Investigating Urine Biomarkers in Detrusor Underactivity and Detrusor Overactivity with Detrusor Underactivity Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Investigation of the Clinical Characteristics
2.2. Assessment of Urine Biomarker Levels
2.2.1. Quantification of Inflammatory Cytokines
2.2.2. Quantification of PGE2
2.2.3. Quantification of Oxidative Stress Biomarkers
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, Y.D.; Jeong, S.J. Epidemiology of underactive bladder: Common but underresearched. Investig. Clin. Urol. 2017, 58 (Suppl. S2), S68–S74. [Google Scholar] [CrossRef]
- D’Ancona, C.; Haylen, B.; Oelke, M.; Abranches-Monteiro, L.; Arnold, E.; Goldman, H.; Hamid, R.; Homma, Y.; Marcelissen, T.; Rademakers, K.; et al. The International Continence Society (ICS) report on the terminology for adult male lower urinary tract and pelvic floor symptoms and dysfunction. Neurourol. Urodyn. 2019, 38, 433–477. [Google Scholar] [CrossRef]
- Osman, N.I.; Esperto, F.; Chapple, C.R. Detrusor Underactivity and the Underactive Bladder: A Systematic Review of Preclinical and Clinical Studies. Eur. Urol. 2018, 74, 633–643. [Google Scholar] [CrossRef]
- Osman, N.I.; Chapple, C.R. Contemporary concepts in the aetiopathogenesis of detrusor underactivity. Nat. Rev. Urol. 2014, 11, 639–648. [Google Scholar] [CrossRef]
- Aizawa, N.; Igawa, Y. Pathophysiology of the underactive bladder. Investig. Clin. Urol. 2017, 58 (Suppl. S2), S82–S89. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Kuo, H.C. Urothelial Barrier Deficits, Suburothelial Inflammation and Altered Sensory Protein Expression in Detrusor Underactivity. J. Urol. 2017, 197, 197–203. [Google Scholar] [CrossRef]
- Speich, J.E.; Tarcan, T.; Hashitani, H.; Vahabi, B.; McCloskey, K.D.; Andersson, K.E.; Wein, A.J.; Birder, L.A. Are oxidative stress and ischemia significant causes of bladder damage leading to lower urinary tract dysfunction? Report from the ICI-RS 2019. Neurourol. Urodyn. 2020, 39 (Suppl. S3), S16–S22. [Google Scholar] [CrossRef]
- Chancellor, M.B. The overactive bladder progression to underactive bladder hypothesis. Int. Urol. Nephrol. 2014, 46 (Suppl. S1), S23–S27. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jhang, J.F.; Hsu, Y.H.; Ho, H.C.; Kuo, H.C. Potential urine biomarkers in bladder outlet obstruction-related detrusor underactivity. Tzu Chi Med. J. 2022, 34, 388–393. [Google Scholar]
- Tyagi, P.; Barclay, D.; Zamora, R.; Yoshimura, N.; Peters, K.; Vodovotz, Y.; Chancellor, M. Urine cytokines suggest an inflammatory response in the overactive bladder: A pilot study. Int. Urol. Nephrol. 2010, 42, 629–635. [Google Scholar] [CrossRef]
