The Impact of Benign Jawbone Tumors on the Temporomandibular Joint and Occlusion in Children: A Ten-Year Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Methods
3. Results
3.1. General Follow-Up Data
3.2. Dental Anomalies and Jaw Relationship
3.3. Temporomandibular Joint
3.4. CBCT Comparison in the Preoperative and Postoperative Status
3.5. CBCT Dental Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Temporomandibular joint | TMJ |
Odontogenic Cysts | OCs |
Odontogenic Tumors | OTs |
Non-odontogenic Tumors | non-OTs |
Temporomandibular disorders | TMDs |
Diagnostic Criteria for temporomandibular disorders | DC/TMD |
Cone Beam Computed Tomography | CBCT |
References
- Akhiwu, B.I.; Osunde, D.O.; Akhiwu, H.O.; Aliyu, I.; Omeje, K.U.; Ojukwu, B.; Ameh, P.O.; Adebola, R.A.; Ladeinde, A.L. Paediatric Jaw Tumours: Experiences and Findings from a Resource Limited Tertiary Health Care Center. Pan Afr. Med. J. 2020, 36, 111. [Google Scholar] [CrossRef] [PubMed]
- Perry, K.S.; Tkaczuk, A.T.; Caccamese, J.F.; Ord, R.A.; Pereira, K.D. Tumors of the Pediatric Maxillofacial Skeleton: A 20-Year Clinical Study. JAMA Otolaryngol. Head Neck Surg. 2015, 141, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Mamabolo, M.; Noffke, C.; Raubenheimer, E. Odontogenic Tumours Manifesting in the First Two Decades of Life in a Rural African Population Sample: A 26 Year Retrospective Analysis. Dentomaxillofac. Radiol. 2011, 40, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Tkaczuk, A.T.; Bhatti, M.; Caccamese, J.F.; Ord, R.A.; Pereira, K.D. Cystic Lesions of the Jaw in Children: A 15-Year Experience. JAMA Otolaryngol. Head Neck Surg. 2015, 141, 834–839. [Google Scholar] [CrossRef]
- Vered, M.; Wright, J.M. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Odontogenic and Maxillofacial Bone Tumours. Head Neck Pathol. 2022, 16, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Brierley, D.J.; Chee, C.K.M.; Speight, P.M. A Review of Paediatric Oral and Maxillofacial Pathology. Int. J. Paediatr. Dent. 2013, 23, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Arce, K.; Streff, C.S.; Ettinger, K.S. Pediatric Odontogenic Cysts of the Jaws. Oral Maxillofac. Surg. Clin. N. Am. 2016, 28, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.S.; Dillon, J. Nonodontogenic Cysts of the Jaws and Treatment in the Pediatric Population. Oral Maxillofac. Surg. Clin. N. Am. 2016, 28, 31–44. [Google Scholar] [CrossRef]
- Koraitim, M.; Medra, A.M.; Salloum, A.M.; Shehata, E.A. Pediatric Aggressive Benign Mandibular Tumors: Clinical Features and Management. J. Craniofac. Surg. 2022, 33, e265–e267. [Google Scholar] [CrossRef]
- Kutcipal, E. Pediatric Oral and Maxillofacial Surgery. Dent. Clin. N. Am. 2013, 57, 83–98. [Google Scholar] [CrossRef]
