Quantitative Image Processing for Three-Dimensional Episcopic Images of Biological Structures: Current State and Future Directions
Abstract
:1. Introduction
1.1. Background on Episcopic Imaging Techniques
1.2. The Importance of Quantitative Image Analysis
1.3. Methods of Quantitative Imaging
2. Methods
- Year
- Contrast type
- Structure under investigation
- Model organism
- Was annotation performed?
- If yes: was this segmentation, object detection, or both?
- Was quantitative data presented?
- Method of annotation /quantification—organized into categories determined during analysis
- Software used
- Was the raw image data deposited in an online repository?
- The type of publication (paper, conference paper, thesis)
3. Results
3.1. Trends in Prevalence of Quantification
3.2. Trends in Methods of Quantification
- Scoring/counting of abnormalities (as defined in an atlas)
- Object counting (no agreed ontology needed)
- Registration based
- Hand 2D measurements of anatomic features after reslicing data
- 3D morphological analysis, for example: volumes, networks
- Fractal analysis of heart (standardized method)
- Other (for example, orientation of fibers)
3.3. Methods of Image Annotation
4. Discussion
5. Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weninger, W.J.; Geyer, S.H.; Mohun, T.J.; Rasskin-Gutman, D.; Matsui, T.; Ribeiro, I.; Costa, L.D.F.; Izpisúa-Belmonte, J.C.; Müller, G.B. High-Resolution Episcopic Microscopy: A Rapid Technique for High Detailed 3D Analysis of Gene Activity in the Context of Tissue Architecture and Morphology. Anat. Embryol. 2006, 211, 213–221. [Google Scholar] [CrossRef]
- Walsh, C.; Holroyd, N.A.; Finnerty, E.; Ryan, S.G.; Sweeney, P.W.; Shipley, R.J.; Walker-Samuel, S. Multifluorescence High-Resolution Episcopic Microscopy for 3D Imaging of Adult Murine Organs. Adv. Photonics Res. 2021, 2, 2100110. [Google Scholar] [CrossRef]
- Weninger, W.J.; Mohun, T.J. Three-Dimensional Analysis of Molecular Signals with Episcopic Imaging Techniques. In Methods in Molecular Biology (Clifton, N.J.); Humana Press Inc.: Totowa, NJ, USA, 2007; Volume 411, pp. 35–46. ISBN 1064-3745. [Google Scholar]
- Brown, S.D.M.; Moore, M.W.; Baldock, R.; Bhattacharya, S.; Copp, A.J.; Hemberger, M.; Houart, C.; Hurles, M.E.; Robertson, E.; Smith, J.C.; et al. Towards an Encyclopaedia of Mammalian Gene Function: The International Mouse Phenotyping Consortium. Dis. Model. Mech. 2012, 5, 289–292. [Google Scholar] [CrossRef] [Green Version]
- Waheed, A.A.; Rao, K.S.; Gupta, P.D. Mechanism of Dye Binding in the Protein Assay Using Eosin Dyes. Anal. Biochem. 2000, 287, 73–79. [Google Scholar] [CrossRef]
- Weninger, W.J.; Mohun, T. Phenotyping Transgenic Embryos: A Rapid 3-D Screening Method Based on Episcopic Fluorescence Image Capturing. Nat. Genet. 2002, 30, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Hakimzadeh, N.; van Lier, M.G.J.T.B.; van Horssen, P.; Daal, M.; Ly, D.H.; Belterman, C.; Coronel, R.; Spaan, J.A.E.; Siebes, M. Selective Subepicardial Localization of Monocyte Subsets in Response to Progressive Coronary Artery Constriction. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H239–H250. [Google Scholar] [CrossRef] [Green Version]
- Symvoulidis, P.; Cruz Pérez, C.; Schwaiger, M.; Ntziachristos, V.; Westmeyer, G.G. Serial Sectioning and Multispectral Imaging System for Versatile Biomedical Applications. In Proceedings of the 2014 IEEE 11th International Symposium on Biomedical Imaging, Beijing, China, 29 April–2 May 2014; pp. 890–893. [Google Scholar] [CrossRef]
- Geyer, S.H.; Nöhammer, M.M.; Mathä, M.; Reissig, L.; Tinhofer, I.E.; Weninger, W.J. High-Resolution Episcopic Microscopy (HREM): A Tool for Visualizing Skin Biopsies. Microsc. Microanal. 2014, 20, 1356–1364. [Google Scholar] [CrossRef]
- Geyer, S.H.; Nöhammer, M.M.; Tinhofer, I.E.; Weninger, W.J. The Dermal Arteries of the Human Thumb Pad. J. Anat. 2013, 223, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Tinhofer, I.E.; Zaussinger, M.; Geyer, S.H.; Meng, S.; Kamolz, L.P.; Tzou, C.H.J.; Weninger, W.J. The Dermal Arteries in the Cutaneous Angiosome of the Descending Genicular Artery. J. Anat. 2018, 232, 979–986. [Google Scholar] [CrossRef] [Green Version]
- Frangi, A.F.; Niessen, W.J.; Vincken, K.L.; Viergever, M.A. Multiscale Vessel Enhancement Filtering. In Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 1998; Volume 1496, pp. 130–137. [Google Scholar] [CrossRef] [Green Version]
- Mohun, T.; Adams, D.J.; Baldock, R.; Bhattacharya, S.; Copp, A.J.; Hemberger, M.; Houart, C.; Hurles, M.E.; Robertson, E.; Smith, J.C.; et al. Deciphering the Mechanisms of Developmental Disorders (DMDD): A New Programme for Phenotyping Embryonic Lethal Mice. Dis. Model. Mech. 2013, 6, 562–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupays, L.; Shang, C.; Wilson, R.; Kotecha, S.; Wood, S.; Towers, N.; Mohun, T. Sequential Binding of MEIS1 and NKX2-5 on the Popdc2 Gene: A Mechanism for Spatiotemporal Regulation of Enhancers during Cardiogenesis. Cell Rep. 2015, 13, 183–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geyer, S.H.; Reissig, L.F.; Hüsemann, M.; Höfle, C.; Wilson, R.; Prin, F.; Szumska, D.; Galli, A.; Adams, D.J.; White, J.; et al. Morphology, Topology and Dimensions of the Heart and Arteries of Genetically Normal and Mutant Mouse Embryos at Stages S21–S23. J. Anat. 2017, 231, 600–614. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, P.W.; Walsh, C.; Walker-Samuel, S.; Shipley, R.J. A Three-Dimensional, Discrete-Continuum Model of Blood Flow in Microvascular Networks. bioRxiv 2022. [Google Scholar] [CrossRef]
