesity Target: Inflammation, Fat Storage, and Browning Modulation. J. Clin. Endocrinol. Metab. 2016, 101, 3469–3478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryberg, E.; Larsson, N.; Sjögren, S.; Hjorth, S.; Hermansson, N.O.; Leonova, J.; Elebring, T.; Nilsson, K.; Drmota, T.; Greasley, P.J. The Orphan Receptor GPR55 Is a Novel Cannabinoid Receptor. Br. J. Pharmacol. 2007, 152, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Henstridge, C.M.; Balenga, N.A.; Schröder, R.; Kargl, J.K.; Platzer, W.; Martini, L.; Arthur, S.; Penman, J.; Whistler, J.L.; Kostenis, E.; et al. GPR55 Ligands Promote Receptor Coupling to Multiple Signalling Pathways. Br. J. Pharmacol. 2010, 160, 604–614. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Navarrete, J.M.; Catalán, V.; Whyte, L.; Díaz-Arteaga, A.; Vázquez-Martínez, R.; Rotellar, F.; Guzmán, R.; Gómez-Ambrosi, J.; Pulido, M.R.; Russell, W.R.; et al. The L-α-Lysophosphatidylinositol/GPR55 System and Its Potential Role in Human Obesity. Diabetes 2012, 61, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Kohno, M.; Hasegawa, H.; Inoue, A.; Muraoka, M.; Miyazaki, T.; Oka, K.; Yasukawa, M. Identification of N-Arachidonylglycine as the Endogenous Ligand for Orphan G-Protein-Coupled Receptor GPR18. Biochem. Biophys. Res. Commun. 2006, 347, 827–832. [Google Scholar] [CrossRef]
- Takenouchi, R.; Inoue, K.; Kambe, Y.; Miyata, A. N-Arachidonoyl Glycine Induces Macrophage Apoptosis via GPR18. Biochem. Biophys. Res. Commun. 2012, 418, 366–371. [Google Scholar] [CrossRef]
- Sharma, G.; Hu, C.; Staquicini, D.I.; Brigman, J.L.; Liu, M.; Mauvais-Jarvis, F.; Pasqualini, R.; Arap, W.; Arterburn, J.B.; Hathaway, H.J.; et al. Preclinical Efficacy of the GPER-Selective Agonist G-1 in Mouse Models of Obesity and Diabetes. Sci. Transl. Med. 2020, 12, eaau5956. [Google Scholar] [CrossRef]
- Gormsen, L.C.; Høst, C.; Hjerrild, B.E.; Pedersen, S.B.; Nielsen, S.; Christiansen, J.S.; Gravholt, C.H. Estradiol Acutely Inhibits Whole Body Lipid Oxidation and Attenuates Lipolysis in Subcutaneous Adipose Tissue: A Randomized, Placebo-Controlled Study in Postmenopausal Women. Eur. J. Endocrinol. 2012, 167, 543–551. [Google Scholar] [CrossRef] [Green Version]
- Wellendorph, P.; Hansen, K.B.; Balsgaard, A.; Greenwood, J.R.; Egebjerg, J.; Bräuner-Osborne, H. Deorphanization of GPRC6A: A Promiscuous L-α-Amino Acid Receptor with Preference for Basic Amino Acids. Mol. Pharmacol. 2005, 67, 589–597. [Google Scholar] [CrossRef]
- Pi, M.; Faber, P.; Ekema, G.; Jackson, P.D.; Ting, A.; Wang, N.; Fontilla-Poole, M.; Mays, R.W.; Brunden, K.R.; Harrington, J.J.; et al. Identification of a Novel Extracellular Cation-Sensing G-Protein-Coupled Receptor. J. Biol. Chem. 2005, 280, 40201–40209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pi, M.; Parrill, A.L.; Quarles, L.D. GPRC6A Mediates the Non-Genomic Effects of Steroids. J. Biol. Chem. 2010, 285, 39953–39964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukai, S.; Mizokami, A.; Otani, T.; Sano, T.; Matsuda, M.; Chishaki, S.; Gao, J.; Kawakubo-Yasukochi, T.; Tang, R.; Kanematsu, T.; et al. Adipocyte-Specific GPRC6A Ablation Promotes Diet-Induced Obesity by Inhibiting Lipolysis. J. Biol. Chem. 2021, 296, 100274. [Google Scholar] [CrossRef] [PubMed]
