Acute Kidney Injury Associated with Severe SARS-CoV-2 Infection: Risk Factors for Morbidity and Mortality and a Potential Benefit of Combined Therapy with Tocilizumab and Corticosteroids
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Characteristics
3.2. Univariate Analysis of Risk Factors for AKI
3.3. Multivariate Analysis of Risk Factors for the Development of AKI
3.4. Univariate Analysis of Risk Factors for In-Hospital Mortality
3.5. Multivariate Analysis of Risk Factors Associated with Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chávez-Valencia, V.; Orizaga-de-la-Cruz, C.; Lagunas-Rangel, F.A. Acute Kidney Injury in COVID-19 Patients: Pathogenesis, Clinical Characteristics, Therapy, and Mortality. Diseases 2022, 10, 53. [Google Scholar] [CrossRef]
- Ahmadian, E.; Hosseiniyan Khatibi, S.M.; Razi Soofiyani, S.; Abediazar, S.; Shoja, M.M.; Ardalan, M.; Zununi Vahed, S. COVID-19 and Kidney Injury: Pathophysiology and Molecular Mechanisms. Rev. Med. Virol. 2021, 31, e2176. [Google Scholar] [CrossRef]
- Ahmed, A.R.; Ebad, C.A.; Stoneman, S.; Satti, M.M.; Conlon, P.J. Kidney Injury in COVID-19. World J. Nephrol. 2020, 9, 18–32. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, E.E.; Allayeh, A.K.; Salem, A.A.; Omar, S.M.; Zaghlol, S.M.; Abd-Elmaguid, H.M.; Abdul-Ghaffar, M.M.; ElSharkawy, M.M. Incidence of Acute Kidney Injury among COVID-19 Patients in Egypt. Ren. Replace Ther. 2021, 7, 32. [Google Scholar] [CrossRef]
- Hirsch, J.S.; Ng, J.H.; Ross, D.W.; Sharma, P.; Shah, H.H.; Barnett, R.L.; Hazzan, A.D.; Fishbane, S.; Jhaveri, K.D. Acute Kidney Injury in Patients Hospitalized with COVID-19. Kidney Int. 2020, 98, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.-J.; Ni, Z.-Y.; Hu, Y.; Liang, W.-H.; Ou, C.-Q.; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Schaubroeck, H.; Vandenberghe, W.; Boer, W.; Boonen, E.; Dewulf, B.; Bourgeois, C.; Dubois, J.; Dumoulin, A.; Fivez, T.; Gunst, J.; et al. Acute Kidney Injury in Critical COVID-19: A Multicenter Cohort Analysis in Seven Large Hospitals in Belgium. Crit. Care 2022, 26, 225. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.M.B.; Lukitsch, I.; Torres-Ortiz, A.E.; Walker, J.B.; Varghese, V.; Hernandez-Arroyo, C.F.; Alqudsi, M.; LeDoux, J.R.; Velez, J.C.Q. Acute Kidney Injury Associated with Coronavirus Disease 2019 in Urban New Orleans. Kidney360 2020, 1, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Rubin, S.; Orieux, A.; Prevel, R.; Garric, A.; Bats, M.-L.; Dabernat, S.; Camou, F.; Guisset, O.; Issa, N.; Mourissoux, G.; et al. Characterization of Acute Kidney Injury in Critically Ill Patients with Severe Coronavirus Disease 2019. Clin. Kidney J. 2020, 13, 354–361. [Google Scholar] [CrossRef]
- Sabaghian, T.; Kharazmi, A.B.; Ansari, A.; Omidi, F.; Kazemi, S.N.; Hajikhani, B.; Vaziri-Harami, R.; Tajbakhsh, A.; Omidi, S.; Haddadi, S.; et al. COVID-19 and Acute Kidney Injury: A Systematic Review. Front. Med. 2022, 9, 705908. [Google Scholar] [CrossRef]
- Gameiro, J.; Fonseca, J.A.; Oliveira, J.; Marques, F.; Bernardo, J.; Costa, C.; Carreiro, C.; Braz, S.; Lopes, J.A. Acute Kidney Injury in Hospitalized Patients with COVID-19: A Portuguese Cohort. Nefrología 2021, 41, 689–698. [Google Scholar] [CrossRef]
- Fisher, M.; Neugarten, J.; Bellin, E.; Yunes, M.; Stahl, L.; Johns, T.S.; Abramowitz, M.K.; Levy, R.; Kumar, N.; Mokrzycki, M.H.; et al. AKI in Hospitalized Patients with and without COVID-19: A Comparison Study. J. Am. Soc. Nephrol. 2020, 31, 2145–2157. [Google Scholar] [CrossRef] [PubMed]
