Expression Patterns of MiR-125a and MiR-223 and Their Association with Diabetes Mellitus and Survival in Patients with Non-ST-Segment Elevation Acute Coronary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Endpoints
2.3. RNA Preparation and Detection and MiRNA Quantification by Applying Quantitative PCR
2.4. Statistical Analysis
2.5. Group Stratification
3. Results
3.1. Patient Demographics
3.2. Association of MiR-223 with Long-Term All-Cause Mortality
3.3. Patients’ Characteristics According to Low and High MiR-223 Expression
3.4. Survival Analysis According to MiR-223 and MiR-125a
3.5. MACE and TIMI Bleeding Events According to MiR-223 Expression
3.6. Distribution of MiR-125a and MiR-223 in Regard to Diabetes Mellitus
3.7. Association between MiR-125a, MiR-223 and HbA1c Levels
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevationThe Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2020, 42, 1289–1367. [Google Scholar]
- Bob-Manuel, T.; Ifedili, I.; Reed, G.; Ibebuogu, U.N.; Khouzam, R.N. Non-ST Elevation Acute Coronary Syndromes: A Comprehensive Review. Curr. Probl. Cardiol. 2017, 42, 266–305. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Lopes, R.D.; Harrington, R.A. Diagnosis and Treatment of Acute Coronary Syndromes: A Review. JAMA 2022, 327, 662–675. [Google Scholar] [CrossRef] [PubMed]
- Mueller, C. Biomarkers and acute coronary syndromes: An update. Eur. Heart J. 2014, 35, 552–556. [Google Scholar] [CrossRef]
- Scirica, B.M.; Sabatine, M.S.; Jarolim, P.; Murphy, S.A.; de Lemos, J.L.; Braunwald, E.; Morrow, D.A. Assessment of multiple cardiac biomarkers in non-ST-segment elevation acute coronary syndromes: Observations from the MERLIN-TIMI 36 trial. Eur. Heart J. 2011, 32, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Gager, G.M.; Eyileten, C.; Postula, M.; Gasecka, A.; Jarosz-Popek, J.; Gelbenegger, G.; Jilma, B.; Lang, I.; Siller-Matula, J. Association Between the Expression of MicroRNA-125b and Survival in Patients With Acute Coronary Syndrome and Coronary Multivessel Disease. Front. Cardiovasc. Med. 2022, 9, 948006. [Google Scholar] [CrossRef]
- Schulte, C.; Molz, S.; Appelbaum, S.; Karakas, M.; Ojeda, F.; Lau, D.M.; Hartmann, T.; Lackner, K.J.; Westermann, D.; Schnabel, R.B.; et al. miRNA-197 and miRNA-223 Predict Cardiovascular Death in a Cohort of Patients with Symptomatic Coronary Artery Disease. PLoS ONE 2015, 10, e0145930. [Google Scholar] [CrossRef] [Green Version]
- Shi, R.; Zhou, X.; Ji, W.-J.; Zhang, Y.-Y.; Ma, Y.-Q.; Zhang, J.-Q.; Li, Y.-M. The Emerging Role of miR-223 in Platelet Reactivity: Implications in Antiplatelet Therapy. BioMed Res. Int. 2015, 2015, 981841. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.W.; Shen, Y.J.; Shi, J.; Yu, J.G. MiR-223-3p in Cardiovascular Diseases: A Biomarker and Potential Therapeutic Target. Front. Cardiovasc. Med. 2020, 7, 610561. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, J.; Wang, L.; Pei, G.; Cheng, H.; Zhang, Q.; Wang, S.; He, C.; Fu, C.; Wei, Q. MiR-125 Family in Cardiovascular and Cerebrovascular Diseases. Front. Cell Dev. Biol. 2021, 9, 799049. [Google Scholar] [CrossRef]