- Burke, A.; Collins, M.; Boyce, A. Fibrous Dysplasia of Bone: Craniofacial and Dental Implications. Oral Dis. 2017, 23, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Stefanelli, S.; Mundada, P.; Rougemont, A.-L.; Lenoir, V.; Scolozzi, P.; Merlini, L.; Becker, M. Masses of Developmental and Genetic Origin Affecting the Paediatric Craniofacial Skeleton. Insights Imaging 2018, 9, 571–589. [Google Scholar] [CrossRef] [PubMed]
- Yamashiro, T. Mechanisms of growth, development and disease of the craniofacial skeleton. Clin. Calcium 2016, 26, 140–145. [Google Scholar]
- Stocum, D.L.; Roberts, W.E. Part I: Development and Physiology of the Temporomandibular Joint. Curr. Osteoporos. Rep. 2018, 16, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Manlove, A.E.; Romeo, G.; Venugopalan, S.R. Craniofacial Growth: Current Theories and Influence on Management. Oral Maxillofac. Surg. Clin. N. Am. 2020, 32, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Costello, B.J.; Rivera, R.D.; Shand, J.; Mooney, M. Growth and Development Considerations for Craniomaxillofacial Surgery. Oral Maxillofac. Surg. Clin. N. Am. 2012, 24, 377–396. [Google Scholar] [CrossRef]
- Bak, M.; Jacobson, A.S.; Buchbinder, D.; Urken, M.L. Contemporary Reconstruction of the Mandible. Oral Oncol. 2010, 46, 71–76. [Google Scholar] [CrossRef]
- Al-Jewair, T.S.; Preston, C.B.; Flores-Mir, C.; Ziarnowski, P. Correlation between Craniofacial Growth and Upper and Lower Body Heights in Subjects with Class I Occlusion. Dent. Press J. Orthod. 2018, 23, 37–45. [Google Scholar] [CrossRef]
- Nie, X. Cranial Base in Craniofacial Development: Developmental Features, Influence on Facial Growth, Anomaly, and Molecular Basis. Acta Odontol. Scand. 2005, 63, 127–135. [Google Scholar] [CrossRef]
- Andria, L.M.; Leite, L.P.; Prevatte, T.M.; King, L.B. Correlation of the Cranial Base Angle and Its Components with Other Dental/Skeletal Variables and Treatment Time. Angle Orthod. 2004, 74, 361–366. [Google Scholar] [CrossRef]
- Fowler, N.M.; Futran, N.D. Utilization of Free Tissue Transfer for Pediatric Oromandibular Reconstruction. Facial Plast. Surg. Clin. N. Am. 2014, 22, 549–557. [Google Scholar] [CrossRef]
- Kalladka, M.; Young, A.; Thomas, D.; Heir, G.M.; Quek, S.Y.P.; Khan, J. The Relation of Temporomandibular Disorders and Dental Occlusion: A Narrative Review. Quintessence Int. 2022, 53, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, E.; Ohrbach, R.; Truelove, E.; Look, J.; Anderson, G.; Goulet, J.-P.; List, T.; Svensson, P.; Gonzalez, Y.; Lobbezoo, F.; et al. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: Recommendations of the International RDC/TMD Consortium Network and Orofacial Pain Special Interest Group. J. Oral Facial Pain Headache 2014, 28, 6–27. [Google Scholar] [CrossRef] [PubMed]
- Almășan, O.; Kui, A.; Duncea, I.; Manea, A.; Buduru, S. Temporomandibular Joint Disk Displacements in Class II Malocclusion and Cervical Spine Alterations: Systematic Review and Report of a Hypodivergent Case with MRI Bone and Soft Tissue Changes. Life 2022, 12, 908. [Google Scholar] [CrossRef] [PubMed]