- Antunes-Lopes, T.; Cruz, F. Urinary Biomarkers in Overactive Bladder: Revisiting the Evidence in 2019. Eur. Urol. Focus 2019, 5, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.F.; Jiang, Y.H.; Kuo, H.C. Urinary biomarkers in patients with detrusor underactivity with and without bladder function recovery. Int. Urol. Nephrol. 2017, 49, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- Haylen, B.T.; de Ridder, D.; Freeman, R.M.; Swift, S.E.; Berghmans, B.; Lee, J.; Monga, A.; Petri, E.; Rizk, D.E.; Sand, P.K.; et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Int. Urogynecol. J. 2010, 21, 5–26. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.H.; Jhang, J.F.; Hsu, Y.H.; Ho, H.C.; Wu, Y.H.; Kuo, H.C. Urine cytokines as biomarkers for diagnosing interstitial cystitis/bladder pain syndrome and mapping its clinical characteristics. Am. J. Physiol. Renal. Physiol. 2020, 318, F1391–F1399. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jhang, J.F.; Hsu, Y.H.; Ho, H.C.; Wu, Y.H.; Kuo, H.C. Urine biomarkers in ESSIC type 2 interstitial cystitis/bladder pain syndrome and overactive bladder with developing a novel diagnostic algorithm. Sci. Rep. 2021, 11, 914. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jhang, J.F.; Ho, H.C.; Hsu, Y.H.; Kuo, H.C. Diagnostic and prognostic value of urine biomarkers among women with dysfunctional voiding. Sci. Rep. 2022, 12, 6608. [Google Scholar] [CrossRef]
- Matsumoto, T.; Hatakeyama, S.; Imai, A.; Tanaka, T.; Hagiwara, K.; Konishi, S.; Okita, K.; Yamamoto, H.; Tobisawa, Y.; Yoneyama, T.; et al. Relationship between oxidative stress and lower urinary tract symptoms: Results from a community health survey in Japan. BJU Int. 2019, 123, 877–884. [Google Scholar] [CrossRef]
- Nomiya, M.; Andersson, K.E.; Yamaguchi, O. Chronic bladder ischemia and oxidative stress: New pharmacotherapeutic targets for lower urinary tract symptoms. Int. J. Urol. 2015, 22, 40–46. [Google Scholar] [CrossRef]
- Andersson, K.E.; Boedtkjer, D.B.; Forman, A. The link between vascular dysfunction, bladder ischemia, and aging bladder dysfunction. Ther. Adv. Urol. 2017, 9, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Andersson, K.E. Oxidative stress and lower urinary tract symptoms: Cause or consequence? BJU Int. 2019, 123, 749–750. [Google Scholar] [CrossRef]
- Azadzoi, K.M.; Tarcan, T.; Kozlowski, R.; Krane, R.J.; Siroky, M.B. Overactivity and structural changes in the chronically ischemic bladder. J. Urol. 1999, 162, 1768–1778. [Google Scholar] [CrossRef]
- Fusco, F.; Creta, M.; De Nunzio, C.; Iacovelli, V.; Mangiapia, F.; Li Marzi, V.; Finazzi Agro, E. Progressive bladder remodeling due to bladder outlet obstruction: A systematic review of morphological and molecular evidences in humans. BMC Urol. 2018, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Miyata, Y.; Matsuo, T.; Mitsunari, K.; Asai, A.; Ohba, K.; Sakai, H. A Review of Oxidative Stress and Urinary Dysfunction Caused by Bladder Outlet Obstruction and Treatments Using Antioxidants. Antioxidants 2019, 8, 132. [Google Scholar] [CrossRef]