- Díaz, I.; Calderón-Sánchez, E.; Toro, R.D.; Ávila-Médina, J.; de Rojas-de Pedro, E.S.; Domínguez-Rodríguez, A.; Rosado, J.A.; Hmadcha, A.; Ordóñez, A.; Smani, T. miR-125a, miR-139 and miR-324 contribute to Urocortin protection against myocardial ischemia-reperfusion injury. Sci. Rep. 2017, 7, 8898. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, S.; La Bella, S.; Canino, G.; Siller-Matula, J.; Eyleten, C.; Postula, M.; Tamme, L.; Iaconetti, C.; Sabatino, J.; Polimeni, A.; et al. Reciprocal modulation of Linc-223 and its ligand miR-125a on the basis of platelet function level. Eur. Heart J. 2020, 41, ehaa946.3760. [Google Scholar] [CrossRef]
- Sunderland, N.; Skroblin, P.; Barwari, T.; Huntley, R.P.; Lu, R.; Joshi, A.; Lovering, R.C.; Mayr, M. MicroRNA Biomarkers and Platelet Reactivity: The Clot Thickens. Circ. Res. 2017, 120, 418–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, A.R.; Adamson, P.D.; Shah, A.S.V.; Anand, A.; Strachan, F.E.; Ferry, A.V.; Lee, K.K.; Berry, C.; Findlay, I.; Cruikshank, A.; et al. High-Sensitivity Cardiac Troponin and the Universal Definition of Myocardial Infarction. Circulation 2020, 141, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Hicks, K.A.; Mahaffey, K.W.; Mehran, R.; Nissen, S.E.; Wiviott, S.D.; Dunn, B.; Solomon, S.D.; Marler, J.R.; Teerlink, J.R.; Farb, A.; et al. 2017 Cardiovascular and Stroke Endpoint Definitions for Clinical Trials. Circulation 2018, 137, 961–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Rosa, S.; Eposito, F.; Carella, C.; Strangio, A.; Ammirati, G.; Sabatino, J.; Abbate, F.G.; Iaconetti, C.; Liguori, V.; Pergola, V.; et al. Transcoronary concentration gradients of circulating microRNAs in heart failure. Eur. J. Heart Fail. 2018, 20, 1000–1010. [Google Scholar] [CrossRef]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Kaur, A.; Mackin, S.T.; Schlosser, K.; Wong, F.L.; Elharram, M.; Delles, C.; Stewart, D.J.; Dayan, N.; Landry, T.; Pilote, L. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc. Res. 2020, 116, 1113–1124. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Y.; Deng, Y.; Li, H. MicroRNA-223 Regulates Cardiac Fibrosis After Myocardial Infarction by Targeting RASA1. Cell Physiol. Biochem. 2018, 46, 1439–1454. [Google Scholar] [CrossRef]
- Guo, J.F.; Zhang, Y.; Zheng, Q.X.; Zhang, Y.; Zhou, H.H.; Cui, L.M. Association between elevated plasma microRNA-223 content and severity of coronary heart disease. Scand. J. Clin. Lab. Investig. 2018, 78, 373–378. [Google Scholar] [CrossRef]
- Liu, X.; Deng, Y.; Xu, Y.; Jin, W.; Li, H. MicroRNA-223 protects neonatal rat cardiomyocytes and H9c2 cells from hypoxia-induced apoptosis and excessive autophagy via the Akt/mTOR pathway by targeting PARP-1. J. Mol. Cell Cardiol. 2018, 118, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, W.; Zhao, M.; Jia, G. Anti-apoptotic Effect of MiR-223-3p Suppressing PIK3C2A in Cardiomyocytes from Myocardial Infarction Rat Through Regulating PI3K/Akt Signaling Pathway. Cardiovasc. Toxicol. 2021, 21, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, J.; Guo, M.; Hao, M. MiR-223-3p affects myocardial inflammation and apoptosis following myocardial infarction via targeting FBXW7. J. Thorac. Dis. 2022, 14, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Liao, M.; Liu, R.; Zhang, Q.; Zhang, S.; He, Y.; Jin, J.; Zhang, P.; Zhou, L. