The Sympathetic Nervous System Regulates Sodium Glucose Co-Transporter 1 Expression in the Kidney
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Immunohistochemistry of Tyrosine Hydroxylase (TH) in Renal Tissue
2.3. SGLT1 Immunohistochemistry of Renal Tissues
2.4. Human Kidney 2 Cell Culture
2.5. Immunocytochemistry
2.6. Sodium Glucose Co-Transporter-1 Translocation in HK2 Cells Treated with NE or Hyper Interleukin 6 (H-IL-6)
2.7. Interleukin-6 (IL-6) and Tumor Necrosis Factor Alpha (TNF-α) Secretion in Human Kidney 2 Cells Treated with NE
2.8. Western Blotting
2.9. Enzyme-Linked Immunosorbent Assays
2.10. Statistical Analysis
3. Results
3.1. Tyrosine Hydroxylase (TH) Is Increased in the Kidneys of BPH/2J Neurogenically Hypertensive Mice in Comparison to BPN/3J Normotensive Mice
3.2. Norepinephrine Levels Are Significantly Elevated in the Kidneys of BPH/2J Neurogenically Hypertensive Mice in Comparison to BPN/3J Normotensive Mice
3.3. SGLT1 Protein Levels Are Increased in BPH/2J Neurogenically Hypertensive Mice in Comparison to BPN/3J Normotensive Mice
3.4. Norepinephrine Promotes Increased Expression and Translocation of SGLT1
3.5. Norepinephrine Treatment Increases IL-6 Secretion from HK2 Cells
3.6. Hyper IL-6 Is Bioactive in HK2 Cells and Promotes Increased SGLT1 Expression
3.7. Hyper IL-6 Promotes Proliferation of HK2 Cells and Increases Cyclin Dependent Kinase 4 (CDK4) Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCorry, L.K. Physiology of the autonomic nervous system. Am. J. Pharm. Educ. 2007, 71, 78. [Google Scholar] [CrossRef] [PubMed]
- Alshak, M.N.; Das, J. Neuroanatomy, Sympathetic Nervous System; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Herat, L.; Magno, A.; Rudnicka, C.; Hricova, J.; Carnagarin, R.; Ward, N.; Arcambal, A.; Kuichi, M.; Head, G.; Schlaich, M.; et al. SGLT2 Inhibitor-Induced Sympathoinhibition: A Novel Mechanism for Cardiorenal Protection. JACC Basic Transl. Sci. 2020, 5, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Matthews, V.; Elliot, R.; Rudnicka, C.; Hricova, J.; Herat, L.; Schlaich, M. Role of the sympathetic nervous system in regulation of the sodium glucose co-transporter 2. J. Hypertens. 2017, 35, 2059–2068. [Google Scholar] [CrossRef] [PubMed]
- Mahfoud, F.; Schlaich, M.; Kindermann, I.; Ukena, C.; Cremers, B.; Brandt, M.; Hoppe, U.; Vonend, O.; Rump, L.; Sobotka, P.; et al. Effect of Renal Sympathetic Denervation on Glucose Metabolism in Patients with Resistant Hypertension: A pilot study. Circulation 2011, 123, 1940–1946. [Google Scholar] [CrossRef]
- Vrhovac, I.; Balen Eror, D.; Klessen, D.; Burger, C.; Breljak, D.; Kraus, O.; Radovic, N.; Jadrijevic, S.; Aleksic, I.; Walles, T.; et al. Localizations of Na(+)-D-glucose contransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung and heart. Pflug. Arch. 2015, 467, 1881–1898. [Google Scholar] [CrossRef]
- Salvatore, T.; Galiero, R.; Caturano, A.; Rinaldi, L.; Di Martino, A.; Albanese, G.; Di Salvo, J.; Epifani, R.; Marfella, R.; Docimo, G.; et al. An overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors. Int. J. Mol. Sci. 2022, 23, 3651. [Google Scholar] [CrossRef]
- Herat, L.; Magno, A.; Kiuchi, M.; Jackson, K.; Carnagarin, R.; Head, G.; Schlaich, M.; Matthews, V. The Schlager Mouse as a model of altered retinal phenotype. Neural Regen. Res. 2020, 15, 512–518. [Google Scholar]