- Jewell, P.D.; Bramham, K.; Galloway, J.; Post, F.; Norton, S.; Teo, J.; Fisher, R.; Saha, R.; Hutchings, S.; Hopkins, P.; et al. COVID-19-Related Acute Kidney Injury; Incidence, Risk Factors and Outcomes in a Large UK Cohort. BMC Nephrol. 2021, 22, 359. [Google Scholar] [CrossRef]
- Elrobaa, I.H.; New, K.J. COVID-19: Pulmonary and Extra Pulmonary Manifestations. Front. Public Health 2021, 9, 711616. [Google Scholar] [CrossRef]
- Gulati, A.; Pomeranz, C.; Qamar, Z.; Thomas, S.; Frisch, D.; George, G.; Summer, R.; DeSimone, J.; Sundaram, B. A Comprehensive Review of Manifestations of Novel Coronaviruses in the Context of Deadly COVID-19 Global Pandemic. Am. J. Med. Sci. 2020, 360, 5–34. [Google Scholar] [CrossRef]
- Tossetta, G.; Fantone, S.; Delli Muti, N.; Balercia, G.; Ciavattini, A.; Giannubilo, S.R.; Marzioni, D. Preeclampsia and Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Systematic Review. J. Hypertens. 2022, 40, 1629–1638. [Google Scholar] [CrossRef]
- Dale, L. Neurological Complications of COVID-19: A Review of the Literature. Cureus 2022, 14, e27633. [Google Scholar] [CrossRef]
- Delli Muti, N.; Finocchi, F.; Tossetta, G.; Salvio, G.; Cutini, M.; Marzioni, D.; Balercia, G. Could SARS-CoV-2 Infection Affect Male Fertility and Sexuality? APMIS 2022, 130, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D.O.; Brennan-Rieder, D.; Ngo, B.; Kory, P.; Confalonieri, M.; Shapiro, L.; Iglesias, J.; Dube, M.; Nanda, N.; In, G.K.; et al. The Importance of Understanding the Stages of COVID-19 in Treatment and Trials. AIDS Rev. 2021, 23, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Chaibi, K.; Dao, M.; Pham, T.; Gumucio-Sanguino, V.D.; Di Paolo, F.A.; Pavot, A.; Cohen, Y.; Dreyfuss, D.; Pérez-Fernandez, X.; Gaudry, S. Severe Acute Kidney Injury in Patients with COVID-19 and Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2020, 202, 1299–1301. [Google Scholar] [CrossRef]
- Del Vecchio, L.; Locatelli, F. Hypoxia Response and Acute Lung and Kidney Injury: Possible Implications for Therapy of COVID-19. Clin. Kidney J. 2020, 13, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Diebold, M.; Zimmermann, T.; Dickenmann, M.; Schaub, S.; Bassetti, S.; Tschudin-Sutter, S.; Bingisser, R.; Heim, C.; Siegemund, M.; Osswald, S.; et al. Comparison of Acute Kidney Injury in Patients with COVID-19 and Other Respiratory Infections: A Prospective Cohort Study. J. Clin. Med. 2021, 10, 2288. [Google Scholar] [CrossRef]
- Nardo, A.D.; Schneeweiss-Gleixner, M.; Bakail, M.; Dixon, E.D.; Lax, S.F.; Trauner, M. Pathophysiological Mechanisms of Liver Injury in COVID-19. Liver Int. 2021, 41, 20–32. [Google Scholar] [CrossRef]
- Berlin, D.A.; Gulick, R.M.; Martinez, F.J. Severe COVID-19. N. Engl. J. Med. 2020, 383, 2451–2460. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Li, C. Little’s Test of Missing Completely at Random. Stata J. 2013, 13, 795–809. [Google Scholar] [CrossRef] [Green Version]
- Do, C.B.; Batzoglou, S. What Is the Expectation Maximization Algorithm? Nat. Biotechnol. 2008, 26, 897–899. [Google Scholar] [CrossRef]
- Bernier-Jean, A.; Beaubien-Souligny, W.; Goupil, R.; Madore, F.; Paquette, F.; Troyanov, S.; Bouchard, J. Diagnosis and Outcomes of Acute Kidney Injury Using Surrogate and Imputation Methods for Missing Preadmission Creatinine Values. BMC Nephrol. 2017, 18, 141. [Google Scholar] [CrossRef] [Green Version]
- Kellum, J.A.; Lameire, N. Diagnosis, Evaluation, and Management of Acute Kidney Injury: A KDIGO Summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singbartl, K.; Kellum, J.A. AKI in the ICU: Definition, Epidemiology, Risk Stratification, and Outcomes. Kidney Int. 2012, 81, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Mesa, J.E.; Galindo-Coral, S.; Montes, M.C.; Muñoz Martin, A.J. Thrombosis and Coagulopathy in COVID-19. Curr. Probl. Cardiol. 2021, 46, 100742. [Google Scholar] [CrossRef]