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles loaded with miR-223 ameliorate myocardial infarction through P53/S100A9 axis. Genomics 2022, 114, 110319. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Ren, J.; Geng, Q.; Song, J.; Lee, C.; Cao, C.; Zhang, J.; Xu, N. MicroRNA-223 inhibits tissue factor expression in vascular endothelial cells. Atherosclerosis 2014, 237, 514–520. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, X.; Han, B.; Ji, L.; Yao, L.; Wang, Z. High Expression of microRNA-223 Indicates a Good Prognosis in Triple-Negative Breast Cancer. Front. Oncol. 2021, 11, 630432. [Google Scholar] [CrossRef]
- Eyileten, C.; Skrobucha, A.; Starczyński, M.; Boszko, M.; Jarosz-Popek, J.; Fitas, A.; Filipiak, K.; Kochman, J.; Huczek, Z.; Rymuza, B.; et al. Expression of miR-223 to predict outcomes after transcatheter aortic valve implantation. Cardiol. J. 2022, 9, 238. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Z.; Wang, H.; Ren, F.; Li, Y.; Zou, S.; Xu, J.; Xie, L. The protective role of miR-223 in sepsis-induced mortality. Sci. Rep. 2020, 10, 17691. [Google Scholar] [CrossRef]
- Li, C.; Fang, Z.; Jiang, T.; Zhang, Q.; Liu, C.; Zhang, C.; Xiang, Y. Serum microRNAs profile from genome-wide serves as a fingerprint for diagnosis of acute myocardial infarction and angina pectoris. BMC Med. Genom. 2013, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Corsten, M.F.; Dennert, R.; Jochems, S.; Kuznetsova, T.; Devaux, Y.; Hofstra, L.; Wagner, D.R.; Staessen, J.A.; Heymans, S.; Schroen, B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ. Cardiovasc. Genet. 2010, 3, 499–506. [Google Scholar] [CrossRef]
- Elbaz, M.; Faccini, J.; Laperche, C.; Grazide, M.H.; Ruidavets, J.B.; Vindis, C. MiR-223 and MiR-186 Are Associated with Long-Term Mortality after Myocardial Infarction. Biomolecules 2022, 12, 1243. [Google Scholar] [CrossRef] [PubMed]
- Scărlătescu, A.I.; Barbălată, T.; Sima, A.V.; Stancu, C.; Niculescu, L.; Micheu, M.M. miR-146a-5p, miR-223-3p and miR-142-3p as Potential Predictors of Major Adverse Cardiac Events in Young Patients with Acute ST Elevation Myocardial Infarction-Added Value over Left Ventricular Myocardial Work Indices. Diagnostics 2022, 12, 1946. [Google Scholar] [CrossRef] [PubMed]
- Hromadka, M.; Motovska, Z.; Hlinomaz, O.; Kala, P.; Tousek, F.; Jarkovsky, J.; Beranova, M.; Jansky, P.; Svoboda, M.; Krepelkova, I.; et al. MiR-126-3p and MiR-223-3p as Biomarkers for Prediction of Thrombotic Risk in Patients with Acute Myocardial Infarction and Primary Angioplasty. J. Pers. Med. 2021, 11, 508. [Google Scholar] [CrossRef] [PubMed]
- Roffel, M.P.; Bracke, K.R.; Heijink, I.H.; Maes, T. miR-223: A Key Regulator in the Innate Immune Response in Asthma and COPD. Front. Med. 2020, 7, 196. [Google Scholar] [CrossRef]
- Kim, M.; Zhang, X. The Profiling and Role of miRNAs in Diabetes Mellitus. J. Diabetes Clin. Res. 2019, 1, 5–23. [Google Scholar] [CrossRef]
- Sebastiani, G.; Ventriglia, G.; Stabilini, A.; Socci, C.; Morsiani, C.; Laurenzi, A.; Nigi, L.; Formichi, C.; Mfarrej, B.; Petrelli, A.; et al. Regulatory T-cells from pancreatic lymphnodes of patients with type-1 diabetes express increased levels of microRNA miR-125a-5p that limits CCR2 expression. Sci. Rep. 2017, 7, 6897. [Google Scholar] [CrossRef] [Green Version]