- Davern, P.; Nguyen-Huu, T.-P.; Greca, L.L.; Abdelkader, A.; Head, G. Role of the sympathetic nervous system in Schlager genetically hypertensive mice. Hypertension 2009, 54, 852–859. [Google Scholar] [CrossRef]
- Schlager, G.; Sides, J. Characterization of hypertensive and hypotensive inbred strains of mice. Lab. Anim. Sci. 1997, 47, 288–292. [Google Scholar]
- Chiu, C.; Jackson, K.; Hearn, N.; Steiner, N.; Head, G.; Lind, J. Identification of genes with altered expression in male and female Schlager hypertensive mice. BMC Med. Genet. 2014, 15, 101–106. [Google Scholar] [CrossRef]
- Grassi, G.; Arenare, F.; Pieruzzi, F.; Brambilla, G.; Mancia, G. Sympathetic activation in cardiovascular and renal disease. J. Nephrol. 2009, 22, 190–195. [Google Scholar]
- Song, P.; Onishi, A.; Koepsell, H.; Vallon, V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert. Opin. Targets 2016, 20, 1109–1125. [Google Scholar] [CrossRef]
- Spranger, J.; Kroke, A.; Mohlig, M.; Hoffmann, K.; Bergmann, M.; Ristow, M.; Boeing, H.; Pfeiffer, A. Inflammatory Cytokines and the Risk to Develop Type 2 Diabetes: Results of the Prospective Population-Based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003, 52, 812–817. [Google Scholar] [CrossRef]
- Alzamil, H. Elevated Serum TNF- is related to Obesity in Type 2 Diabetes Mellitus and is associated with Glycemic Control and Insulin Resistance. J. Obes. 2020, 2020, 5076858. [Google Scholar] [CrossRef]
- Bowker, N.; Shah, R.; Sharp, S.; Luan, J.; Stewart, I.; Wheeler, E.; Ferreira, M.; Baras, A.; Wareham, N.; Langenberg, C.; et al. Meta-analysis investigating the role of interleukin-6 mediated inflammation in type 2 diabetes. EBioMedicine 2020, 61, 103062. [Google Scholar] [CrossRef]
- Landers-Ramos, R.; Blumenthal, J.; Prior, S. Serum IL-6 and sIL-6R in type 2 diabetes contribute to impaired capillary-like network formation. J. Appl. Physiol. 2019, 127, 385–392. [Google Scholar] [CrossRef]
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef]
- Lastra, G.; Syed, S.; Kurukulasuriva, L.R.; Manrique, C.; Sowers, J. Type 2 diabetes mellitus and hypertension: An update. Endocrinol. Metab. Clin. 2014, 43, 103–122. [Google Scholar] [CrossRef]
- Joyner, M.J.; Charkoudian, N.; Wallin, B.G. Sympathetic nervous system and blood pressure in humans: Individualised patterns of regulation and their implications. Hypertens 2010, 56, 10–16. [Google Scholar] [CrossRef]
- Kalil, G.; Haynes, W. Sympathetic nervous system in obesity-related hypertension: Mechanisms and clinical implications. Hypertens. Rep. 2012, 35, 4–16. [Google Scholar] [CrossRef]
- Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 diabetes. Lancet 2017, 389, 2239–2251. [Google Scholar] [CrossRef] [PubMed]
- Minushkina, L.O. Possibilities of the use of monoxidine in the treatment of arterial hypertension in patients with metabolic syndrome and diabetes. Kardiologiia 2011, 51, 74–78. [Google Scholar] [PubMed]
- Schlaich, M.; Sobotka, P.; Krum, H.; Whitbourn, R.; Walton, A.; Esler, M. Renal Denervation as a therapeutic approach for hypertension: Novel implications for an old concept. Hypertension 2009, 54, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, K.; Fujisawa, Y.; Sherajee, S.; Rahman, A.; Sufiun, A.; Kobori, H.; Koepsell, H.; Mogi, M.; Horiuchi, M.; Nishiyama, A. Role of the renal sympathetic nerve in renal glucose metabolism during the development of type 2 diabetes in rats. Diabetologia 2015, 58, 2885–2898. [Google Scholar] [CrossRef]