- Weninger, W.J.; Geyer, S.H.; Martineau, A.; Galli, A.; Adams, D.J.; Wilson, R.; Mohun, T.J. Phenotyping Structural Abnormalities in Mouse Embryos Using High-Resolution Episcopic Microscopy. Dis. Model. Mech. 2014, 7, 1143–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, R.; McGuire, C.; Mohun, T.; Adams, D.; Baldock, R.; Bhattacharya, S.; Collins, J.; Fineberg, E.; Firminger, L.; Galli, A.; et al. Deciphering the Mechanisms of Developmental Disorders: Phenotype Analysis of Embryos from Mutant Mouse Lines. Nucleic Acids Res. 2016, 44, D855–D861. [Google Scholar] [CrossRef] [Green Version]
- Captur, G.; Karperien, A.L.; Hughes, A.D.; Francis, D.P.; Moon, J.C. The Fractal Heart—Embracing Mathematics in the Cardiology Clinic. Nat. Rev. Cardiol. 2017, 14, 56. [Google Scholar] [CrossRef]
- Captur, G.; Ho, C.Y.; Schlossarek, S.; Kerwin, J.; Mirabel, M.; Wilson, R.; Rosmini, S.; Obianyo, C.; Reant, P.; Bassett, P.; et al. The Embryological Basis of Subclinical Hypertrophic Cardiomyopathy. Sci. Rep. 2016, 6, 27714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerqueira, M.D.; Weissman, N.J.; Dilsizian, V.; Jacobs, A.K.; Kaul, S.; Laskey, W.K.; Pennell, D.J.; Rumberger, J.A.; Ryan, T.; Verani, M.S. Standardized Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart. Circulation 2002, 105, 539–542. [Google Scholar] [CrossRef]
- Garcia-Canadilla, P.; Mohun, T.J.; Bijnens, B.; Cook, A.C. Detailed Quantification of Cardiac Ventricular Myocardial Architecture in the Embryonic and Fetal Mouse Heart by Application of Structure Tensor Analysis to High Resolution Episcopic Microscopic Data. Front. Cell Dev. Biol. 2022, 10, 1000684. [Google Scholar] [CrossRef]
- Garcia-Canadilla, P.; Cook, A.C.; Mohun, T.J.; Oji, O.; Schlossarek, S.; Carrier, L.; McKenna, W.J.; Moon, J.C.; Captur, G. Myoarchitectural Disarray of Hypertrophic Cardiomyopathy Begins Pre-Birth. J. Anat. 2019, 235, 962–976. [Google Scholar] [CrossRef]
- le Garrec, J.F.; Domínguez, J.N.; Desgrange, A.; Ivanovitch, K.D.; Raphaël, E.; Bangham, J.A.; Torres, M.; Coen, E.; Mohun, T.J.; Meilhac, S.M. A Predictive Model of Asymmetricmorphogenesis from 3D Reconstructionsof Mouse Heart Looping Dynamics. eLife 2017, 6, e28951. [Google Scholar] [CrossRef] [Green Version]
- Goyal, A.; Lee, J.; Lamata, P.; van den Wijngaard, J.; van Horssen, P.; Spaan, J.; Siebes, M.; Grau, V.; Smith, N.P. Model-Based Vasculature Extraction from Optical Fluorescence Cryomicrotome Images. IEEE Trans. Med. Imaging 2013, 32, 56–72. [Google Scholar] [CrossRef] [PubMed]
- Horssen, P. Multiscale Analysis of Coronary Branching and Collateral Connectivity: Coupling Vascular Structure and Perfusion in 3D. Ph.D. Thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands, 2012. [Google Scholar]
- Yap, C.H.; Liu, X.; Pekkan, K. Characterizaton of the Vessel Geometry, Flow Mechanics and Wall Shear Stress in the Great Arteries of Wildtype Prenatal Mouse. PLoS ONE 2014, 9, e86878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; He, Y.; Yang, Z.; Guo, C.; Luo, Q.; Zhou, W.; Chen, S.; Li, A.; Xiong, B.; Jiang, T.; et al. 3D BrainCV: Simultaneous Visualization and Analysis of Cells and Capillaries in a Whole Mouse Brain with One-Micron Voxel Resolution. Neuroimage 2014, 87, 199–208. [Google Scholar] [CrossRef]
- Xiao, H.; Peng, H. APP2: Automatic Tracing of 3D Neuron Morphology Based on Hierarchical Pruning of a Gray-Weighted Image Distance-Tree. Bioinformatics 2013, 29, 1448–1454. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.; Holroyd, N.; Shipley, R.; Walker-Samuel, S. Asymmetric Point Spread Function Estimation and Deconvolution for Serial-Sectioning Block-Face Imaging. In Communications in Computer and Information Science; Springer Nature: Berlin/Heidelberg, Germany, 2020; Volume 1248, pp. 235–249. [Google Scholar] [CrossRef]
- Gindes, L.; Matsui, H.; Achiron, R.; Mohun, T.; Ho, S.Y.; Gardiner, H. Comparison of Ex-Vivo High-Resolution Episcopic Microscopy with in-Vivo Four-Dimensional High-Resolution Transvaginal Sonography of the First-Trimester Fetal Heart. Ultrasound Obstet. Gynecol. 2012, 39, 196–202. [Google Scholar] [CrossRef]
- Maurer, B.; Geyer, S.H.; Weninger, W.J. A Chick Embryo with a yet Unclassified Type of Cephalothoracopagus Malformation and a Hypothesis for Explaining Its Genesis. J. Vet. Med. Ser. C Anat. Histol. Embryol. 2013, 42, 191–200. [Google Scholar] [CrossRef]