- Asakura, H.; Ogawa, H. COVID-19-Associated Coagulopathy and Disseminated Intravascular Coagulation. Int. J. Hematol. 2021, 113, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Amraei, R.; Rahimi, N. COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Cells 2020, 9, 1652. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Shao, S.-C.; Hsu, C.-K.; Wu, I.-W.; Hung, M.-J.; Chen, Y.-C. Incidence of Acute Kidney Injury in COVID-19 Infection: A Systematic Review and Meta-Analysis. Crit. Care 2020, 24, 346. [Google Scholar] [CrossRef]
- Hardenberg, J.-H.B.; Stockmann, H.; Eckardt, K.-U.; Schmidt-Ott, K.M. COVID-19 and acute kidney injury in the intensive care unit. Nephrologe 2021, 16, 20–25.e1. [Google Scholar] [CrossRef]
- Ng, J.H.; Hirsch, J.S.; Hazzan, A.; Wanchoo, R.; Shah, H.H.; Malieckal, D.A.; Ross, D.W.; Sharma, P.; Sakhiya, V.; Fishbane, S.; et al. Outcomes Among Patients Hospitalized with COVID-19 and Acute Kidney Injury. Am. J. Kidney Dis. 2021, 77, 204–215.e1. [Google Scholar] [CrossRef]
- Kolhe, N.V.; Fluck, R.J.; Selby, N.M.; Taal, M.W. Acute Kidney Injury Associated with COVID-19: A Retrospective Cohort Study. PLOS Med. 2020, 17, e1003406. [Google Scholar] [CrossRef] [PubMed]
- McNicholas, B.A.; Rezoagli, E.; Simpkin, A.J.; Khanna, S.; Suen, J.Y.; Yeung, P.; Brodie, D.; Li Bassi, G.; Pham, T.; Bellani, G.; et al. Epidemiology and Outcomes of Early-Onset AKI in COVID-19-Related ARDS in Comparison with Non-COVID-19-Related ARDS: Insights from Two Prospective Global Cohort Studies. Critical. Care 2023, 27, 3. [Google Scholar] [CrossRef]
- Fabrizi, F.; Alfieri, C.M.; Cerutti, R.; Lunghi, G.; Messa, P. COVID-19 and Acute Kidney Injury: A Systematic Review and Meta-Analysis. Pathogens 2020, 9, 1052. [Google Scholar] [CrossRef]
- Lumlertgul, N.; Pirondini, L.; Cooney, E.; Kok, W.; Gregson, J.; Camporota, L.; Lane, K.; Leach, R.; Ostermann, M. Acute Kidney Injury Prevalence, Progression and Long-Term Outcomes in Critically Ill Patients with COVID-19: A Cohort Study. Ann. Intensive Care 2021, 11, 123. [Google Scholar] [CrossRef]
- Flythe, J.E.; Assimon, M.M.; Tugman, M.J.; Chang, E.H.; Gupta, S.; Shah, J.; Sosa, M.A.; Renaghan, A.D.; Melamed, M.L.; Wilson, F.P.; et al. Characteristics and Outcomes of Individuals with Pre-Existing Kidney Disease and COVID-19 Admitted to Intensive Care Units in the United States. Am. J. Kidney Dis. 2021, 77, 190–203.e1. [Google Scholar] [CrossRef]
- Piñeiro, G.J.; Molina-Andújar, A.; Hermida, E.; Blasco, M.; Quintana, L.F.; Rojas, G.M.; Mercadal, J.; Castro, P.; Sandoval, E.; Andrea, R.; et al. Severe Acute Kidney Injury in Critically Ill COVID-19 Patients. J. Nephrol. 2021, 34, 285–293. [Google Scholar] [CrossRef]
- Wang, F.; Ran, L.; Qian, C.; Hua, J.; Luo, Z.; Ding, M.; Zhang, X.; Guo, W.; Gao, S.; Gao, W.; et al. Epidemiology and Outcomes of Acute Kidney Injury in COVID-19 Patients with Acute Respiratory Distress Syndrome: A Multicenter Retrospective Study. Blood Purif. 2021, 50, 499–505. [Google Scholar] [CrossRef]
- Golmai, P.; Larsen, C.P.; DeVita, M.V.; Wahl, S.J.; Weins, A.; Rennke, H.G.; Bijol, V.; Rosenstock, J.L. Histopathologic and Ultrastructural Findings in Postmortem Kidney Biopsy Material in 12 Patients with AKI and COVID-19. J. Am. Soc. Nephrol. 2020, 31, 1944–1947. [Google Scholar] [CrossRef] [PubMed]