- Otani, T.; Mizokami, A.; Hayashi, Y.; Gao, J.; Mori, Y.; Nakamura, S.; Takeuchi, H.; Hirata, M. Signaling Pathway for Adiponectin Expression in Adipocytes by Osteocalcin. Cell. Signal. 2015, 27, 532–544. [Google Scholar] [CrossRef] [PubMed]
- Copperi, F.; Schleis, I.; Roumain, M.; Muccioli, G.G.; Casola, S.; Klingenspor, M.; Pfeifer, A.; Gnad, T. EBI2 Is a Negative Modulator of Brown Adipose Tissue Energy Expenditure in Mice and Human Brown Adipocytes. Commun. Biol. 2022, 5, 280. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.A.; Harris, C.A.; Wang, J.-C. Glucocorticoid Receptor and Adipocyte Biology. Nucl. Receptor. Res. 2018, 5, 101373. [Google Scholar] [CrossRef]
- Wu, F.; Song, G.; de Graaf, C.; Stevens, R.C. Structure and Function of Peptide-Binding G Protein-Coupled Receptors. J. Mol. Biol. 2017, 429, 2726–2745. [Google Scholar] [CrossRef]
- Eriksson, A.K.S.; van Harmelen, V.; Stenson, B.M.; Åström, G.; Wåhlén, K.; Laurencikiene, J.; Rydén, M. Endothelin-1 Stimulates Human Adipocyte Lipolysis through the ET A Receptor. Int. J. Obes. 2009, 33, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Juan, C.C.; Chang, C.L.; Lai, Y.H.; Ho, L.T. Endothelin-1 Induces Lipolysis in 3T3-L1 Adipocytes. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E1146–E1152. [Google Scholar] [CrossRef] [Green Version]
- Juan, C.C.; Chang, L.W.; Huang, S.W.; Chang, C.L.; Lee, C.Y.; Chien, Y.; Hsu, Y.P.; Ho, P.H.; Chen, Y.C.; Ho, L.T. Effect of Endothelin-1 on Lipolysis in Rat Adipocytes. Obesity 2006, 14, 398–404. [Google Scholar] [CrossRef]
- Zabel, B.A.; Kwitniewski, M.; Banas, M.; Zabieglo, K.; Murzyn, K.; Cichy, J. Chemerin Regulation and Role in Host Defense. Am. J. Clin. Exp. Immunol. 2014, 3, 1–19. [Google Scholar]
- Zlotnik, A.; Yoshie, O. The Chemokine Superfamily Revisited. Immunity 2012, 36, 705–716. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, A.J.; Davenport, A.P. International Union of Basic and Clinical Pharmacology CIII: Chemerin Receptors CMKLR1 (Chemerin1) and GPR1 (Chemerin2) Nomenclature, Pharmacology, and Function. Pharmacol. Rev. 2018, 70, 174. [Google Scholar] [CrossRef] [Green Version]
- Rouger, L.; Denis, G.R.; Luangsay, S.; Parmentier, M. ChemR23 Knockout Mice Display Mild Obesity but No Deficit in Adipocyte Differentiation. J. Endocrinol. 2013, 219, 279–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roh, S.g.; Song, S.H.; Choi, K.C.; Katoh, K.; Wittamer, V.; Parmentier, M.; Sasaki, S. ichi Chemerin-A New Adipokine That Modulates Adipogenesis via Its Own Receptor. Biochem. Biophys. Res. Commun. 