- Sabino-Silva, R.; Alves-Wagner, A.; Burgi, K.; Okamoto, M.; Alves, A.; Lima, G.; Freitas, H.; Antunes, V.; Machado, U. “SGLT1 protein expression in plasma membrane of acinar cells correlate with the sympathetic outflow to salivary glands in diabetic and hypertensive rats. Am. J. Physiol. Metab. 2010, 299, E1028–E1037. [Google Scholar] [CrossRef]
- Kothinti, R.; Blodgett, A.; North, P.; Roman, R.; Tabatabai, N. A novel SGLT is expressed in human kidney. Eur. J. Pharm. 2012, 690, 77–83. [Google Scholar] [CrossRef]
- Lowe, G.; Woodward, M.; Hillis, G.; Rumley, A.; Li, Q.; Harrap, S.; Marre, M.; Hamet, P.; Patel, A.; Poulter, N.; et al. Circulating Inflammatory Markers and the Risk of Vascular Complications and Mortality in People with Type 2 Diabetes and Cardiovascular Disease or Risk Factors: The ADVANCE Study. Diabetes 2014, 63, 1115–1123. [Google Scholar] [CrossRef]
- Chamarthi, B.; Williams, G.; Ricchiuti, V.; Srikumar, N.; Hopkins, P.; Luther, J.; Jeunemaitre, X.; Thomas, A. Inflammation and hypertension: The interplay of interleukin-6, dietary sodium, and the renin-angiotensin system in humans. Am. J. Hypertens. 2011, 24, 1143–1148. [Google Scholar] [CrossRef]
- Castilla-Madrigal, R.; Barrenetxe, J.; Moreno-Aliaga, M.; Lostao, M. EPA blocks TNF-α-induced inhibition of sugar uptake in Caco-2 cells via GPR120 and AMPK. J. Cell. Physiol. 2018, 233, 2426–2433. [Google Scholar] [CrossRef]
- Barrenetxe, J.; Sanchez, O.; Barber, A.; Gascon, S.; Rodriguez-Yoldi, M.; Lostao, M. TNF-α regulates sugar transporters in the human intestinal epitelial cell line Caco-2. Cytokine 2013, 64, 181–187. [Google Scholar] [CrossRef]
- Amador, P.; Garcia-Herrera, J.; Marca, M.; Osada, J.; Acin, S.; Navarro, M.; Salvador, M.; Lostao, M.; Rodriguez-Yoldi, M. Inhibitory effect of TNF-alpha on the intestinal absorption of galactose. J. Cell. Biochem. 2007, 101, 99–111. [Google Scholar] [CrossRef]
- Maldonado-Cervantes, M.; Galicia, O.; Moreno-Jaime, B.; Zapata-Morales, J.; Montoya-Contreras, A.; Bautista-Perez, R.; Martinez-Morales, F. Autocrine modulation of glucose transporter SGLT2 by IL-6 and TNF-α in LLC-PK1 Cells. J. Physiol. Biochem. 2012, 68, 411–420. [Google Scholar] [CrossRef]
- Osaki, Y.; Manolopoulou, M.; Ivanova, A.; Vartanian, N.; Mignemi, M.; Kern, J.; Chen, J.; Yang, H.; Fogo, A.; Zhang, M.; et al. Blocking cell cycle progression through CDK4/6 protects against chronic kidney disease. JCI Insight 2022, 7, e158754. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matthews, J.; Hibbs, M.; Herat, L.; Schlaich, M.; Matthews, V. The Sympathetic Nervous System Regulates Sodium Glucose Co-Transporter 1 Expression in the Kidney. Biomedicines 2023, 11, 819. https://doi.org/10.3390/biomedicines11030819
Matthews J, Hibbs M, Herat L, Schlaich M, Matthews V. The Sympathetic Nervous System Regulates Sodium Glucose Co-Transporter 1 Expression in the Kidney. Biomedicines. 2023; 11(3):819. https://doi.org/10.3390/biomedicines11030819
Chicago/Turabian StyleMatthews, Jennifer, Moira Hibbs, Lakshini Herat, Markus Schlaich, and Vance Matthews. 2023. "The Sympathetic Nervous System Regulates Sodium Glucose Co-Transporter 1 Expression in the Kidney" Biomedicines 11, no. 3: 819. https://doi.org/10.3390/biomedicines11030819
APA StyleMatthews, J., Hibbs, M., Herat, L., Schlaich, M., & Matthews, V. (2023). The Sympathetic Nervous System Regulates Sodium Glucose Co-Transporter 1 Expression in the Kidney. Biomedicines, 11(3), 819. https://doi.org/10.3390/biomedicines11030819