- Shetty, A.A.; Tawhari, I.; Safar-Boueri, L.; Seif, N.; Alahmadi, A.; Gargiulo, R.; Aggarwal, V.; Usman, I.; Kisselev, S.; Gharavi, A.G.; et al. COVID-19-Associated Glomerular Disease. J. Am. Soc. Nephrol. 2021, 32, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Volbeda, M.; Jou-Valencia, D.; van den Heuvel, M.C.; Zijlstra, J.G.; Franssen, C.F.M.; van der Voort, P.H.J.; Moser, J.; van Meurs, M. Acute and Chronic Histopathological Findings in Renal Biopsies in COVID-19. Clin. Exp. Med. 2022, 1–12. [Google Scholar] [CrossRef]
- Ng, J.H.; Bijol, V.; Sparks, M.A.; Sise, M.E.; Izzedine, H.; Jhaveri, K.D. Pathophysiology and Pathology of Acute Kidney Injury in Patients With COVID-19. Adv. Chronic Kidney Dis. 2020, 27, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Santoriello, D.; Khairallah, P.; Bomback, A.S.; Xu, K.; Kudose, S.; Batal, I.; Barasch, J.; Radhakrishnan, J.; D’Agati, V.; Markowitz, G. Postmortem Kidney Pathology Findings in Patients with COVID-19. J. Am. Soc. Nephrol. 2020, 31, 2158–2167. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal Coagulation Parameters Are Associated with Poor Prognosis in Patients with Novel Coronavirus Pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Larsen, C.P.; Hernandez-Arroyo, C.F.; Mohamed, M.M.B.; Caza, T.; Sharshir, M.; Chughtai, A.; Xie, L.; Gimenez, J.M.; Sandow, T.A.; et al. AKI and Collapsing Glomerulopathy Associated with COVID-19 and APOL 1 High-Risk Genotype. J. Am. Soc. Nephrol. 2020, 31, 1688–1695. [Google Scholar] [CrossRef]
- Alexander, M.P.; Mangalaparthi, K.K.; Madugundu, A.K.; Madugundu, A.K.; Moyer, A.M.; Adam, B.; Mengel, M.; Smrita, S.; Singh, S.; Singh, S.K.; et al. Acute Kidney Injury in Severe COVID-19 Has Similarities to Sepsis-Associated Kidney Injury: A Multi-Omics Study. Mayo Clinic Proc. 2021, 96, 2561–2575. [Google Scholar] [CrossRef]
- Volbeda, M.; Jou-Valencia, D.; van den Heuvel, M.C.; Knoester, M.; Zwiers, P.J.; Pillay, J.; Berger, S.P.; van der Voort, P.H.J.; Zijlstra, J.G.; van Meurs, M.; et al. Comparison of Renal Histopathology and Gene Expression Profiles between Severe COVID-19 and Bacterial Sepsis in Critically Ill Patients. Crit. Care 2021, 25, 202. [Google Scholar] [CrossRef]
- Tocilizumab in Patients Admitted to Hospital with COVID-19 (RECOVERY): A Randomised, Controlled, Open-Label, Platform Trial. Lancet 2021, 397, 1637–1645. [CrossRef]
- Orieux, A.; Khan, P.; Prevel, R.; Gruson, D.; Rubin, S.; Boyer, A. Impact of Dexamethasone Use to Prevent from Severe COVID-19-Induced Acute Kidney Injury. Crit. Care 2021, 25, 249. [Google Scholar] [CrossRef] [PubMed]
- Saggi, S.J.; Nath, S.; Culas, R.; Chittalae, S.; Burza, A.; Srinivasan, M.; Abdul, R.; Silver, B.; Lora, A.; Ibtida, I.; et al. Early Experience with Methylprednisolone on SARS-CoV-2 Infection in the African American Population, a Retrospective Analysis. Clin. Med. Insights Circ. Respir. Pulm. Med. 2020, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [CrossRef] [PubMed]
- Malas, M.B.; Naazie, I.N.; Elsayed, N.; Mathlouthi, A.; Marmor, R.; Clary, B. Thromboembolism Risk of COVID-19 Is High and Associated with a Higher Risk of Mortality: A Systematic Review and Meta-Analysis. EClinicalMedicine 2020, 29, 100639. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Q.; Xia, X.; Liu, K.; Yu, Z.; Tao, W.; Gong, W.; Han, J.-D.J. Individual Variation of the SARS-CoV-2 Receptor ACE2 Gene Expression and Regulation. Aging Cell 2020, 19, e13168. [Google Scholar] [CrossRef]
- Monteonofrio, L.; Florio, M.C.; AlGhatrif, M.; Lakatta, E.G.; Capogrossi, M.C. Aging- and Gender-Related Modulation of RAAS: Potential Implications in COVID-19 Disease. Vasc. Biol. 2021, 3, R1–R14. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, L.; Ma, Y.; Zhai, M.; Xia, L.; Liu, J.; Yu, S.; Duan, W. The Role of SARS-CoV-2 Target ACE2 in Cardiovascular Diseases. J. Cell. Mol. Med. 2021, 25, 1342–1349. [Google Scholar] [CrossRef]