- Ren, H.; Li, X.; Cheng, G.; Li, N.; Hou, Z.; Suo, J.; Wang, J.; Za, X. The effects of ROS in prostatic stromal cells under hypoxic environment. Aging Male 2015, 18, 84–88. [Google Scholar] [CrossRef]
- Saponaro, M.; Giacomini, I.; Morandin, G.; Cocetta, V.; Ragazzi, E.; Orso, G.; Carnevali, I.; Berretta, M.; Mancini, M.; Pagano, F.; et al. Serenoa repens and Urtica dioica Fixed Combination: In-Vitro Validation of a Therapy for Benign Prostatic Hyperplasia (BPH). Int. J. Mol. Sci. 2020, 21, 9178. [Google Scholar] [CrossRef] [PubMed]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed]
- Rahnama’i, M.S.; van Kerrebroeck, P.E.; de Wachter, S.G.; van Koeveringe, G.A. The role of prostanoids in urinary bladder physiology. Nat. Rev. Urol. 2012, 9, 283–290. [Google Scholar] [CrossRef]
- Andersson, K.E. Overactive bladder—Pharmacological aspects. Scand. J. Urol. Nephrol. Suppl. 2002, 210, 72–81. [Google Scholar] [CrossRef]
- Kim, J.C.; Park, E.Y.; Hong, S.H.; Seo, S.I.; Park, Y.H.; Hwang, T.K. Changes of urinary nerve growth factor and prostaglandins in male patients with overactive bladder symptom. Int. J. Urol. 2005, 12, 875–880. [Google Scholar] [CrossRef]
(A) DU (n = 50) | (B) DO-DU (n = 18) | (C) Controls (n = 20) | p Value | Post-Hoc Analysis | |
---|---|---|---|---|---|
Age | 63.4 ± 14.0 | 65.3 ± 13.7 | 64.4 ± 8.5 | 0.628 | |
Sex | F 33, M 17 | F 9, M 9 | F 20 | 0.002 | A, B vs. C |
IPSS-V | 15.2 ± 4.2 | 12.5 ± 8.1 | 1.3 ± 1.5 | <0.001 | A, B vs. C |
IPSS-S | 5.9 ± 4.6 | 7.7 ± 4.3 | 1.9 ± 1.4 | <0.001 | A, B vs. C |
IPSS | 21.1 ± 6.6 | 20.2 ± 10.4 | 3.2 ± 1.5 | <0.001 | A, B vs. C |
VUDS | |||||
FSF | 204.6 ± 98.4 | 123.3 ± 56.1 | 178.8 ± 76.1 | 0.005 | A vs. B |
FS | 313.4 ± 108.0 | 196.2 ± 85.2 | 314.0 ± 91.1 | <0.001 | B vs. A, C |
CBC | 445.6 ± 245.9 | 374.2 ± 119.3 | 419.7 ± 146.7 | 0.206 | |
Pdet | 3.9 ± 7.7 | 20.0 ± 13.9 | 14.0 ± 7.2 | <0.001 | A vs. B, C |
Qmax | 4.7 ± 5.3 | 5.9 ± 3.9 | 18.9 ± 5.3 | <0.001 | A, B vs. C |
cQmax | 0.23 ± 0.28 | 0.30 ± 0.21 | 0.9 ± 0.3 | <0.001 | A, B vs. C |
Vol | 101.6 ± 137.4 | 130.0 ± 103.2 | 436.0 ± 112.1 | <0.001 | A, B vs. C |
PVR | 362.0 ± 258.5 | 244.2 ± 162.1 | 5.8 ± 13 | <0.001 | A, B vs. C |
VE | 0.25 ± 0.34 | 0.38 ± 0.30 | 1.0 ± 0.1 | <0.001 | A, B vs. C |
Urine Cytokines @ | (A) DU (n = 50) | (B) DO-DU (n = 18) | (C) Control (n = 20) | p Value | Post-Hoc Analysis |
---|---|---|---|---|---|
8-OHdG | 31.67 ± 17.52 (4) | 26.28 ± 18.6 (2) | 18.19 ± 14.65 (0) | 0.018 | A vs. C |
8-isoprostane | 23.80 ± 16.39 (4) | 20.14 ± 9.30 (3) | 20.23 ± 21.65 (0) | 0.290 | |