- Francis, R.J.B.; Christopher, A.; Devine, W.A.; Ostrowski, L.; Lo, C. Congenital Heart Disease and the Specification of Left-Right Asymmetry. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, 2102–2111. [Google Scholar] [CrossRef] [Green Version]
- Geyer, S.H.; Maurer, B.; Dirnbacher, K.; Weninger, W.J. Dimensions of the Great Intrathoracic Arteries of Early Mouse Fetuses of the C57BL/6 Strain. Open Anat. J. 2012, 4, 1–6. [Google Scholar] [CrossRef]
- Geyer, S.H.; Maurer, B.; Ptz, L.; Singh, J.; Weninger, W.J. High-Resolution Episcopic Microscopy Data-Based Measurements of the Arteries of Mouse Embryos: Evaluation of Significance and Reproducibility under Routine Conditions. Cells Tissues Organs 2012, 195, 524–534. [Google Scholar] [CrossRef]
- Keady, B.T.; Samtani, R.; Tobita, K.; Tsuchya, M.; San Agustin, J.T.; Follit, J.A.; Jonassen, J.A.; Subramanian, R.; Lo, C.W.; Pazour, G.J. IFT25 Links the Signal-Dependent Movement of Hedgehog Components to Intraflagellar Transport. Dev. Cell 2012, 22, 940–951. [Google Scholar] [CrossRef] [Green Version]
- Lescroart, F.; Mohun, T.; Meilhac, S.M.; Bennett, M.; Buckingham, M. Lineage Tree for the Venous Pole of the Heart: Clonal Analysis Clarifies Controversial Genealogy Based on Genetic Tracing. Circ. Res. 2012, 111, 1313–1322. [Google Scholar] [CrossRef] [Green Version]
- Stauber, M.; Laclef, C.; Vezzaro, A.; Page, M.E.; Ish-Horowicz, D. Modifying Transcript Lengths of Cycling Mouse Segmentation Genes. Mech. Dev. 2012, 129, 61–72. [Google Scholar] [CrossRef]
- Anderson, R.H.; Chaudhry, B.; Mohun, T.J.; Bamforth, S.D.; Hoyland, D.; Phillips, H.M.; Webb, S.; Moorman, A.F.M.; Brown, N.A.; Henderson, D.J. Normal and Abnormal Development of the Intrapericardial Arterial Trunks in Humans and Mice. Cardiovasc. Res. 2012, 95, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Sizarov, A.; Lamers, W.H.; Mohun, T.J.; Brown, N.A.; Anderson, R.H.; Moorman, A.F.M. Three-Dimensional and Molecular Analysis of the Arterial Pole of the Developing Human Heart. J. Anat. 2012, 220, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Captur, G.; Flett, A.; Barison, A.; Wilson, R.; Sado, D.; Cook, C.; McKenna, W.J.; Mohun, T.J.; Muthurangu, V.; Elliott, P.; et al. A New Definition of Left Ventricular Compaction/Noncompaction—The New Gold-Standard? J. Cardiovasc. Magn. Reson. 2013, 15, O13. [Google Scholar] [CrossRef] [Green Version]
- Hjeij, R.; Lindstrand, A.; Francis, R.; Zariwala, M.A.; Liu, X.; Li, Y.; Damerla, R.; Dougherty, G.W.; Abouhamed, M.; Olbrich, H.; et al. ARMC4 Mutations Cause Primary Ciliary Dyskinesia with Randomization of Left/Right Body Asymmetry. Am. J. Hum. Genet. 2013, 93, 357–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Francis, R.; Kim, A.J.; Ramirez, R.; Chen, G.; Subramanian, R.; Anderton, S.; Kim, Y.; Wong, L.; Morgan, J.; et al. Interrogating Congenital Heart Defects with Noninvasive Fetal Echocardiography in a Mouse Forward Genetic Screen. Circ. Cardiovasc. Imaging 2014, 7, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Geyer, S.H.; Weninger, W.J. Metric Characterization of the Aortic Arch of Early Mouse Fetuses and of a Fetus Featuring a Double Lumen Aortic Arch Malformation. Ann. Anat. 2013, 195, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Weninger, W.J.; Geyer, S.H. Three-Dimensional (3D) Visualisation of the Cardiovascular System of Mouse Embryos and Fetus. Open Cardiovasc. Imaging J. 2009, 1, 1–12. [Google Scholar] [CrossRef]
- Kim, A.J.; Francis, R.; Liu, X.; Devine, W.A.; Ramirez, R.; Anderton, S.J.; Wong, L.Y.; Faruque, F.; Gabriel, G.C.; Leatherbury, L.; et al. Micro-Computed Tomography Provides High Accuracy Congenital Heart Disease Diagnosis in Neonatal and Fetal Mice. Circ. Cardiovasc. Imaging 2013, 6, 551. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Francis, R.; Tobita, K.; Kim, A.; Leatherbury, L.; Lo, C.W. Ultra-High Frequency Ultrasound Biomicroscopy and High Throughput Cardiovascular Phenotyping in a Large Scale Mouse Mutagenesis Screen. Opt. Methods Dev. Biol. 2013, 8593, 25–32. [Google Scholar] [CrossRef]
- Cui, C.; Chatterjee, B.; Lozito, T.P.; Zhang, Z.; Francis, R.J.; Yagi, H.; Swanhart, L.M.; Sanker, S.; Francis, D.; Yu, Q.; et al. Wdpcp, a PCP Protein Required for Ciliogenesis, Regulates Directional Cell Migration and Cell Polarity by Direct Modulation of the Actin Cytoskeleton. PLoS Biol. 2013, 11, e1001720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, A.; Samtani, R.; Dhanantwari, P.; Lee, E.; Yamada, S.; Shiota, K.; Donofrio, M.T.; Leatherbury, L.; Lo, C.W. A Detailed Comparison of Mouse and Human Cardiac Development. Pediatr. Res. 2014, 76, 500–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Captur, G.; Mohun, T.J.; Finocchiaro, G.; Wilson, R.; Levine, J.; Conner, L.; Lopes, L.; Patel, V.; Sado, D.; Li, C.; et al. Advanced Assessment of Cardiac Morphology and Prediction of Gene Carriage by CMR in Hypertrophic Cardiomyopathy—The HCMNet/UCL Collaboration. J. Cardiovasc. Magn. 2014, 16, O30. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, M.; Yamada, S. High-Resolution Histological 3D-Imaging: Episcopic Fluorescence Image Capture Is Widely Applied for Experimental Animals. Congenit. Anom. 2014, 54, 250–251. [Google Scholar] [CrossRef] [Green Version]