- Perrotta, S.; Bucci, R.; Simeon, V.; Martina, S.; Michelotti, A.; Valletta, R. Prevalence of Malocclusion, Oral Parafunctions and Temporomandibular Disorder-pain in Italian Schoolchildren: An Epidemiological Study. J. Oral Rehabil. 2019, 46, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Paduano, S.; Bucci, R.; Rongo, R.; Silva, R.; Michelotti, A. Prevalence of Temporomandibular Disorders and Oral Parafunctions in Adolescents from Public Schools in Southern Italy. CRANIO® 2020, 38, 370–375. [Google Scholar] [CrossRef]
- Rauch, A.; Schierz, O.; Körner, A.; Kiess, W.; Hirsch, C. Prevalence of Anamnestic Symptoms and Clinical Signs of Temporomandibular Disorders in Adolescents—Results of the Epidemiologic LIFE Child Study. J. Oral Rehabil. 2020, 47, 425–431. [Google Scholar] [CrossRef]
- Al-Khotani, A.; Naimi-Akbar, A.; Albadawi, E.; Ernberg, M.; Hedenberg-Magnusson, B.; Christidis, N. Prevalence of Diagnosed Temporomandibular Disorders among Saudi Arabian Children and Adolescents. J. Headache Pain 2016, 17, 41. [Google Scholar] [CrossRef]
- Marpaung, C.; Lobbezoo, F.; van Selms, M.K.A. Temporomandibular Disorders among Dutch Adolescents: Prevalence and Biological, Psychological, and Social Risk Indicators. Pain Res. Manag. 2018, 2018, 5053709. [Google Scholar] [CrossRef]
- Minervini, G.; Franco, R.; Marrapodi, M.M.; Fiorillo, L.; Cervino, G.; Cicciù, M. Prevalence of Temporomandibular Disorders in Children and Adolescents Evaluated with Diagnostic Criteria for Temporomandibular Disorders: A Systematic Review with Meta-analysis. J. Oral Rehabil. 2023, joor.13446. [Google Scholar] [CrossRef]
- Pullinger, A.; Hollender, L. Variation in Condyle-Fossa Relationships According to Different Methods of Evaluation in Tomograms. Oral Surg. Oral Med. Oral Pathol. 1986, 62, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Cicchetti, D.V.; Sharma, Y.; Cotlier, E. Assessment of Observer Variability in the Classification of Human Cataracts. Yale J. Biol. Med. 1982, 55, 81–88. [Google Scholar] [PubMed]
- Urs, A.B.; Arora, S.; Singh, H. Intra-Osseous Jaw Lesions in Paediatric Patients: A Retrospective Study. J. Clin. Diagn. Res. 2014, 8, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, J.; Han, Y.; Troulis, M.J.; August, M. Benign Pediatric Jaw Lesions at Massachusetts General Hospital Over 13 Years. J. Oral Maxillofac. Surg. 2020, 78, 1124–1135. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, I.; Gal, G.; Anavi, Y.; Manor, R.; Calderon, S. Glandular Odontogenic Cyst: Treatment and Recurrence. J. Oral Maxillofac. Surg. 2005, 63, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Lawal, A.O.; Adisa, A.O.; Popoola, B.O. Odontogenic Tumours in Children and Adolescents: A Review of Forty-Eight Cases. Ann. Ib. Postgrad. Med. 2013, 11, 7–11. [Google Scholar]