TAC | 765.2 ± 547.5 (4) | 818.6 ± 739.6 (2) | 1427.4 ± 1202.3 (0) | 0.156 | |
PGE2 | 384.3 ± 295.8 (5) | 449.3 ± 388.7 (2) | 166.78 ± 75.71 (1) | 0.001 | A, B vs. C |
EGF | 4334.8 ± 3445.0 (0) | 2740.2 ± 2382.4 (1) | 6967.3 ± 4749.9 (0) | 0.002 | B vs. C |
Eotaxin | 8.25 ± 9.88 (1) | 5.82 ± 7.64 (0) | 5.23 ± 4.41 (0) | 0.551 | |
G-CSF | 29.84 ± 58.95 (1) | 110.8 ± 200.51 (0) | 9.00 ± 6.47 (0) | 0.195 | |
GM-CSF * | 1.50 ± 0.70 (1) | 1.48 ± 0.64 (1) | 1.20 ± 0.38 (1) | 0.140 | |
IFNα2 | 3.46 ± 1.71 (2) | 2.88 ± 0.98 (1) | 3.24 ± 1.48 (0) | 0.631 | |
IFNγ | 1.18 ± 0.4 (1) | 1.11 ± 0.36 (1) | 1.17 ± 0.19 (0) | 0.501 | |
IL-1RA | 416.2 ± 492.6 (1) | 333.2 ± 421.0 (1) | 229.3 ± 300.6 (1) | 0.225 | |
IL-1α * | 2.13 ± 1.93 (1) | 2.53 ± 3.00 (1) | 1.47 ± 0.77 (0) | 0.389 | |
IL-1β | 1.57 ± 2.48 (1) | 33.74 ± 118.08 (1) | 0.47 ± 0.14 (1) | 0.006 | A, B vs. C |
IL-2 * | 0.74 ± 0.18 (1) | 0.73 ± 0.24 (1) | 0.80 ± 0.16 (0) | 0.217 | |
IL-3 * | 0.44 ± 0.26 (0) | 0.35 ± 0.22 (0) | 0.63 ± 0.21 (0) | 0.001 | A, B vs. C |
IL-4 | 11.94 ± 13.60 (2) | 7.55 ± 5.95 (0) | 12.82 ± 17.90 (1) | 0.326 | |
IL-5 | 0.73 ± 0.47 (2) | 0.68 ± 0.21 (1) | 0.51 ± 0.19 (0) | 0.001 | A, B vs. C |
IL-6 | 3.19 ± 6.00 (2) | 5.60 ± 9.14 (1) | 0.84 ± 0.31 (1) | 0.023 | B vs. C |
IL-7 | 1.63 ± 0.74 (2) | 1.54± 0.70 (0) | 1.34 ± 0.60 (1) | 0.164 | |
IL-8 | 84.28 ± 129.28 (1) | 202.47 ± 392.22 (0) | 12.91 ± 22.05 (0) | 0.003 | A, B vs. C |
IL-10 | 1.6 ± 0.58 (1) | 2.77 ± 3.36 (0) | 1.22 ± 0.34 (0) | 0.005 | A, B vs. C |
IL-12p40 * | 1.13 ± 0.66 (0) | 1.6 ± 1.82 (0) | 0.72 ± 0.32 (0) | 0.055 | |
IL-12P70 | 1.29 ± 0.33 (1) | 1.3 ± 0.45 (0) | 1.24 ± 0.23 (0) | 0.788 | |
IL-13 * | 1.29 ± 0.64 (1) | 1.11 ± 0.28 (1) | 1.24 ± 0.40 (0) | 0.633 | |
IL-15 | 1.81 ± 1.06 (1) | 2.03 ± 1.24 (0) | 1.34 ± 0.46 (0) | 0.165 | |
IL-17A | 1.61 ± 1.91 (1) | 3.07 ± 3.27 (0) | 0.88 ± 0.13 (0) | 0.012 | A, B vs. C |
CXCL10 | 148.65 ± 311.08 (1) | 95.93 ± 169.13 (1) | 15.16 ± 19.91 (0) | 0.027 | A vs. C |
MCP-1 | 293.23 ± 292.72 (1) | 278.92 ± 187.81 (0) | 168.26 ± 109.93 (0) | 0.190 | |
MIP-1α | 2.7 ± 5.85 (1) | 6.93 ± 14.52 (1) | 1.22 ± 0.8 (0) | 0.277 | |
MIP-1β | 5.17 ± 5.66 (1) | 10.09 ± 19.4 (0) | 2.86 ± 2.42 (0) | 0.303 | |
RANTES | 16.87 ± 36.05 (1) | 9.39 ± 10.56 (0) | 5.84 ± 3.52 (0) | 0.376 | |
TNFα | 2.18 ± 3.11 (1) | 4.81 ± 8.5 (1) | 0.76 ± 0.22 (0) | 0.030 | |
TNFβ * | 0.82 ± 0.15 (1) | 0.77 ± 0.17 (0) | 0.77 ± 0.10 (0) | 0.148 | |
VEGF * | 13.28 ± 8.45 (1) | 14.36 ± 15.18 (1) | 11.58 ± 5.05 (0) | 0.690 | |
NGF * | 0.25 ± 0.1 (0) | 0.23 ± 0.13 (1) | 0.27 ± 0.07 (0) | 0.159 | |
BDNF | 0.95 ± 0.93 (2) | 0.72 ± 0.24 (1) | 0.60 ± 0.16 (0) | 0.283 |
p Value | Odds Ratio | 95% CI | Odds Ratio Units * | |
---|---|---|---|---|
DU vs. control | ||||