- Sivaguru, M.; Fried, G.A.; Miller, C.A.H.; Fouke, B.W. Multimodal Optical Microscopy Methods Reveal Polyp Tissue Morphology and Structure in Caribbean Reef Building Corals. J. Vis. Exp. 2014, 91, 51824. [Google Scholar] [CrossRef] [Green Version]
- Wiedner, M.; Tinhofer, I.E.; Kamolz, L.P.; Seyedian Moghaddam, A.; Justich, I.; Liegl-Atzwanger, B.; Bubalo, V.; Weninger, W.J.; Lumenta, D.B. Simultaneous Dermal Matrix and Autologous Split-Thickness Skin Graft Transplantation in a Porcine Wound Model: A Three-Dimensional Histological Analysis of Revascularization. Wound Repair Regen. 2014, 22, 749–754. [Google Scholar] [CrossRef]
- Rana, M.S.; Théveniau-Ruissy, M.; de Bono, C.; Mesbah, K.; Francou, A.; Rammah, M.; Domínguez, J.N.; Roux, M.; Laforest, B.; Anderson, R.H.; et al. Tbx1 Coordinates Addition of Posterior Second Heart Field Progenitor Cells to the Arterial and Venous Poles of the Heart. Circ. Res. 2014, 115, 790–799. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.H.; Spicer, D.E.; Brown, N.A.; Mohun, T.J. The Development of Septation in the Four-Chambered Heart. Anat. Rec. 2014, 297, 1414–1429. [Google Scholar] [CrossRef]
- Takaishi, R.; Aoyama, T.; Zhang, X.; Higuchi, S.; Yamada, S.; Takakuwa, T. Three-Dimensional Reconstruction of Rat Knee Joint Using Episcopic Fluorescence Image Capture. Osteoarthr. Cartil. 2014, 22, 1401–1409. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.T.; Hehnly, H.; Yu, Q.; Farkas, D.; Zheng, G.; Redick, S.D.; Hung, H.F.; Samtani, R.; Jurczyk, A.; Akbarian, S.; et al. A Unique Set of Centrosome Proteins Requires Pericentrin for Spindle-Pole Localization and Spindle Orientation. Curr. Biol. 2014, 24, 2327–2334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, R.H.; Mohun, T.J.; Brown, N.A. Clarifying the Morphology of the Ostium Primum Defect. J. Anat. 2015, 226, 244–257. [Google Scholar] [CrossRef] [Green Version]
- Geyer, S.H.; Tinhofer, I.E.; Lumenta, D.B.; Kamolz, L.P.; Branski, L.; Finnerty, C.C.; Herndon, D.N.; Weninger, W.J. High-Resolution Episcopic Microscopy (HREM): A Useful Technique for Research in Wound Care. Ann. Anat.-Anat. Anz. 2015, 197, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Notari, M.; Hu, Y.; Sutendra, G.; Dedeić, Z.; Lu, M.; Dupays, L.; Yavari, A.; Carr, C.A.; Zhong, S.; Opel, A.; et al. IASPP, a Previously Unidentified Regulator of Desmosomes, Prevents Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)-Induced Sudden Death. Proc. Natl. Acad. Sci. USA 2015, 112, E973–E981. [Google Scholar] [CrossRef] [Green Version]
- Damerla, R.R.; Cui, C.; Gabriel, G.C.; Liu, X.; Craige, B.; Gibbs, B.C.; Francis, R.; Li, Y.; Chatterjee, B.; San Agustin, J.T.; et al. Novel Jbts17 Mutant Mouse Model of Joubert Syndrome with Cilia Transition Zone Defects and Cerebellar and Other Ciliopathy Related Anomalies. Hum. Mol. Genet. 2015, 24, 3994. [Google Scholar] [CrossRef] [Green Version]
- Boussommier-Calleja, A.; Li, G.; Wilson, A.; Ziskind, T.; Scinteie, O.E.; Ashpole, N.E.; Sherwood, J.M.; Farsiu, S.; Challa, P.; Gonzalez, P.; et al. Physical Factors Affecting Outflow Facility Measurements in Mice. Investig. Opthalmology Vis. Sci. 2015, 56, 8331–8339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardiner, H.M.; Matsui, H.; Ho, S.Y.; Mohun, T.J. Postmortem High-Resolution Episcopic Microscopy (HREM) of Small Human Fetal Hearts. Ultrasound Obstet. Gynecol. 2015, 45, 492–493. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Aoyama, T.; Takaishi, R.; Higuchi, S.; Yamada, S.; Kuroki, H.; Takakuwa, T. Spatial Change of Cruciate Ligaments in Rat Embryo Knee Joint by Three-Dimensional Reconstruction. PLoS ONE 2015, 10, e0131092. [Google Scholar] [CrossRef] [Green Version]
- Ivins, S.; Chappell, J.; Vernay, B.; Suntharalingham, J.; Martineau, A.; Mohun, T.J.; Scambler, P.J. The CXCL12/CXCR4 Axis Plays a Critical Role in Coronary Artery Development. Dev. Cell 2015, 33, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Jenner, F.; van Osch, G.J.V.M.; Weninger, W.; Geyer, S.; Stout, T.; van Weeren, R.; Brama, P. The Embryogenesis of the Equine Femorotibial Joint: The Equine Interzone. Equine Vet. J. 2015, 47, 620–622. [Google Scholar] [CrossRef]
- Al Harbi, Y. 3D Modelling and Tissue-Level Morphology of Trapeziometacarpal Joint. Ph.D. Thesis, University of Glasgow, Glasgow, Scotland, 2016. [Google Scholar]
- Zak, J.; Vives, V.; Szumska, D.; Vernet, A.; Schneider, J.E.; Miller, P.; Slee, E.A.; Joss, S.; Lacassie, Y.; Chen, E.; et al. ASPP2 Deficiency Causes Features of 1q41q42 Microdeletion Syndrome. Cell Death Differ. 2016, 23, 1973–1984. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.C.; Chen, F.; Li, X. Clarification of Mammalian Cloacal Morphogenesis Using High-Resolution Episcopic Microscopy. Dev. Biol. 2016, 409, 106. [Google Scholar] [CrossRef] [Green Version]