- Baker, S.A.; Kwok, S.; Berry, G.J.; Montine, T.J. Angiotensin-Converting Enzyme 2 (ACE2) Expression Increases with Age in Patients Requiring Mechanical Ventilation. PLoS ONE 2021, 16, e0247060. [Google Scholar] [CrossRef]
- Tikellis, C.; Thomas, M.C. Angiotensin-Converting Enzyme 2 (ACE2) Is a Key Modulator of the Renin Angiotensin System in Health and Disease. Int. J. Pept. 2012, 2012, 256294. [Google Scholar] [CrossRef]
- Bartleson, J.M.; Radenkovic, D.; Covarrubias, A.J.; Furman, D.; Winer, D.A.; Verdin, E. SARS-CoV-2, COVID-19 and the Aging Immune System. Nat. Aging 2021, 1, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Keidar, S.; Kaplan, M.; Gamliel-Lazarovich, A. ACE2 of the Heart: From Angiotensin I to Angiotensin (1–7). Cardiovasc. Res. 2007, 73, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Oudit, G.Y.; Kassiri, Z.; Patel, M.P.; Chappell, M.; Butany, J.; Backx, P.H.; Tsushima, R.G.; Scholey, J.W.; Khokha, R.; Penninger, J.M. Angiotensin II-Mediated Oxidative Stress and Inflammation Mediate the Age-Dependent Cardiomyopathy in ACE2 Null Mice. Cardiovasc. Res. 2007, 75, 29–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Non-AKI (n = 130) | AKI (n = 119) | p | OR | 95% CI | |
---|---|---|---|---|---|
Age | 66 (58, 77) | 73 (65, 82) | 0.001 | ||
Race (Caucasian) | 88 (68%) | 89 (75%) | 0.22 | 1.41 | 0.81–2.46 |
BMI | 29 (24.33) | 29 (24, 35) | 0.62 | ||
Sex (male) | 71 (55%) | 77 (65%) | 0.10 | 1.52 | 0.91–2.53 |
Diabetes | 35 (27%) | 41 (35%) | 0.19 | 1.42 | 0.83–2.40 |
CHF | 13 (10%) | 17 (14%) | 0.28 | 1.51 | 0.70–3.30 |
CAD | 32 (25%) | 29 (24%) | 0.96 | 0.99 | 0.55–1.80 |
COPD | 33 (25%) | 27 (23%) | 0.62 | 0.86 | 0.48–1.55 |
CKD | 11 (8%) | 15 (13%) | 0.28 | 1.56 | 0.69–3.60 |
HTN | 65 (50%) | 70 (60%) | 0.26 | 1.42 | 0.86–2.30 |
Cirrhosis | 2 (1.5%) | 2 (1.7%) | 1.0 | 1.09 | 0.15–7.9 |
Malignancy | 14 (11%) | 13 (11%) | 0.96 | 1.01 | 0.45–2.26 |
CVA | 13 (10%) | 14 (12%) | 0.65 | 1.2 | 0.53–2.7 |
Mechanical ventilation | 79 (61%) | 94 (79%) | 0.002 | 2.42 | 1.38–4.20 |
Neutrophiles × 109/L | 7.6 (4.4, 12) | 7.6 (5, 13) | 0.62 | ||
Lymphocytes × 109/L | 0.8 (0.5, 1.3) | 0.8 (0.5, 1.2.) | 0.98 | ||
Neutrophile/lymphocyte | 8.8 (5.1, 16) | 9.8 (5.2, 16) | 0.64 | ||
SCr (µmole/L) | 84 (60, 127) | 134.4 (97, 177) | 0.00001 | ||
Plts × 109/L | 246 (136, 308) | 230 (164, 301) | 0.44 | ||
Tbili (µmole/L) | 9.41 (6.8, 13.7) | 8.5 (6.8, 15.4) | 0.97 | ||
SOFA admit | 3 (2, 6) | 5 (3, 8) | 0.00001 | ||
PaO2/FIO2 | 200 (100, 286) | 201 (94, 314) | 0.95 | ||
Pa02 | 9.4 (7.4, 12.4) | 10 (8.6, 11) | 0.64 | ||
FI02 | 0.36 (0.21, 1) | 0.38 (0.23, 1) | 0.72 |
Non-AKI (n = 130) | AKI (n = 119) | p | OR | 95% CI | |
---|---|---|---|---|---|
Vasopressors | 66 (50%) | 86 (72%) | 0.009 | 2.58 | 1.25–5.31 |
IV Ascorbic acid | 79 (60%) | 71 (60%) | 0.85 | 0.95 | 0.59–1.60 |
Hydroxychloroquine | 98 (78%) | 94 (79%) | 0.91 | 1.036 | 0.56–1.91 |
Azithromycin | 37 (29%) | 50 (42%) | 0.040 | 1.74 | 1.030–2.95 |
Heparin full dose | 72 (55%) | 54 (45%) | 0.13 | 0.67 | 0.41–1.10 |
Heparin DVT prophylaxis | 37 (29%) | 48 (40%) | 0.06 | 1.69 | 1.002–2.38 |
Convalescent plasma | 38 (29%) | 27 (23%) | 0.24 | 0.71 | 0.40–1.25 |
Remdesivir | 5 (4%) | 1 (0.9) | 0.21 | 0.20 | 0.024–1.84 |
Tocilizumab | 10 (7.7%) | 16 (13.6%) | 0.14 | 1.86 | 0.80–4.30 |
Corticosteroids only | 39 (30%) | 30 (25%) | 0.39 | 0.80 | 0.46–1.40 |
Tocilizumab and steroids | 57 (44%) | 35 (29%) | 0.018 | 0.53 | 0.31–0.90 |
Non-AKI (n = 130) | AKI (n = 119) | p | |
---|---|---|---|
D-Dimer day 1 (ng/mL) | 734 (510,1340) | 1169 (470,3680) | 0.049 |