- Taiwo, A.O.; Braimah, R.O.; Ibikunle, A.A.; Obileye, M.F.; Jiya, N.M.; Sahabi, S.M.; Jaja, I.K. Oral and Maxillofacial Tumours in Children and Adolescents: Clinicopathologic Audit of 75 Cases in an Academic Medical Centre, Sokoto, Northwest Nigeria. Afr. J. Paediatr. Surg. 2017, 14, 37–42. [Google Scholar] [CrossRef]
- Tanaka, N.; Murata, A.; Yamaguchi, A.; Kohama, G. Clinical Features and Management of Oral and Maxillofacial Tumors in Children. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1999, 88, 11–15. [Google Scholar] [CrossRef]
- Carrillo, C.M.; Corrêa, F.N.P.; Lopes, N.N.F.; Fava, M.; Odone Filho, V. Dental Anomalies in Children Submitted to Antineoplastic Therapy. Clinics 2014, 69, 433–437. [Google Scholar] [CrossRef]
- Kılınç, G.; Bulut, G.; Ertuğrul, F.; Ören, H.; Demirağ, B.; Demiral, A.; Aksoylar, S.; Kamer, E.S.; Ellidokuz, H.; Olgun, N. Long-Term Dental Anomalies after Pediatric Cancer Treatment in Children. Turk. J. Haematol. 2019, 36, 155–161. [Google Scholar] [CrossRef]
- Akbari, M.; Lankarani, K.B.; Honarvar, B.; Tabrizi, R.; Mirhadi, H.; Moosazadeh, M. Prevalence of Malocclusion among Iranian Children: A Systematic Review and Meta-Analysis. Dent. Res. J. 2016, 13, 387–395. [Google Scholar] [CrossRef]
- Alvarado, K.; López, L.; Hanke, R.; Picón, F.; Rivas-Tumanyan, S. Prevalence of Malocclusion and Distribution of Occlusal Characteristics in 13- to 18-Year-Old Adolescents Attending Selected High Schools in the Municipality of San Juan, PR (2012–2013). Puerto Rico Health Sci. J. 2017, 36, 61–66. [Google Scholar]
- Mtaya, M.; Brudvik, P.; Astrøm, A.N. Prevalence of Malocclusion and Its Relationship with Socio-Demographic Factors, Dental Caries, and Oral Hygiene in 12- to 14-Year-Old Tanzanian Schoolchildren. Eur. J. Orthod. 2009, 31, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Meng, M.; Law, C.S.; Rao, Y.; Zhou, X. Common Dental Diseases in Children and Malocclusion. Int. J. Oral Sci. 2018, 10, 7. [Google Scholar] [CrossRef]
- da Silva Andrade, A.; Gameiro, G.H.; Derossi, M.; Gavião, M.B.D. Posterior Crossbite and Functional Changes. A Systematic Review. Angle Orthod. 2009, 79, 380–386. [Google Scholar] [CrossRef]
- Krasteva, S.A. Epidemiological Study of Laterognathia, Mandibular Deviation and Posterior Crossbite in Children Aged 7-17 Years from Plovdiv. Folia Med. 2013, 55, 66–72. [Google Scholar] [CrossRef]
- Alexiou, K.; Stamatakis, H.; Tsiklakis, K. Evaluation of the Severity of Temporomandibular Joint Osteoarthritic Changes Related to Age Using Cone Beam Computed Tomography. Dentomaxillofac. Radiol. 2009, 38, 141–147. [Google Scholar] [CrossRef]
- Ahmad, M.; Hollender, L.; Anderson, Q.; Kartha, K.; Ohrbach, R.; Truelove, E.L.; John, M.T.; Schiffman, E.L. Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD): Development of Image Analysis Criteria and Examiner Reliability for Image Analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 107, 844–860. [Google Scholar] [CrossRef]