- Henkelman, R.M.; Friedel, M.; Lerch, J.P.; Wilson, R.; Mohun, T. Comparing Homologous Microscopic Sections from Multiple Embryos Using HREM. Dev. Biol. 2016, 415, 1. [Google Scholar] [CrossRef] [Green Version]
- Tretter, J.T.; Steffensen, T.; Westover, T.; Anderson, R.H.; Spicer, D.E. Developmental Considerations with Regard to So-Called Absence of the Leaflets of the Arterial Valves. Cardiol. Young 2017, 27, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, R.; Yamada, S.; Agata, K. Functional Joint Regeneration Is Achieved Using Reintegration Mechanism in Xenopus Laevis. Regeneration 2016, 3, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lana-Elola, E.; Watson-Scales, S.; Slender, A.; Gibbins, D.; Martineau, A.; Douglas, C.; Mohun, T.; Fisher, E.M.; Tybulewicz, V.L. Genetic Dissection of Down Syndrome-Associated Congenital Heart Defects Using a New Mouse Mapping Panel. eLife 2016, 5, e11614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickinson, M.E.; Flenniken, A.M.; Ji, X.; Teboul, L.; Wong, M.D.; White, J.K.; Meehan, T.F.; Weninger, W.J.; Westerberg, H.; Adissu, H.; et al. High-Throughput Discovery of Novel Developmental Phenotypes. Nature 2016, 537, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Captur, G.; Wilson, R.; Bennett, M.F.; Luxán, G.; Nasis, A.; de la Pompa, J.L.; Moon, J.C.; Mohun, T.J. Morphogenesis of Myocardial Trabeculae in the Mouse Embryo. J. Anat. 2016, 229, 314–325. [Google Scholar] [CrossRef] [Green Version]
- Geyer, S.H.; Reissig, L.; Rose, J.; Wilson, R.; Prin, F.; Szumska, D.; Ramirez-Solis, R.; Tudor, C.; White, J.; Mohun, T.J.; et al. A Staging System for Correct Phenotype Interpretation of Mouse Embryos Harvested on Embryonic Day 14 (E14.5). J. Anat. 2017, 230, 710–719. [Google Scholar] [CrossRef] [Green Version]
- Pokhrel, N.; Ben-Tal Cohen, E.; Genin, O.; Sela-Donenfeld, D.; Cinnamon, Y. Cellular and Morphological Characterization of Blastoderms from Freshly Laid Broiler Eggs. Poult. Sci. 2017, 96, 4399–4408. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.; Geyer, S.H.; Reissig, L.; Rose, J.; Szumska, D.; Hardman, E.; Prin, F.; McGuire, C.; Ramirez-Solis, R.; White, J.; et al. Highly Variable Penetrance of Abnormal Phenotypes in Embryonic Lethal Knockout Mice. Wellcome Open Res. 2017, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Wang, J.; Guo, C.; Chang, W.; Zhuang, J.; Zhu, P.; Li, X. Temporally Distinct Six2-Positive Second Heart Field Progenitors Regulate Mammalian Heart Development and Disease. Cell Rep. 2017, 18, 1019–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girkin, C.A.; Fazio, M.A.; Yang, H.; Reynaud, J.; Burgoyne, C.F.; Smith, B.; Wang, L.; Downs, J.C. Variation in the Three-Dimensional Histomorphometry of the Normal Human Optic Nerve Head With Age and Race: Lamina Cribrosa and Peripapillary Scleral Thickness and Position. Investig. Opthalmology Vis. Sci. 2017, 58, 3759. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Osborn, D.P.; Lee, J.-Y.; Araki, M.; Araki, K.; Mohun, T.; Känsäkoski, J.; Brandstack, N.; Kim, H.-T.; Miralles, F.; et al. WDR11-Mediated Hedgehog Signalling Defects Underlie a New Ciliopathy Related to Kallmann Syndrome. EMBO Rep. 2018, 19, 269–289. [Google Scholar] [CrossRef]
- Engelkes, K.; Friedrich, F.; Hammel, J.U.; Haas, A. A Simple Setup for Episcopic Microtomy and a Digital Image Processing Workflow to Acquire High-Quality Volume Data and 3D Surface Models of Small Vertebrates. Zoomorphology 2018, 137, 213–228. [Google Scholar] [CrossRef] [Green Version]
- Ertl, J.; Pichlsberger, M.; Tuca, A.C.; Wurzer, P.; Fuchs, J.; Geyer, S.H.; Maurer-Gesek, B.; Weninger, W.J.; Pfeiffer, D.; Bubalo, V.; et al. Comparative Study of Regenerative Effects of Mesenchymal Stem Cells Derived from Placental Amnion, Chorion and Umbilical Cord on Dermal Wounds. Placenta 2018, 65, 37–46. [Google Scholar] [CrossRef]
- Pokhrel, N.; Cohen, E.B.T.; Genin, O.; Ruzal, M.; Sela-Donenfeld, D.; Cinnamon, Y. Effects of Storage Conditions on Hatchability, Embryonic Survival and Cytoarchitectural Properties in Broiler from Young and Old Flocks. Poult. Sci. 2018, 97, 1429–1440. [Google Scholar] [CrossRef]
- Gershon, E.; Hadas, R.; Elbaz, M.; Booker, E.; Muchnik, M.; Kleinjan-Elazary, A.; Karasenti, S.; Genin, O.; Cinnamon, Y.; Gray, P.C. Identification of Trophectoderm-Derived Cripto as an Essential Mediator of Embryo Implantation. Endocrinology 2018, 159, 1793–1807. [Google Scholar] [CrossRef]
- Perez-Garcia, V.; Fineberg, E.; Wilson, R.; Murray, A.; Mazzeo, C.I.; Tudor, C.; Sienerth, A.; White, J.K.; Tuck, E.; Ryder, E.J.; et al. Placentation Defects Are Highly Prevalent in Embryonic Lethal Mouse Mutants. Nature 2018, 555, 463–468. [Google Scholar] [CrossRef]
- Paun, B.; Bijnens, B.; Cook, A.C.; Mohun, T.J.; Butakoff, C. Quantification of the Detailed Cardiac Left Ventricular Trabecular Morphogenesis in the Mouse Embryo. Med. Image Anal. 2018, 49, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Izhaki, A.; Alvarez, J.P.; Cinnamon, Y.; Genin, O.; Liberman-Aloni, R.; Eyal, Y. The Tomato BLADE ON PETIOLE and TERMINATING FLOWER Regulate Leaf Axil Patterning along the Proximal-Distal Axes. Front. Plant Sci. 2018, 9, 1126. [Google Scholar] [CrossRef]