PGE2 | 0.026 | 2.165 | 1.096–4.275 | 100 |
8-OHdG | 0.023 | 1.557 | 1.062–2.282 | 10 |
IL-5 | 0.039 | 1.544 | 1.022–2.362 | 0.1 |
IL-10 | 0.015 | 1.318 | 1.056–1.644 | 0.1 |
IL-8 | 0.047 | 1.291 | 1.004–1.660 | 10 |
TAC | 0.014 | 0.904 | 0.834–0.980 | 100 |
EGF | 0.019 | 0.826 | 0.704–0.969 | 1000 |
Urine Cytokines | FSF | FS | CBC | PVR | Vol | Qmax | cQmax | Pdet |
---|---|---|---|---|---|---|---|---|
TAC | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | 0.350 |
PGE2 | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | 0.391 |
G-CSF | n.s. | n.s. | n.s. | n.s. | 0.370 | n.s. | n.s. | n.s. |
IFNγ | n.s. | n.s. | n.s. | n.s. | 0.325 | 0.315 | 0.308 | −0.315 |
IL-17A | 0.323 | n.s. | 0.376 | n.s. | 0.338 | n.s. | n.s. | n.s. |
MCP-1 | n.s. | n.s. | n.s. | n.s. | −0.352 | −0.391 | −0.363 | n.s. |
Urine Cytokines | FSF | FS | CBC | PVR | Vol | Qmax | cQmax | Pdet |
---|---|---|---|---|---|---|---|---|
8-OHdG | n.s. | n.s. | n.s. | n.s. | n.s. | 0.542 | 0.567 | n.s. |
PGE2 | n.s. | n.s. | n.s. | n.s. | n.s. | 0.644 | 0.602 | n.s. |
IFNγ | 0.596 | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
IL-5 | −0.541 | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
IL-6 | n.s. | n.s. | n.s. | n.s. | n.s. | 0.494 | n.s. | n.s. |
IL-7 | n.s. | n.s. | n.s. | 0.541 | n.s. | n.s. | n.s. | n.s. |
IL-8 | n.s. | n.s. | 0.518 | n.s. | n.s. | n.s. | n.s. | n.s. |
IL-10 | −0.555 | n.s. | n.s. | n.s. | n.s. | 0.646 | 0.583 | n.s. |
IL-12p70 | n.s. | n.s. | n.s. | 0.480 | n.s. | n.s. | n.s. | n.s. |
IL-15 | n.s. | −0.517 | 0.597 | 0.533 | n.s. | n.s. | n.s. | n.s. |
MIP-1α | −0.581 | n.s. | n.s. | n.s. | n.s. | 0.649 | 0.591 | n.s. |
BDNF | n.s. | 0.538 | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.-H.; Jhang, J.-F.; Wu, Y.-H.; Kuo, H.-C. Investigating Urine Biomarkers in Detrusor Underactivity and Detrusor Overactivity with Detrusor Underactivity Patients. Biomedicines 2023, 11, 1191. https://doi.org/10.3390/biomedicines11041191
Jiang Y-H, Jhang J-F, Wu Y-H, Kuo H-C. Investigating Urine Biomarkers in Detrusor Underactivity and Detrusor Overactivity with Detrusor Underactivity Patients. Biomedicines. 2023; 11(4):1191. https://doi.org/10.3390/biomedicines11041191
Chicago/Turabian StyleJiang, Yuan-Hong, Jia-Fong Jhang, Ya-Hui Wu, and Hann-Chorng Kuo. 2023. "Investigating Urine Biomarkers in Detrusor Underactivity and Detrusor Overactivity with Detrusor Underactivity Patients" Biomedicines 11, no. 4: 1191. https://doi.org/10.3390/biomedicines11041191
APA StyleJiang, Y. -H., Jhang, J. -F., Wu, Y. -H., & Kuo, H. -C. (2023). Investigating Urine Biomarkers in Detrusor Underactivity and Detrusor Overactivity with Detrusor Underactivity Patients. Biomedicines, 11(4), 1191. https://doi.org/10.3390/biomedicines11041191