2007, 362, 1013–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goralski, K.B.; McCarthy, T.C.; Hanniman, E.A.; Zabel, B.A.; Butcher, E.C.; Parlee, S.D.; Muruganandan, S.; Sinal, C.J. Chemerin, a Novel Adipokine That Regulates Adipogenesis and Adipocyte Metabolism. J. Biol. Chem. 2007, 282, 28175–28188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwangbo, C.; Wu, J.; Papangeli, I.; Adachi, T.; Sharma, B.; Park, S.; Zhao, L.; Ju, H.; Go, G.W.; Cui, G.; et al. Endothelial APLNR Regulates Tissue Fatty Acid Uptake and Is Essential for Apelin’s Glucose-Lowering Effects. Sci. Transl. Med. 2017, 9, eaad4000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcão-Pires, I.; Castro-Chaves, P.; Miranda-Silva, D.; Lourenço, A.P.; Leite-Moreira, A.F. Physiological, Pathological and Potential Therapeutic Roles of Adipokines. Drug Discov. Today 2012, 17, 880–889. [Google Scholar] [CrossRef]
- Than, A.; Cheng, Y.; Foh, L.C.; Leow, M.K.S.; Lim, S.C.; Chuah, Y.J.; Kang, Y.; Chen, P. Apelin Inhibits Adipogenesis and Lipolysis through Distinct Molecular Pathways. Mol. Cell. Endocrinol. 2012, 362, 227–241. [Google Scholar] [CrossRef]
- Yue, P.; Jin, H.; Xu, S.; Aillaud, M.; Deng, A.C.; Azuma, J.; Kundu, R.K.; Reaven, G.M.; Quertermous, T.; Tsao, P.S. Apelin Decreases Lipolysis via Gq, Gi, and AMPK-Dependent Mechanisms. Endocrinology 2011, 152, 59–68. [Google Scholar] [CrossRef] [Green Version]
- le Gonidec, S.; Chaves-Almagro, C.; Bai, Y.; Kang, H.J.; Smith, A.; Wanecq, E.; Huang, X.P.; Prats, H.; Knibiehler, B.; Roth, B.L.; et al. Protamine Is an Antagonist of Apelin Receptor, and Its Activity Is by Heparin. FASEB J. 2017, 31, 2507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debbie Hay, C.L.; Hay, D.L.; Garelja, M.L.; Poyner, D.R.; Walker, C.S. INTERNATIONAL UNION OF BASIC AND CLINICAL PHARMACOLOGY REVIEW Update on the Pharmacology of Calcitonin/CGRP Family of Peptides: IUPHAR Review 25. Br. J. Pharmacol. 2018, 175, 3–17. [Google Scholar] [CrossRef]
- Harmancey, R.; Senard, J.; Pathak, A.; Desmoulin, F.; Claparols, C.; Rouet, P.; Smih, F. The Vasoactive Peptide Adrenomedullin Is Secreted by Adipocytes and Inhibits Lipolysis through NO-mediated Β-adrenergic Agonist Oxidation. FASEB J. 2005, 19, 1045–1047. [Google Scholar] [CrossRef]
- Bamshad, M.; Aoki, V.T.; Adkison, M.G.; Warren, W.S.; Bartness, T.J. Central Nervous System Origins of the Sympathetic Nervous System Outflow to White Adipose Tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1998, 275, R291–R299. [Google Scholar] [CrossRef]
- Bartness, T.J.; Song, C.K.; Shi, H.; Bowers, R.R.; Foster, M.T. Brain–Adipose Tissue Cross Talk. Proc. Nutr. Soc. 2005, 64, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Bartness, T.J.; Shrestha, Y.B.; Vaughan, C.H.; Schwartz, G.J.; Song, C.K. Sensory and Sympathetic Nervous System Control of White Adipose Tissue Lipolysis. Mol. Cell. Endocrinol. 2010, 318, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Aberdeen, J.; Corr, L.; Milner, P.; Lincoln, J.; Burnstock, G. Marked Increases in Calcitonin Gene-Related Peptide-Containing Nerves in the Developing Rat Following Long-Term Sympathectomy with Guanethidine. Neuroscience 1990, 35, 175–184. [Google Scholar] [CrossRef]