- Kohl, A.; Golan, N.; Cinnamon, Y.; Genin, O.; Chefetz, B.; Sela-Donenfeld, D. A Proof of Concept Study Demonstrating That Environmental Levels of Carbamazepine Impair Early Stages of Chick Embryonic Development. Environ. Int. 2019, 129, 583–594. [Google Scholar] [CrossRef]
- de Franco, E.; Watson, R.A.; Weninger, W.J.; Wong, C.C.; Flanagan, S.E.; Caswell, R.; Green, A.; Tudor, C.; Lelliott, C.J.; Geyer, S.H.; et al. A Specific CNOT1 Mutation Results in a Novel Syndrome of Pancreatic Agenesis and Holoprosencephaly through Impaired Pancreatic and Neurological Development. Am. J. Hum. Genet. 2019, 104, 985–989. [Google Scholar] [CrossRef] [Green Version]
- Poopalasundaram, S.; Richardson, J.; Scott, A.; Donovan, A.; Liu, K.; Graham, A. Diminution of Pharyngeal Segmentation and the Evolution of the Amniotes. Zool. Lett. 2019, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Montandon, S.A.; Fofonjka, A.; Milinkovitch, M.C. Elastic Instability during Branchial Ectoderm Development Causes Folding of the Chlamydosaurus Erectile Frill. Elife 2019, 8, e44455. [Google Scholar] [CrossRef] [PubMed]
- Dupays, L.; Towers, N.; Wood, S.; David, A.; Stuckey, D.J.; Mohun, T. Furin, a Transcriptional Target of NKX2-5, Has an Essential Role in Heart Development and Function. PLoS ONE 2019, 14, e0212992. [Google Scholar] [CrossRef] [Green Version]
- Franck, G.; Even, G.; Gautier, A.; Salinas, M.; Loste, A.; Procopio, E.; Gaston, A.T.; Morvan, M.; Dupont, S.; Deschildre, C.; et al. Haemodynamic Stress-Induced Breaches of the Arterial Intima Trigger Inflammation and Drive Atherogenesis. Eur. Heart J. 2019, 40, 928–937. [Google Scholar] [CrossRef]
- Cinnamon, Y.; Genin, O.; Yitzhak, Y.; Riov, J.; David, I.; Shaya, F.; Izhaki, A. High-Resolution Episcopic Microscopy Enables Three-Dimensional Visualization of Plant Morphology and Development. Plant Direct 2019, 3, e00161. [Google Scholar] [CrossRef] [Green Version]
- Phillips, H.M.; Stothard, C.A.; Shaikh Qureshi, W.M.; Kousa, A.I.; Alberto Briones-Leon, J.; Khasawneh, R.R.; O’Loughlin, C.; Sanders, R.; Mazzotta, S.; Dodds, R.; et al. Pax9 Is Required for Cardiovascular Development and Interacts with Tbx1 in the Pharyngeal Endoderm to Control 4th Pharyngeal Arch Artery Morphogenesis. Development 2019, 146, dev177618. [Google Scholar] [CrossRef] [Green Version]
- Desgrange, A.; Lokmer, J.; Marchiol, C.; Houyel, L.; Meilhac, S.M. Standardised Imaging Pipeline for Phenotyping Mouse Laterality Defects and Associated Heart Malformations, at Multiple Scales and Multiple Stages. Dis. Model. Mech. 2019, 12, dmm038356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reissig, L.F.; Herdina, A.N.; Rose, J.; Gesek, B.M.; Lane, J.L.; Prin, F.; Wilson, R.; Hardman, E.; Galli, A.; Tudor, C.; et al. The Col4a2em1(IMPC)Wtsi Mouse Line: Lessons from the Deciphering the Mechanisms of Developmental Disorders Program. Biol. Open 2019, 8, bio042895. [Google Scholar] [CrossRef] [Green Version]
- Vanyai, H.K.; Prin, F.; Guillermin, O.; Marzook, B.; Boeing, S.; Howson, A.; Saunders, R.E.; Snoeks, T.; Howell, M.; Mohun, T.J.; et al. Control of Skeletal Morphogenesis by the Hippo-YAP/TAZ Pathway. Development 2020, 147, dev187187. [Google Scholar] [CrossRef]
- Bryant, D.; Seda, M.; Peskett, E.; Maurer, C.; Pomeranz, G.; Ghosh, M.; Hawkins, T.A.; Cleak, J.; Datta, S.; Hariri, H.; et al. Diverse Species-Specific Phenotypic Consequences of Loss of Function Sorting Nexin 14 Mutations. Sci. Rep. 2020, 10, 13763. [Google Scholar] [CrossRef]
- Johnson, A.L.; Schneider, J.E.; Mohun, T.J.; Williams, T.; Bhattacharya, S.; Henderson, D.J.; Phillips, H.M.; Bamforth, S.D. Early Embryonic Expression of AP-2α Is Critical for Cardiovascular Development. J. Cardiovasc. Dev. Dis. 2020, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Dabiri, B.; Kampusch, S.; Geyer, S.H.; Le, V.H.; Weninger, W.J.; Széles, J.C.; Kaniusas, E. High-Resolution Episcopic Imaging for Visualization of Dermal Arteries and Nerves of the Auricular Cymba Conchae in Humans. Front. Neuroanat. 2020, 14, 22. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.S.; Tretter, J.T.; Mohun, T.J.; Anderson, R.H.; Kramer, S.; Spicer, D.E. Identification and Morphogenesis of Vestibular Atrial Septal Defects. J. Cardiovasc. Dev. Dis. 2020, 7, 35. [Google Scholar] [CrossRef]
- Long, H.K.; Osterwalder, M.; Welsh, I.C.; Hansen, K.; Davies, J.O.J.; Liu, Y.E.; Koska, M.; Adams, A.T.; Aho, R.; Arora, N.; et al. Loss of Extreme Long-Range Enhancers in Human Neural Crest Drives a Craniofacial Disorder. Cell Stem Cell 2020, 27, 765–783.e14. [Google Scholar] [CrossRef]
- Stothard, C.A.; Mazzotta, S.; Vyas, A.; Schneider, J.E.; Mohun, T.J.; Henderson, D.J.; Phillips, H.M.; Bamforth, S.D. Pax9 and Gbx2 Interact in the Pharyngeal Endoderm to Control Cardiovascular Development. J. Cardiovasc. Dev. Dis. 2020, 7, 20. [Google Scholar] [CrossRef]