- Pereira, L.J.; Gavião, M.B.D. Tomographic Evaluation of TMJ in Adolescents with Temporomandibular Disorders. Braz. Oral Res. 2004, 18, 208–214. [Google Scholar] [CrossRef]
- Dimachkieh, A.L.; Chelius, D.C. Complex Head and Neck Resection, Reconstruction, and Rehabilitation in Children. Otolaryngol. Clin. N. Am. 2022, 55, 1205–1214. [Google Scholar] [CrossRef]
- Markiewicz, M.R.; Ruiz, R.L.; Pirgousis, P.; Bryan Bell, R.; Dierks, E.J.; Edwards, S.P.; Fernandes, R. Microvascular Free Tissue Transfer for Head and Neck Reconstruction in Children: Part I. J. Craniofac. Surg. 2016, 27, 846–856. [Google Scholar] [CrossRef] [PubMed]
- Benoit, M.M.; Vargas, S.O.; Bhattacharyya, N.; McGill, T.A.; Robson, C.D.; Ferraro, N.; Didas, A.E.; Labow, B.I.; Upton, J.; Taghinia, A.; et al. The Presentation and Management of Mandibular Tumors in the Pediatric Population. Laryngoscope 2013, 123, 2035–2042. [Google Scholar] [CrossRef] [PubMed]
- McClary, A.C.; West, R.B.; McClary, A.C.; Pollack, J.R.; Fischbein, N.J.; Holsinger, C.F.; Sunwoo, J.; Colevas, A.D.; Sirjani, D. Ameloblastoma: A Clinical Review and Trends in Management. Eur. Arch. Otorhinolaryngol. 2016, 273, 1649–1661. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.-C.; Lin, S.-Y. A Long-Term Follow-Up of Dental and Craniofacial Disturbances after Cancer Therapy in a Pediatric Rhabdomyosarcoma Patient: Case Report. Int. J. Environ. Res. Public Health 2021, 18, 12158. [Google Scholar] [CrossRef]
- Näsman, M.; Hammarström, L. Influence of the Antineoplastic Agent Cyclophosphamide on Dental Development in Rat Molars. Acta Odontol. Scand. 1996, 54, 287–294. [Google Scholar] [CrossRef]
- Näsman, M.; Hultenby, K.; Forsberg, C.M. A Scanning Electron Microscopy Study of Disturbances in the Developing Rat Molar Induced by Cyclophosphamide. Acta Odontol. Scand. 1997, 55, 186–191. [Google Scholar] [CrossRef]
Jaw Lesion | N (%) * |
---|---|
Benign odontogenic tumors (OTs) | 14 (26.4) |
Epithelial | |
Ameloblastoma | 2 (3.7) |
Mesenchymal | |
Odontogenic fibroma | 1 (1.8) |
Odontogenic myxoma | 5 (9.4) |
Mixed | |
Ameloblastic fibroma | 1 (1.8) |
Odontoma | 5 (9.4) |
Benign nonodontogenic tumors (non-OTs) | 11 (20.7) |
Maxillofacial bone tumors | |
Osteoma | 1 (1.8) |
Osteoid osteoma | 1 (1.8) |
Desmoplastic fibroma | 1 (1.8) |
Fibro-osseous tumors | |
Fibrous dysplasia | 3 (5.6) |
Giant cell lesions and bone cysts | |
Giant cell granuloma | 3 (5.6) |
Simple bone cyst | 1 (1.8) |
Cherubism | 1 (1.8) |
Odontogenic cysts (OCs) | 28 (52.8) |
Inflammatory | |
Radicular cyst | 13 (24.5) |
Developmental | |
Dentigerous cyst | 6 (11.3) |
Odontogenic keratocysts | 9 (16.9) |
Total N (%) | Odontogenic Tumors (OTs) N (%) | Non-Odontogenic Tumors (Non-OTs) N (%) | Odontogenic Cysts (OCs) N (%) | |
---|---|---|---|---|
Gender | ||||
Male | 29 (54.7) | 7 (50) | 6 (54.5) | 16 (57.1) |
Female | 24 (45.2) | 7 (50) | 5 (45.4) | 12 (42.8) |