- Herrera, B.M.; Lockstone, H.E.; Taylor, J.M.; Wills, Q.F.; Kaisaki, P.J.; Barrett, A.; Camps, C.; Fernandez, C.; Ragoussis, J.; Gauguier, D.; et al. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes. BMC Med. Genom. 2009, 2, 54. [Google Scholar] [CrossRef]
- Simionescu, N.; Niculescu, L.S.; Carnuta, M.G.; Sanda, G.M.; Stancu, C.S.; Popescu, A.C.; Popescu, M.R.; Vlad, A.; Dimulescu, D.R.; Simionescu, M.; et al. Hyperglycemia Determines Increased Specific MicroRNAs Levels in Sera and HDL of Acute Coronary Syndrome Patients and Stimulates MicroRNAs Production in Human Macrophages. PLoS ONE 2016, 11, e0161201. [Google Scholar] [CrossRef] [Green Version]
- Petrica, L.; Pusztai, A.M.; Vlad, M.; Vlad, A.; Gadalean, F.; Dumitrascu, V.; Vlad, D.; Velciov, S.; Gluhovschi, C.; Bob, F.; et al. MiRNA Expression is Associated with Clinical Variables Related to Vascular Remodeling in the Kidney and the Brain in Type 2 Diabetes Mellitus Patients. Endocr. Res. 2020, 45, 119–130. [Google Scholar] [CrossRef]
- Hao, Y.; Miao, J.; Liu, W.; Cai, K.; Huang, X.; Peng, L. Mesenchymal Stem Cell-Derived Exosomes Carry MicroRNA-125a to Protect Against Diabetic Nephropathy by Targeting Histone Deacetylase 1 and Downregulating Endothelin-1. Diabetes Metab. Syndr. Obes. 2021, 14, 1405–1418. [Google Scholar] [CrossRef]
Patient Demographics | Overall n = 109 (100) | miR-223 ≤ 7.1 n = 50 (46) | miR-223 > 7.1 n = 59 (54) | p-Value |
---|---|---|---|---|
miR-223 | 7.1 ± 1.1 | 6.3 ± 0.8 | 7.8 ± 0.6 | <0.001 |
Age (years), mean ± SD | 60.6 ± 12.6 | 60.3 ± 12.1 | 60.9 ± 13.1 | 0.927 |
Sex (male), n (%) | 80 (73) | 38 (76) | 42 (71) | 0.571 |
Risk factors/past medical history n (%) | ||||
Body mass index | 27.8 ± 5.1 | 27.5 ± 5.0 | 28.1 ± 5.1 | 0.415 |
Arterial hypertension | 76 (70) | 30 (60) | 46 (78) | 0.042 |
Multivessel disease | 26 (24) | 7 (14) | 19 (33) | 0.020 |
Dyslipidemia | 62 (57) | 30 (60) | 32 (54) | 0.545 |
Diabetes mellitus | 28 (26) | 10 (20) | 18 (31) | 0.211 |
Peripheral artery disease | 6 (6) | 1 (2) | 5 (9) | 0.140 |
Cerebrovascular disease | 5 (5) | 3 (6) | 2 (3) | 0.516 |
Chronic obstructive pulmonary disease | 5 (5) | 0 (0) | 5 (9) | 0.035 |
Smoking | 71 (65) | 35 (70) | 36 (61) | 0.327 |
Family history of CAD | 50 (46) | 20 (40) | 30 (51) | 0.257 |
Prior myocardial infarction | 25 (23) | 14 (28) | 11 (19) | 0.247 |
Prior PCI | 12 (11) | 5 (10) | 7 (12) | 0.757 |
Laboratory data (mean ± SD) | ||||
White blood cell count (×109/L) | 9.8 ± 3.3 | 10.1 ± 3.5 | 9.6 ± 3.2 | 0.593 |
Platelets (×109/L) | 249.7 ± 77.8 | 247.5 ± 77.1 | 251.5 ± 79.0 | 0.874 |
Hemoglobin (g/dL) | 13.8 ± 1.8 | 13.9 ± 1.7 | 13.6 ± 1.8 | 0.444 |
C-reactive protein (mg/dL) | 2.4 ± 3.1 | 2.6 ± 3.3 | 2.1 ± 3.0 | 0.354 |
Fibrinogen (mg/dL) | 409.1 ± 106.4 | 395.0 ± 108.2 | 421.3 ± 104.3 | 0.139 |
Creatinine (mg/dL) | 1.0 ± 0.5 | 1.1 ± 0.6 | 1.0 ± 0.3 | 0.896 |
Troponin T (µg/L) | 0.3 ± 0.7 | 0.4 ± 0.9 | 0.2 ± 0.4 | 0.251 |
HbA1c (%) | 6.1 ± 1.5 | 6.0 ± 1.6 | 6.2 ± 1.4 | 0.376 |
GFR (ml/min/1.73 m2) | 78.1 ± 22.5 | 78.4 ± 24.7 | 77.8 ± 20.7 | 0.752 |
miR-125a | 4.7 ± 1.7 | 4.1 ± 1.0 | 5.3 ± 0.7 | <0.001 |