D-Dimer day 2 | 727 (487,1592) | 1380 (471,3680) | 0.12 |
CRP day 1 (mg/L) | 108 (52,172) | 137 (84,178) | 0.26 |
CRP day 2 | 105 (46,156) | 128 (83,212) | 0.026 |
Ferritin day 1 (ng/mL) | 732 (450,1316) | 1017 (536,1580) | 0.20 |
Ferritin day 2 | 839 (524,1665) | 906 (567,1756) | 0.61 |
Beta | S.E | p | OR | 95% CI | |
---|---|---|---|---|---|
SCr | 0.878 | 0.221 | 0.0001 | 2.406 | 1.56–3.70 |
Vasopressor requirement | 1.159 | 0.321 | 0.0001 | 3.188 | 1.69–5.98 |
Tocilizumab plus CC | −0.827 | 0.317 | 0.009 | 0.437 | 0.23–0.81 |
D-Dimer day 1 | 0.000 | 0.000 | 0.008 | 1.0001 | 1.000–1.001 |
CRP day 2 | 0.004 | 0.002 | 0.033 | 1.004 | 1.0001–1.009 |
Survivors (n = 87) | Non-Survivors (n = 162) | p | OR | 95% CI | |
---|---|---|---|---|---|
Age | 66 (51, 75) | 73 (63, 82) | 0.00001 | ||
Race (Caucasian) | 54 (62%) | 123 (76%) | 0.021 | 1.9 | 1.09–3.40 |
BMI | 28.9 (24.33) | 29 (24, 35) | 0.62 | ||
Sex (male) | 50 (57%) | 98 (60%) | 0.64 | 1.06 | 0.66–1.92 |
Diabetes | 18 (21%) | 58 (36%) | 0.014 | 2.1 | 1.16–3.90 |
CHF | 8 (9%) | 22 (14%) | 0.30 | 1.56 | 0.66–3.60 |
CAD | 18 (21%) | 43 (26%) | 0.30 | 1.38 | 0.74–2.6 |
COPD | 22 (25%) | 38 (23%) | 0.74 | 0.9 | 0.50–1.6 |
CKD | 8 (7%) | 20 (12%) | 0.18 | 1.90 | 0.73–4.90 |
HTN | 39 (45%) | 96 (59%) | 0.029 | 1.80 | 1.06–3.0 |
AKI | 31 (35%) | 88 (54%) | 0.005 | 2.14 | 1.25–3.70 |
Cirrhosis | 0 (0%) | 4 (2%) | 0.3 | 0.64 | 0.58–0.7 |
Malignancy | 7 (8%) | 20 (12%) | 0.39 | 1.61 | 0.65–3.97 |
CVA | 9 (10%) | 18 (11%) | 0.85 | 1.1 | 0.46–2.52 |
Mechanical ventilation | 43 (49%) | 130 (80%) | 0.00001 | 4.10 | 2.3–7.30 |
Dialysis * | 3 (3.4%) | 20 (12%) | 0.022 | 3.94 | 1.13–13.6 |
Neutrophiles × 109/L | 8 (4.5, 13) | 7.4 (5, 11.7) | 0.67 | ||
Lymphocytes × 109/L | 0.9 (0.6, 1.6) | 0.7 (0.5, 1.1) | 0.010 | ||
Neutrophile/lymphocyte | 7.6 (4.3, 14) | 10 (6, 18.4) | 0.03 | ||
SCr µmoles/L) | 95.4 (55.2, 141.4) | 106 (72.5, 155) | 0.12 | ||
Plts × 109/L | 262 (195, 326) | 226 (151, 279) | 0.019 | ||
Tbili (µmoles/L) | 8.5 (5.1, 12) | 10.3 (6.8, 16.4) | 0.012 | ||
SOFA | 4 (2, 6) | 4 (3, 7) | 0.095 | ||
PaO2/FIO2 | 231 (118, 310) | 191 (79, 286) | 0.051 | ||
Pa02 KPa | 9.7 (7.8, 13) | 9.2 (7.3, 11.4) | 0.14 | ||
FI02 | 0.36 (0.29, 0.96) | 0.40 (0.21, 1.0) | 0.12 |
Survivor (n = 31) | Non-Survivor (n = 88) | p | OR | 95% CI | |
---|---|---|---|---|---|
Age | 69 (63, 77) | 75 (65, 82) | 0.1 | ||
Race (Caucasian) | 19 (63%) | 69 (78%) | 0.10 | 2.10 | 0.85–5.1 |
BMI | 26 (24.32) | 29 (25, 36) | 0.10 | ||
Sex (male) | 18 (60%) | 58 (66%) | 0.50 | 1.20 | 0.52–3.0 |
Diabetes | 11 (36%) | 30 (34%) | 0.80 | 0.89 | 0.38–2.10 |
CHF | 5 (17%) | 12 (14%) | 0.70 | 0.8 | 0.25–2.50 |
CAD | 9 (30%) | 20 (23%) | 0.40 | 0.68 | 0.27–1.70 |
COPD | 33 (25%) | 27 (33%) | 0.67 | 0.88 | 0.49–1.58 |
CKD | 6 (20%) | 9 (10%) | 0.16 | 0.6 | 0.23–1.50 |
HTN | 18 (60%) | 51 (58%) | 0.84 | 0.9 | 0.39–2.10 |
Cirrhosis | 0 (0%) | 2 (2.3%) | 1.0 | 0,75 | 0.66–0.82 |
Malignancy | 4 (13% | 9 (10, 2%) | 0.74 | 0.77 | 0.22–2.7 |
CVA | 6 (19%) | 8 (9%) | 0.13 | 0.42 | 0.13–1.32 |
Mechanical ventilation | 16 (53%) | 77 (87%) | 0.00001 | 6.1 | 2.30–16.0 |
Dialysis * | 3 (9.7%) | 20 (22.7%) | 0.18 | 2.78 | 0.75–9.98 |
Neutrophiles × 109/L | 7.7 (4.6, 14) | 7.5 (5.3, 13) | 0.49 | ||
Lymphocytes × 109/L | 1.0 (0.67, 1.9) | 0.7 (0.5, 1.) | 0.004 | ||
Neutrophile/lymphocyte | 7.30 (3.8, 12.6) | 10.5 (6, 19) | 0.009 | ||
SCr µmole/L | 159 (115, 256.4) | 132.6 (88.4, 177.6) | 0.04 | ||
Plts × 109/L | 281 (212, 326) | 223 (141, 277) | 0.010 | ||
Tbili µmole/L | 6.8 (5.1, 13.7) | 8.5 (6.8, 15.4) | 0.12 | ||
SOFA admit | 4.5 (3, 8.5.5) | 5 (3, 8) | 0.80 | ||
PaO2/FIO2 | 227 (122, 307) | 200 (74, 313) | 0.25 | ||