- Desgrange, A.; le Garrec, J.F.; Bernheim, S.; Bønnelykke, T.H.; Meilhac, S.M. Transient Nodal Signaling in Left Precursors Coordinates Opposed Asymmetries Shaping the Heart Loop. Dev. Cell 2020, 55, 413–431.e6. [Google Scholar] [CrossRef]
- Eliyahu, A.; Duman, Z.; Sherf, S.; Genin, O.; Cinnamon, Y.; Abu-Abied, M.; Weinstain, R.; Dag, A.; Sadot, E. Vegetative Propagation of Elite Eucalyptus Clones as Food Source for Honeybees (Apis Mellifera); Adventitious Roots versus Callus Formation. Isr. J. Plant Sci. 2020, 67, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Wilde, S.; Feneck, E.M.; Mohun, T.J.; Logan, M.P.O. 4D Formation of Human Embryonic Forelimb Musculature. Development 2021, 148, dev194746. [Google Scholar] [CrossRef]
- Reissig, L.F.; Geyer, S.H.; Rose, J.; Prin, F.; Wilson, R.; Szumska, D.; Galli, A.; Tudor, C.; White, J.K.; Mohun, T.J.; et al. Artefacts in Volume Data Generated with High Resolution Episcopic Microscopy (HREM). Biomedicines 2021, 9, 1711. [Google Scholar] [CrossRef]
- Zopf, L.M.; Heimel, P.; Geyer, S.H.; Kavirayani, A.; Reier, S.; Fröhlich, V.; Stiglbauer-Tscholakoff, A.; Chen, Z.; Nics, L.; Zinnanti, J.; et al. Cross-Modality Imaging of Murine Tumor Vasculature—A Feasibility Study. Mol. Imaging Biol. 2021, 23, 874–893. [Google Scholar] [CrossRef] [PubMed]
- Azkue, J.J. External Surface Anatomy of the Postfolding Human Embryo: Computer-aided, Three-dimensional Reconstruction of Printable Digital Specimens. J. Anat. 2021, 239, 1438–1451. [Google Scholar] [CrossRef]
- Jiang, H.; Hooper, C.; Kelly, M.; Steeples, V.; Simon, J.N.; Beglov, J.; Azad, A.J.; Leinhos, L.; Bennett, P.; Ehler, E.; et al. Functional Analysis of a Gene-Edited Mouse Model to Gain Insights into the Disease Mechanisms of a Titin Missense Variant. Basic Res. Cardiol. 2021, 116, 14. [Google Scholar] [CrossRef] [PubMed]
- Wendling, O.; Hentsch, D.; Jacobs, H.; Lemercier, N.; Taubert, S.; Pertuy, F.; Vonesch, J.-L.; Sorg, T.; di Michele, M.; le Cam, L.; et al. High Resolution Episcopic Microscopy for Qualitative and Quantitative Data in Phenotyping Altered Embryos and Adult Mice Using the New “Histo3D” System. Biomedicines 2021, 9, 767. [Google Scholar] [CrossRef]
- Fazio, M.A.; Gardiner, S.K.; Bruno, L.; Hubbard, M.; Bianco, G.; Karuppanan, U.; Kim, J.; el Hamdaoui, M.; Grytz, R.; Downs, J.C.; et al. Histologic Validation of Optical Coherence Tomography-Based Three-Dimensional Morphometric Measurements of the Human Optic Nerve Head: Methodology and Preliminary Results. Exp. Eye Res. 2021, 205, 108475. [Google Scholar] [CrossRef] [PubMed]
- Reissig, L.F.; Seyedian Moghaddam, A.; Prin, F.; Wilson, R.; Galli, A.; Tudor, C.; White, J.K.; Geyer, S.H.; Mohun, T.J.; Weninger, W.J. Hypoglossal Nerve Abnormalities as Biomarkers for Central Nervous System Defects in Mouse Lines Producing Embryonically Lethal Offspring. Front. Neuroanat. 2021, 15, 625716. [Google Scholar] [CrossRef]
- Prickett, A.R.; Montibus, B.; Barkas, N.; Amante, S.M.; Franco, M.M.; Cowley, M.; Puszyk, W.; Shannon, M.F.; Irving, M.D.; Madon-Simon, M.; et al. Imprinted Gene Expression and Function of the Dopa Decarboxylase Gene in the Developing Heart. Front. Cell Dev. Biol. 2021, 9, 676543. [Google Scholar] [CrossRef]
- Khasawneh, R.R.; Kist, R.; Queen, R.; Hussain, R.; Coxhead, J.; Schneider, J.E.; Mohun, T.J.; Zaffran, S.; Peters, H.; Phillips, H.M.; et al. Msx1 Haploinsufficiency Modifies the Pax9-Deficient Cardiovascular Phenotype. BMC Dev. Biol. 2021, 21, 14. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.; Holroyd, N.; Finnerty, E.; Ryan, S.G.; Sweeney, P.W.; Shipley, R.J.; Walker-Samuel, S. Multi-Fluorescence High-Resolution Episcopic Microscopy (MF-HREM) for Three Dimensional Imaging of Adult Murine Organs. bioRxiv 2020, 2020.04.03.023978. [Google Scholar] [CrossRef] [Green Version]
- Mark, M.; Teletin, M.; Wendling, O.; Vonesch, J.L.; Féret, B.; Hérault, Y.; Ghyselinck, N.B. Pathogenesis of Anorectal Malformations in Retinoic Acid Receptor Knockout Mice Studied by HREM. Biomedicines 2021, 9, 742. [Google Scholar] [CrossRef] [PubMed]
- Fofonjka, A.; Milinkovitch, M.C. Reaction-Diffusion in a Growing 3D Domain of Skin Scales Generates a Discrete Cellular Automaton. Nat. Commun. 2021, 12, 2433. [Google Scholar] [CrossRef]
- de Fierro, A.T.; den Hamer, B.; Jansz, N.; Chen, K.; Beck, T.; Vanyai, H.; Benetti, N.; Gurzau, A.D.; Daxinger, L.; Xue, S.; et al. SMCHD1 Has Separable Roles in Chromatin Architecture and Gene Silencing That Could Be Targeted in Disease. bioRxiv 2021, 2021.05.12.443934. [Google Scholar] [CrossRef]
- Ghadge, S.K.; Messner, M.; Seiringer, H.; Maurer, T.; Staggl, S.; Zeller, T.; Müller, C.; Börnigen, D.; Weninger, W.J.; Geyer, S.H.; et al. Smooth Muscle Specific Ablation of CXCL12 in Mice Downregulates CXCR7 Associated with Defective Coronary Arteries and Cardiac Hypertrophy. Int. J. Mol. Sci. 2021, 22, 5908. [Google Scholar] [CrossRef]