- Mione, M.C.; Cavanagh, J.F.R.; Kirkpatrick, K.A.; Burnstock, G. Plasticity in Expression of Calcitonin Gene-Related Peptide and Substance P Immunoreactivity in Ganglia and Fibres Following Guanethidine and/or Capsaicin Denervation. Cell Tissue Res. 1992, 268, 491–504. [Google Scholar] [CrossRef]
- Bartelt, A.; Jeschke, A.; Müller, B.; Gaziano, I.; Morales, M.; Yorgan, T.; Heckt, T.; Heine, M.; Gagel, R.F.; Emeson, R.B.; et al. Differential Effects of Calca-Derived Peptides in Male Mice with Diet-Induced Obesity. PLoS One 2017, 12, e0180547. [Google Scholar] [CrossRef] [Green Version]
- Bradley, R.L.; Mansfield, J.P.R.; Maratos-Flier, E. Neuropeptides, Including Neuropeptide y and Melanocortins, Mediate Lipolysis in Murine Adipocytes. Obes. Res. 2005, 13, 653–661. [Google Scholar] [CrossRef] [Green Version]
- Møller, C.L.; Raun, K.; Jacobsen, M.L.; Pedersen, T.Å.; Holst, B.; Conde-Frieboes, K.W.; Wulff, B.S. Characterization of Murine Melanocortin Receptors Mediating Adipocyte Lipolysis and Examination of Signalling Pathways Involved. Mol. Cell. Endocrinol. 2011, 341, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serradeil-Le Gal, C.; Lafontan, M.; Raufaste, D.; Marchand, J.; Pouzet, B.; Casellas, P.; Pascal, M.; Maffrand, J.P.; le Fur, G. Characterization of NPY Receptors Controlling Lipolysis and Leptin Secretion in Human Adipocytes. FEBS Lett. 2000, 475, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, C.; Zeng, T.; Lee, K.; Nobis, M.; Loh, K.; Gou, L.; Xia, Z.; Gao, Z.; Bensellam, M.; Hughes, W.; et al. Peripheral-Specific Y1 Receptor Antagonism Increases Thermogenesis and Protects against Diet-Induced Obesity. Nat. Commun. 2021, 12, 2622. [Google Scholar] [CrossRef] [PubMed]
- Dahlman, I.; Dicker, A.; Jiao, H.; Kere, J.; Blomqvist, L.; van Harmelen, V.; Hoffstedt, J.; Borch-Johnsen, K.; Jörgensen, T.; Hansen, T.; et al. A Common Haplotype in the G-Protein-Coupled Receptor Gene GPR74 Is Associated with Leanness and Increased Lipolysis. Am. J. Hum. Genet. 2007, 80, 1115–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Harmelen, V.; Dicker, A.; Sjölin, E.; Blomqvist, L.; Wirén, M.; Hoffstedt, J.; Rydén, M.; Arner, P. Effects of Pain Controlling Neuropeptides on Human Fat Cell Lipolysis. Int. J. Obes. 2010, 34, 1333–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komiya, Y.; Habas, R. Wnt Signal Transduction Pathways. Organogenesis 2008, 4, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Schulte, J.; Wright, S.C. Frizzleds as GPCRs—More Conventional Than We Thought! Trends Pharmacol. Sci. 2018, 39, 828–842. [Google Scholar] [CrossRef]
- Bagchi, D.P.; Nishii, A.; Li, Z.; DelProposto, J.B.; Corsa, C.A.; Mori, H.; Hardij, J.; Learman, B.S.; Lumeng, C.N.; MacDougald, O.A. Wnt/β-Catenin Signaling Regulates Adipose Tissue Lipogenesis and Adipocyte-Specific Loss Is Rigorously Defended by Neighboring Stromal-Vascular Cells. Mol. Metab. 2020, 42, 101078. [Google Scholar] [CrossRef]