Pa02 KPa | 9.8 (8, 12) | 9 (7.2, 11.3) | 0.10 | ||
FI02 | 0.34 (0.25, 0.96) | 0.42 (0.21, 1) | 0.40 |
Survivor (n = 56) | Non-Survivor (n = 74) | p | OR | 95% CI | |
---|---|---|---|---|---|
Age | 62 (44, 68) | 70 (63, 80) | 0.00001 | ||
Race (Caucasian) | 34 (60%) | 54 (73%) | 0.14 | 1.70 | 0.81–3.70 |
BMI | 29 (26.34) | 29 (24, 33) | 0.52 | ||
Sex (male) | 31 (55%) | 40 (54%) | 0.88 | 0.95 | 0.47–1.90 |
Diabetes | 7 (12%) | 28 (38%) | 0.001 | 4.3 | 1.70–11.0 |
CHF | 3 (5.4%) | 10 (13%) | 0.13 | 2.8 | 0.72–10.5 |
CAD | 9 (16%) | 23 (31%) | 0.049 | 2.40 | 1.0–5.70 |
COPD | 13 (23%) | 20 (27%) | 0.6 | 1.22 | 0.54–2.70 |
CKD | 0 (0%) | 11 (15%) | 0.003 | 9.9 | 1.20–79.0 |
HTN | 21 (37%) | 45 (61%) | 0.005 | 2.79 | 1.36–5.70 |
Cirrhosis | 0 (0%) | 2 (2.7%) | 0.50 | 0.56 | 0.48–0.65 |
Malignancy | 3 (5.4%) | 11 (15%) | 0.095 | 3.1 | 0.82–11.6 |
CVA | 3 (5.4%) | 10 (13.5%) | 0.15 | 2.76 | 0.72–10.4 |
Mechanical ventilation | 26 (47%) | 53 (71%) | 0.005 | 2.90 | 1.4–6.0 |
Neutrophiles × 109/L | 8.6 (4.6, 15.0) | 6.6 (4.4, 10.5) | 0.22 | ||
Lymphocytes × 109/L | 0.9 (0.5, 1.40) | 0.7 (0.5, 1.2) | 0.35 | ||
Neutrophile/lymphocyte | 8 (5, 15.3) | 9 (6, 17) | 0.64 | ||
SCr (µmoles/L) | 79.5 (53, 97) | 88.4 (62, 123.8) | 0.048 | ||
Plts × 109/L | 248 (176, 330) | 231 (164, 297) | 0.30 | ||
Tbili µmoles/L | 49.2 (5.1, 12) | 10.2 (7.7, 13.6) | 0.03 | ||
SOFA admit | 3 (2.0.5.0) | 4 (3, 6) | 0.17 | ||
PaO2/FIO2 | 230 (116, 309) | 190 (98, 261) | 0.12 | ||
Pa02 KPa | 9.7 (7.3, 12.7) | 9.2 (7.4, 11.4) | 0.53 | ||
FI02 | 0.36 (0.21, 0.96) | 0.40 (0.26, 1) | 0.29 |
Non-Survivor (n = 162) | Survivor (n = 87) | p | OR | 95% CI | |
---|---|---|---|---|---|
Vasopressors | 119 (73%) | 33 (38%) | 0.00001 | 4.50 | 2.60–7.90 |
IV Ascorbic acid | 99 (59%) | 51 (59%) | 0.70 | 1.1 | 0.66–1.89 |
Hydroxychloroquine | 124 (78%) | 68 (80%) | 0.71 | 0.88 | 0.46–1.69 |
Azithromycin | 63 (40%) | 24 (28%) | 0.071 | 1.69 | 0.97–3.0 |
Heparin full dose | 79 (49%) | 47 (54%) | 0.51 | 0.80 | 0.48–1.36 |
Heparin DVT prophylaxis | 54 (33%) | 31 (36%) | 0.8 | 0.90 | 0.52–1.60 |
Convalescent plasma | 42 (26%) | 23 (26%) | 0.93 | 0.97 | 0.54–1.76 |
Remdesivir | 6 (3%) | 0 (0) | 0.094 | 0.64 | 0.680.70 |
Tocilizumab | 18 (11%) | 8 (9.2%) | 0.80 | 1.23 | 0.51–2.98 |
Corticosteroids only | 44 (27%) | 25 (28%) | 0.47 | 0.80 | 0.48–1.40 |
Tocilizumab and steroids | 55 (34%) | 37 (42%) | 0.18 | 0.69 | 0.40–1.86 |
Survivors (n = 31) | Non-Survivors (n = 88) | p | OR | 95% CI | |
---|---|---|---|---|---|
Vasopressors | 14 (48%) | 72 (82%) | 0.00001 | 4.8 | 2.0–12.0 |
IV Ascorbic acid | 21 (68%) | 50 (57%) | 0.28 | 0.62 | 0.26–1.48 |
Hydroxychloroquine | 22 (71%) | 72 (82%) | 0.21 | 1.84 | 0.71–4.70 |
Azithromycin | 11 (35%) | 39 (44%) | 0.39 | 1.44 | 0.62–3.37 |
Heparin full dose | 18 (58%) | 36 (41%) | 0.09 | 0.50 | 0.22–1.15 |
Heparin DVT prophylaxis | 11 (36%) | 37 (41%) | 0.090 | 0.50 | 0.22–3.10 |
Convalescent plasma | 7 (23%) | 20 (23%) | 0.94 | 0.96 | 0.36–2.68 |
Remdesivir | 0 (0%) | 1 (0.9) | 0.5 | 0.73 | 0.66–0.82 |
Tocilizumab | 5 (16%) | 11 (12%) | 0.56 | 0.76 | 0.3–1.9 |
Corticosteroids only | 9 (29%) | 21 (23%) | 0.57 | 1.12 | 0.52–2.4 |
Tocilizumab and steroids | 12 (39%) | 23 (26%) | 0.18 | 0.56 | 0.23–1.33 |
Survivors (n = 56) | Non-Survivors (n = 74) | p | OR | 95% CI | |
---|---|---|---|---|---|
Vasopressors | 18 (32%) | 47 (63%) | 0.00001 | 3.67 | 1.76–7.65 |
IV Ascorbic acid | 30 (54%) | 49 (66%) | 0.14 | 1.70 | 0.83–3.50 |
Hydroxychloroquine | 46 (85%) | 52 (73%) | 0.11 | 0.47 | 0.19–1.20 |
Azithromycin | 13 (24%) | 24 (34%) | 0.21 | 1.65 | 0.75–3.64 |
Heparin full dose | 29 (52%) | 43 (58%) | 0.47 | 1.29 | 0.64–2.60 |