Concomitant medications n (%) | ||||
Aspirin | 109 (100) | 50 (100) | 59 (100) | |
Clopidogrel | 4 (4) | 3 (6) | 1 (2) | 0.238 |
Ticagrelor | 89 (86) | 40 (83) | 49 (88) | 0.547 |
Prasugrel | 11 (11) | 5 (10) | 6 (11) | 0.961 |
ß-blockers | 96 (90) | 42 (86) | 54 (93) | 0.210 |
Angiotensin-converting enzyme (ACE) inhibitors/Angiotensin II receptor blockers (ARB) | 94 (88) | 42 (86) | 52 (90) | 0.534 |
Calcium channel blockers | 20 (19) | 12 (25) | 8 (14) | 0.157 |
Proton pump inhibitors | 85 (79) | 41 (84) | 44 (76) | 0.319 |
Statins | 97 (91) | 43 (88) | 54 (93) | 0.344 |
Antidiabetic drugs | 19 (18) | 7 (14) | 12 (21) | 0.388 |
ACS data | ||||
Number of stents per patient | 1.4 ± 1.1 | 1.1 ± 0.8 | 1.6 ± 1.3 | 0.213 |
Total stent length | 32.3 ± 24.5 | 24.4 ± 15.8 | 39.3 ± 28.6 | 0.011 |
Long-Term All-Cause Mortality n = 8 (7.3%) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Test | |||||||||
c-Index (95%CI) | p-Value | Cut-Off Value | Sensitivity, % | Specificity, % | Positive Predictive Value, % | Negative Predictive Value, % | LR+ | LR− | |
low miR-223 vs. high miR-223 | 0.73 (0.58–0.86) | 0.034 | 7.1 | 88 | 57 | 14 | 98 | 2.1 | 0.2 |
Event | Overall n = 109 (100) | miR-223 ≤ 7.1 n = 50 (46) | miR-223 > 7.1 n = 59 (54) | p-Value |
---|---|---|---|---|
Long-term all-cause mortality | 8 (7) | 7 (14) | 1 (2) | 0.014 |
MACE (1 year) | 10 (9) | 4 (8) | 6 (10) | 0.696 |
Minimal/minor/major TIMI bleeding (1 year) | 54 (50) | 26 (55) | 28 (49) | 0.509 |
Variable | HR | 95%CI | p-Value | |
---|---|---|---|---|
Lower | Upper | |||
miR-223 > 7.1 | 0.09 | 0.01 | 0.75 | 0.026 |
Age ≥ 65 years | 1.62 | 0.39 | 6.81 | 0.509 |
Diabetes mellitus | 2.92 | 0.63 | 13.51 | 0.170 |
Dyslipidemia | 0.30 | 0.07 | 1.32 | 0.111 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gager, G.M.; Eyileten, C.; Postuła, M.; Nowak, A.; Gąsecka, A.; Jilma, B.; Siller-Matula, J.M. Expression Patterns of MiR-125a and MiR-223 and Their Association with Diabetes Mellitus and Survival in Patients with Non-ST-Segment Elevation Acute Coronary Syndrome. Biomedicines 2023, 11, 1118. https://doi.org/10.3390/biomedicines11041118
Gager GM, Eyileten C, Postuła M, Nowak A, Gąsecka A, Jilma B, Siller-Matula JM. Expression Patterns of MiR-125a and MiR-223 and Their Association with Diabetes Mellitus and Survival in Patients with Non-ST-Segment Elevation Acute Coronary Syndrome. Biomedicines. 2023; 11(4):1118. https://doi.org/10.3390/biomedicines11041118
Chicago/Turabian StyleGager, Gloria M., Ceren Eyileten, Marek Postuła, Anna Nowak, Aleksandra Gąsecka, Bernd Jilma, and Jolanta M. Siller-Matula. 2023. "Expression Patterns of MiR-125a and MiR-223 and Their Association with Diabetes Mellitus and Survival in Patients with Non-ST-Segment Elevation Acute Coronary Syndrome" Biomedicines 11, no. 4: 1118. https://doi.org/10.3390/biomedicines11041118
APA StyleGager, G. M., Eyileten, C., Postuła, M., Nowak, A., Gąsecka, A., Jilma, B., & Siller-Matula, J. M. (2023). Expression Patterns of MiR-125a and MiR-223 and Their Association with Diabetes Mellitus and Survival in Patients with Non-ST-Segment Elevation Acute Coronary Syndrome. Biomedicines, 11(4), 1118. https://doi.org/10.3390/biomedicines11041118