- Pospisilik, J.A.; Schramek, D.; Schnidar, H.; Cronin, S.J.F.; Nehme, N.T.; Zhang, X.; Knauf, C.; Cani, P.D.; Aumayr, K.; Todoric, J.; et al. Drosophila Genome-Wide Obesity Screen Reveals Hedgehog as a Determinant of Brown versus White Adipose Cell Fate. Cell 2010, 140, 148–160. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, Y.; Jiang, K.; Jia, J. Hedgehog Signaling Promotes Lipolysis in Adipose Tissue through Directly Regulating Bmm/ATGL Lipase. Dev. Biol. 2020, 457, 128–139. [Google Scholar] [CrossRef]
- Strawbridge, R.J.; Laumen, H.; Hamsten, A.; Breier, M.; Grallert, H.; Hauner, H.; Arner, P.; Dahlman, I. Effects of Genetic Loci Associated with Central Obesity on Adipocyte Lipolysis. PLoS One 2016, 11, e0153990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liebscher, I.; Schöneberg, T. Tethered Agonism: A Common Activation Mechanism of Adhesion GPCRs. In Handbook of Experimental Pharmacology; Springer: New York, NY, USA, 2016; Volume 234, pp. 111–125. [Google Scholar]
- Suchý, T.; Zieschang, C.; Popkova, Y.; Kaczmarek, I.; Weiner, J.; Liebing, A.D.; Çakir, M.V.; Landgraf, K.; Gericke, M.; Pospisilik, J.A.; et al. The Repertoire of Adhesion G Protein-Coupled Receptors in Adipocytes and Their Functional Relevance. Int. J. Obes. 2020, 44, 2124–2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, T.; Hui, X.; Gao, X.; Li, K.; Lin, W.; Xiang, X.; Ding, M.; Kuang, Y.; Xu, A.; Fei, J.; et al. Adipose Tissue Deletion of Gpr116 Impairs Insulin Sensitivity through Modulation of Adipose Function. FEBS Lett. 2012, 586, 3618–3625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sveidahl Johansen, O.; Ma, T.; Hansen, J.B.; Markussen, L.K.; Schreiber, R.; Reverte-Salisa, L.; Dong, H.; Christensen, D.P.; Sun, W.; Gnad, T.; et al. Lipolysis Drives Expression of the Constitutively Active Receptor GPR3 to Induce Adipose Thermogenesis. Cell 2021, 184, 3502–3518.e33. [Google Scholar] [CrossRef] [PubMed]
- Naressi, R.G.; Schechtman, D.; Malnic, B. Odorant Receptors as Potential Drug Targets. Trends Pharmacol. Sci. 2022, 44, 11–14. [Google Scholar] [CrossRef]
- Wu, C.; Hwang, S.H.; Jia, Y.; Choi, J.; Kim, Y.J.; Choi, D.; Pathiraja, D.; Choi, I.G.; Koo, S.H.; Lee, S.J. Olfactory Receptor 544 Reduces Adiposity by Steering Fuel Preference toward Fats. J. Clin. Investig. 2017, 127, 4118–4123. [Google Scholar] [CrossRef] [Green Version]
- Regard, J.B.; Sato, I.T.; Coughlin, S.R. Anatomical Profiling of G Protein-Coupled Receptor Expression. Cell 2008, 135, 561. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Tsuji, T.; Yang, K.; Ren, X.; Dreyfuss, J.M.; Huang, T.L.; Wang, C.H.; Shamsi, F.; Leiria, L.O.; Lynes, M.D.; et al. Cell-Autonomous Light Sensitivity via Opsin3 Regulates Fuel Utilization in Brown Adipocytes. PLoS Biol. 2020, 18, e3000630. [Google Scholar] [CrossRef] [Green Version]
- Nagiri, C.; Kobayashi, K.; Tomita, A.; Kato, M.; Kobayashi, K.; Yamashita, K.; Nishizawa, T.; Inoue, A.; Shihoya, W.; Nureki, O. Cryo-EM Structure of the Β3-Adrenergic Receptor Reveals the Molecular Basis of Subtype Selectivity. Mol. Cell. 2021, 81, 3205–3215.e5. [Google Scholar] [CrossRef]