Heparin DVT prophylaxis | 20 (36%) | 17 (44%) | 0.10 | 0.53 | 0.25–1.20 |
Convalescent plasma | 16 (28%) | 22 (30%) | 0.86 | 1.06 | 0.49–2.27 |
Remdesivir | 0 (0%) | 5 (6.8) | 0.070 | 0.54 | 0.46–0.64 |
Tocilizumab | 3 (5%) | 7 (9%) | 0.51 | 1.86 | 0.45–7.50 |
Corticosteroids only | 16 (29%) | 23 (31%) | 0.75 | 1.12 | 0.69–1.66 |
Tocilizumab and steroids | 25 (44%) | 32 (43%) | 0.87 | 0.94 | 0.47–1.90 |
All ICU Patients | Survivors (n = 87) | Non-Survivors (n = 162) | p |
---|---|---|---|
D-Dimer day 1 (ng/mL) | 636 (337,1502) | 852 (520,2309) | 0.069 |
D-Dimer day 2 | 1166 (548,3555) | 691 (436,1743) | 0.089 |
CRP day 1 (mg/L) | 134 (90,204) | 124 (61,175) | 0.41 |
CRP day 2 | 123 (47,171) | 115 (81,184) | 0.38 |
Ferritin day 1 (ng/mL) | 995 (352,1571) | 790 (400,1460) | 0.25 |
Ferritin day 2 | 987 (675,1888) | 822 (462,1478) | 0.12 |
ICU Patients without AKI | Survivors (n = 56) | Non-Survivors (n = 74) | p |
D-Dimer day 1 | 629 (330,1033) | 799 (632,1432) | 0.092 |
D-Dimer day 2 | 900 (548,1814) | 646 (481,839) | 0.12 |
CRP day 1 | 130 (58,232) | 103 (51,162) | 0.35 |
CRP day 2 | 97 (38,157) | 105 (73,152) | 0.59 |
Ferritin day 1 | 735 (471,1347) | 699 (416,1338) | 0.80 |
Ferritin day 2 | 987 (691,1972) | 748 (446,1374) | 0.19 |
ICU Patients with AKI | Survivors (n= 31) | Non-Survivors (n = 88) | p |
D-Dimer day 1 | 644 (335,3680) | 1219 (500,3083) | 0.71 |
D-Dimer day 2 | 2390 (543,3680) | 1182 (419,3436) | 0.28 |
CRP day 1 | 137 (93,169) | 140 (21,185) | 0.86 |
CRP day 2 | 140 (80,204) | 122 (83,223) | 0.89 |
Ferritin day 1 | 1390 (1003,2318) | 923 (320,1542) | 0.070 |
Ferritin day 2 | 1139 (657,2130) | 993 (447,1590) | 0.30 |
All ICU Patients | B | SE | p | HR | 95% CI |
---|---|---|---|---|---|
Age | 0.028 | 0.006 | 0.00001 | 1.028 | 1.016–1041 |
ICU Patients with AKI | |||||
SCr | −2.32 | 0.092 | 0.01 | 0.79 | 0.66–0.95 |
ICU Patients without AKI | |||||
Age | 0.043 | 0.01 | 0.00001 | 1.044 | 1.024–1.065 |
CKD | 0.97 | 0.34 | 0.004 | 2.65 | 1.37–5.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias, J.; Vassallo, A.; Ilagan, J.; Ang, S.P.; Udongwo, N.; Mararenko, A.; Alshami, A.; Patel, D.; Elbaga, Y.; Levine, J.S. Acute Kidney Injury Associated with Severe SARS-CoV-2 Infection: Risk Factors for Morbidity and Mortality and a Potential Benefit of Combined Therapy with Tocilizumab and Corticosteroids. Biomedicines 2023, 11, 845. https://doi.org/10.3390/biomedicines11030845
Iglesias J, Vassallo A, Ilagan J, Ang SP, Udongwo N, Mararenko A, Alshami A, Patel D, Elbaga Y, Levine JS. Acute Kidney Injury Associated with Severe SARS-CoV-2 Infection: Risk Factors for Morbidity and Mortality and a Potential Benefit of Combined Therapy with Tocilizumab and Corticosteroids. Biomedicines. 2023; 11(3):845. https://doi.org/10.3390/biomedicines11030845
Chicago/Turabian StyleIglesias, Jose, Andrew Vassallo, Justin Ilagan, Song Peng Ang, Ndausung Udongwo, Anton Mararenko, Abbas Alshami, Dylon Patel, Yasmine Elbaga, and Jerrold S. Levine. 2023. "Acute Kidney Injury Associated with Severe SARS-CoV-2 Infection: Risk Factors for Morbidity and Mortality and a Potential Benefit of Combined Therapy with Tocilizumab and Corticosteroids" Biomedicines 11, no. 3: 845. https://doi.org/10.3390/biomedicines11030845
APA StyleIglesias, J., Vassallo, A., Ilagan, J., Ang, S. P., Udongwo, N., Mararenko, A., Alshami, A., Patel, D., Elbaga, Y., & Levine, J. S. (2023). Acute Kidney Injury Associated with Severe SARS-CoV-2 Infection: Risk Factors for Morbidity and Mortality and a Potential Benefit of Combined Therapy with Tocilizumab and Corticosteroids. Biomedicines, 11(3), 845. https://doi.org/10.3390/biomedicines11030845