- Macías, Y.; de Almeida, M.C.; Tretter, J.T.; Anderson, R.H.; Spicer, D.E.; Mohun, T.J.; Sánchez-Quintana, D.; Farré, J.; Back Sternick, E. Miniseries 1—Part II: The Comparative Anatomy of the Atrioventricular Conduction Axis. EP Eur. 2022, 24, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Mohun, T.J.; Weninger, W.J. Imaging Heart Development Using High-Resolution Episcopic Microscopy. Curr. Opin. Genet. Dev. 2011, 21, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Kalisch-Smith, J.I.; Morris, E.C.; Strevens, M.A.A.; Redpath, A.N.; Klaourakis, K.; Szumska, D.; Outhwaite, J.E.; Sun, X.; Vieira, J.M.; Smart, N.; et al. Analysis of Placental Arteriovenous Formation Reveals New Insights Into Embryos With Congenital Heart Defects. Front. Genet. 2022, 12, 2762. [Google Scholar] [CrossRef]
- Mahmoud, M.; Evans, I.; Wisniewski, L.; Tam, Y.; Walsh, C.; Walker-Samuel, S.; Frankel, P.; Scambler, P.; Zachary, I. Bcar1/P130Cas Is Essential for Ventricular Development and Neural Crest Cell Remodelling of the Cardiac Outflow Tract. Cardiovasc. Res. 2022, 118, 1993. [Google Scholar] [CrossRef]
- Reissig, L.F.; Geyer, S.H.; Winkler, V.; Preineder, E.; Prin, F.; Wilson, R.; Galli, A.; Tudor, C.; White, J.K.; Mohun, T.J.; et al. Detailed Characterizations of Cranial Nerve Anatomy in E14.5 Mouse Embryos/Fetuses and Their Use as Reference for Diagnosing Subtle, but Potentially Lethal Malformations in Mutants. Front. Cell Dev. Biol. 2022, 10, 1006620. [Google Scholar] [CrossRef] [PubMed]
- de Goederen, V.; Vetter, R.; McDole, K.; Iber, D. Hinge Point Emergence in Mammalian Spinal Neurulation. Proc. Natl. Acad. Sci. USA 2022, 119, e2117075119. [Google Scholar] [CrossRef]
- Pokhrel, N.; Genin, O.; Sela-Donenfeld, D.; Cinnamon, Y. HREM, RNAseq and Cell Cycle Analyses Reveal the Role of the G2/M-Regulatory Protein, WEE1, on the Survivability of Chicken Embryos during Diapause. Biomedicines 2022, 10, 779. [Google Scholar] [CrossRef]
- Hachoud, C.; Chaabani, F.; Watrin, E.; Cormier-Daire, V.; Pucéat, M. Inhibition of TGFβ Pathway Prevents Short Body Size and Cardiac Defects in Nipbl-Deficient Mice, a Mouse Model of Cornelia de Lange Syndrome. bioRxiv 2022. [Google Scholar] [CrossRef]
- Jacob, A. Ross; Nathaly Arcos-Villacis; Edmund Battey; Cornelis Boogerd; Emilie Marhuenda; Didier Hodzic; Fabrice Prin; Tim Mohun; Norman Catibog; Olga Tapia; et al. Lem2 Is Essential for Cardiac Development by Maintaining Nuclear Integrity. bioRxiv 2022. [Google Scholar] [CrossRef]
- Hikspoors, J.P.J.M.; Macías, Y.; Tretter, J.T.; Anderson, R.H.; Lamers, W.H.; Mohun, T.J.; Sánchez-Quintana, D.; Farré, J.; Back Sternick, E. Miniseries 1—Part I: The Development of the Atrioventricular Conduction Axis. EP Eur. 2022, 24, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.H.; Bamforth, S.D. Morphogenesis of the Mammalian Aortic Arch Arteries. Front. Cell Dev. Biol. 2022, 10, 892900. [Google Scholar] [CrossRef]
- Gabriel, G.C.; Yagi, H.; Xu, X.; Lo, C.W. Novel Insights into the Etiology, Genetics, and Embryology of Hypoplastic Left Heart Syndrome. World J. Pediatr. Congenit. Heart Surg. 2022, 13, 565–570. [Google Scholar] [CrossRef]
- Marshall, J.J.T.; Cull, J.J.; Alharbi, H.O.; Thin, M.Z.; Cooper, S.T.E.; Barrington, C.; Vanyai, H.; Snoeks, T.; Siow, B.; Suáarez-Bonnet, A.; et al. PKN2 Deficiency Leads Both to Prenatal ‘Congenital’ Cardiomyopathy and Defective Angiotensin II Stress Responses. Biochem. J. 2022, 479, 1467. [Google Scholar] [CrossRef]
- Simpson, L.A.; Crowley, D.; Forey, T.; Acosta, H.; Ferjentsik, Z.; Chatfield, J.; Payne, A.; Simpson, B.S.; Redwood, C.; Dixon, J.E.; et al. The Nanog Epigenetic Remodeling Complex Was Essential to Vertebrate Mesoderm Evolution. bioRxiv. [CrossRef]
- Geyer, S.H.; Maurer-Gesek, B.; Reissig, L.F.; Rose, J.; Prin, F.; Wilson, R.; Galli, A.; Tudor, C.; White, J.K.; Mohun, T.J.; et al. The Venous System of E14.5 Mouse Embryos—Reference Data and Examples for Diagnosing Malformations in Embryos with Gene Deletions. J. Anat. 2022, 240, 11. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holroyd, N.A.; Walsh, C.; Gourmet, L.; Walker-Samuel, S. Quantitative Image Processing for Three-Dimensional Episcopic Images of Biological Structures: Current State and Future Directions. Biomedicines 2023, 11, 909. https://doi.org/10.3390/biomedicines11030909
Holroyd NA, Walsh C, Gourmet L, Walker-Samuel S. Quantitative Image Processing for Three-Dimensional Episcopic Images of Biological Structures: Current State and Future Directions. Biomedicines. 2023; 11(3):909. https://doi.org/10.3390/biomedicines11030909
Chicago/Turabian StyleHolroyd, Natalie Aroha, Claire Walsh, Lucie Gourmet, and Simon Walker-Samuel. 2023. "Quantitative Image Processing for Three-Dimensional Episcopic Images of Biological Structures: Current State and Future Directions" Biomedicines 11, no. 3: 909. https://doi.org/10.3390/biomedicines11030909
APA StyleHolroyd, N. A., Walsh, C., Gourmet, L., & Walker-Samuel, S. (2023). Quantitative Image Processing for Three-Dimensional Episcopic Images of Biological Structures: Current State and Future Directions. Biomedicines, 11(3), 909. https://doi.org/10.3390/biomedicines11030909