- Finlin, B.S.; Memetimin, H.; Zhu, B.; Confides, A.L.; Vekaria, H.J.; el Khouli, R.H.; Johnson, Z.R.; Westgate, P.M.; Chen, J.; Morris, A.J.; et al. The Β3-Adrenergic Receptor Agonist Mirabegron Improves Glucose Homeostasis in Obese Humans. J. Clin. Investig. 2020, 130, 2319–2331. [Google Scholar] [CrossRef]
- O’Mara, A.E.; Johnson, J.W.; Linderman, J.D.; Brychta, R.J.; McGehee, S.; Fletcher, L.A.; Fink, Y.A.; Kapuria, D.; Cassimatis, T.M.; Kelsey, N.; et al. Chronic Mirabegron Treatment Increases Human Brown Fat, HDL Cholesterol, and Insulin Sensitivity. J. Clin. Investig. 2020, 130, 2209–2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, B.; Rohatagi, S.; Natarajan, C.; Kirkesseli, S.; Baybutt, R.; Jensen, B.K. Pharmacokinetics, Pharmacodynamics, and Safety of a Lipid-Lowering Adenosine A1 Agonist, RPR749, in Healthy Subjects. Am. J. Ther. 2004, 11, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Becher, T.; Palanisamy, S.; Kramer, D.J.; Eljalby, M.; Marx, S.J.; Wibmer, A.G.; Butler, S.D.; Jiang, C.S.; Vaughan, R.; Schöder, H.; et al. Brown Adipose Tissue Is Associated with Cardiometabolic Health. Nat. Med. 2021, 27, 58–65. [Google Scholar] [CrossRef] [PubMed]
GPCR | IUPHAR Name | Coupling | Molecular Targets a | Lipolysis b |
---|---|---|---|---|
beta 1 adrenergic | β1-adrenoceptor | Gs > Gi | AC, PKA, GC | + |
beta 2 adrenergic | β2-adrenoceptor | Gs > Gi | AC, PKA, GC | + |
beta 3 adrenergic | β3-adrenoceptor | Gs > Gi | AC, PKA, HSL, GC | + |
A1R | A1 receptor | Gi > Gs, Gq | AC, PLC | − |
A2AR | A2A receptor | Gs > Gq | AC, PLC | + |
A2BR | A2B receptor | Gs > Gq | AC, PLC | + |
D1 | D1 receptor | Gs | AC, PLC | − |
D2 | D2 receptor | Gi | AC | − (+humans) |
5-HT2A | 5-HT2A receptor | Gq > Gi | PLC, AC | − |
FFAR4/GPR120 | FFA4 receptor | Gq | PLC | + (?) |
FFAR1/GPR40 | FFA1 receptor | Gq > Gs | AC, PLC, PLA2 | + |
CB1 | CB1 receptor | Gi > Gs | AC | − |
GPER | GPER | Gi > Gs | PLC, AC | + |
GprC6A | GPRC6 receptor | Gq | PLC | + (?) |
GPR183/EBI2 | GPR183 | Gi | AC | − |
ETA | ETA receptor | Gq | PLC, PLA2, PLD | + |
CMKLR1 | Chemerin receptor 1 | Gi | AC | +/− |
Apelin | Apelin receptor | Gi | AC, PKC | − |
NPY1 | Y1 receptor | Gi | AC | − |
GPR74 | NPPF2 | Gi (?) | AC | − |
Gpr64 | ADGRG2 | Gs > Gq | AC, PLC | + |
Gpr3 | GPR3 | Gs | AC | + |
Olfr544 | none | Golf/Gs | ? | + |
Opn3 | OPN3 | Gs (?) | ? | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malfacini, D.; Pfeifer, A. GPCR in Adipose Tissue Function—Focus on Lipolysis. Biomedicines 2023, 11, 588. https://doi.org/10.3390/biomedicines11020588
Malfacini D, Pfeifer A. GPCR in Adipose Tissue Function—Focus on Lipolysis. Biomedicines. 2023; 11(2):588. https://doi.org/10.3390/biomedicines11020588
Chicago/Turabian StyleMalfacini, Davide, and Alexander Pfeifer. 2023. "GPCR in Adipose Tissue Function—Focus on Lipolysis" Biomedicines 11, no. 2: 588. https://doi.org/10.3390/biomedicines11020588
APA StyleMalfacini, D., & Pfeifer, A. (2023). GPCR in Adipose Tissue Function—Focus on Lipolysis. Biomedicines, 11(2), 588. https://doi.org/10.3390/biomedicines11020588