Size (cm) | 2.9 ± 1.4 | 2.8 ± 0.9 | 3.9 ± 2 | 2.6 ± 1.3 |
Age | 15.1 ± 4.1 | 11.7 ± 4.7 | 15.2 ± 2.2 | 16.8 ± 3.2 |
Tumor location | ||||
Mandible | 34 (64.1) | 8 (57.1) | 6 (54.5) | 20 (71.4) |
Maxillary | 19 (35.8) | 6 (42.8) | 5 (45.4) | 8 (28.5) |
Treatment | ||||
Simple biopsy | 4 (0.7) | 0 (0) | 4 (36.3) | 0 (0) |
Excision | 45 (84.9) | 13 (92.8) | 7 (63.6.5) | 25 (89.2) |
Reconstruction | 5 (0.9) | 3 (21.4) | 1 (0.9) | 1 (0.3) |
Marsupialization | 4 (0.7) | 1 (0.7) | 0 (0) | 3 (10.7) |
Follow-up | ||||
Median | 49.8 ± 29.2 | 41.7 ± 28.7 | 70.2 ± 29.8 | 45.8 ± 26.3 |
Range | 6–118 | 7–100 | 33–118 | 6–118 |
Recurrence | 1 (1.8) | 0 (0) | 0 (0) | 1 (1.8) |
Total N (%) * | Odontogenic Tumors (OTs) N (%) * | Odontogenic Cysts (OCs) N (%) * | Non-Odontogenic Tumors (Non-OTs) N (%) * | |
---|---|---|---|---|
Dental anomalies | ||||
Malposition | 21 (39.6) | 10 (71.4) | 8 (28.5) | 3 (27.2) |
Impacted teeth | 5 (9.4) | 1 (7.1) | 2 (7.1) | 2 (18.1) |
Malocclusion | ||||
Sagittal plane | ||||
Normal sagittal | 20 (37.7) | 7(13.2) | 12 (42.8) | 1 (9) |
Increased Overjet | 31 (58.4) | 7 (50) | 16 (57.1) | 8 (72.7) |
Negative Overjet | 2 (3.7) | 0 (0) | 2 (7.1) | 0 (0) |
Transverse plane | ||||
Normal transverse | 15 (28.3) | 4 (28.5) | 9 (32.1) | 2 (18.1) |
Cross bite, scissor bite | 8 (15) | 2 (14.2) | 4 (14.2) | 2 (18.1) |
Midline shift | 30 (56.6) | 7 (50) | 15 (53.5) | 8 (72.7) |
Edge-to-Edge bite | 11 (20.7) | 3 (21.4) | 7 (25) | 1 (9) |
Vertical plane | ||||
Normal vertical | 30 (56.6) | 10 (71.4) | 15 (53.5) | 5 (45.4) |
Deep bite | 7 (13.2) | 3 (21.4) | 3 (10.7) | 1 (9) |
Open bite | 16 (30.1) | 3 (21.4) | 5 (17.8) | 8 (72.7) |
TMJ Changes | Total N (%) * | Odontogenic Tumors (OTs) N (%) * | Odontogenic Cysts (OCs) N (%) * | Non-Odontogenic Tumors (Non-OTS) N (%) * |
---|---|---|---|---|
Normal condyle position | 65 (61.3) | 18 (64.2) | 35 (62.5) | 12 (54.5) |
Anterior condyle position | 21 (19.8) | 6 (21.4) | 10 (17.8) | 5 (22.7) |
Posterior condyle position | 15 (14.1) | 4 (14.2) | 9 (16) | 2 (9) |
Superior condyle position | 5 (4.7) | 0 (0) | 2 (3.5) | 3 (13.6) |
Medial position | 36 (33.9) | 13 (46.4) | 14 (25) | 9 (40.1) |
Lateral position | 24 (22.6) | 5 (17.8) | 14 (25) | 5 (22.7) |
Condyle flattening | 61 (57.5) | 18 (64.2) | 28 (50) | 15 (68.1) |
Degenerative bone changes | 22 (20.7) | 5 (17.8) | 14 (25) | 3 (13.6) |
Preoperative T0 N(%) * | Postoperative T1 N(%) * | p-Value (T0, T1) | |
---|---|---|---|
Dental anomalies | |||
Malposition | 16 (64) | 10 (40) | 0.06 |
Impacted teeth | 7 (28) | 0 (0) | 0.16 |
Malocclusion | |||
Sagittal plane | |||
Normal Overjet | 5 (20) | 7 (28) | 0.62 |
Increased Overjet | 18 (72) | 16 (64) | 0.62 |
Negative Overjet | 2 (8) | 2(8) | 0.99 |
Transversal plane | |||
Normal transversal | 3 (12) | 0 (0) | 0.25 |
Cross bite, scissor bite | 0 (0) | 3 (12) | 0.25 |
Edge-to-edge bite | 9 (36) | 7 (28) | 0.67 |
Midline shift | 13 (52) | 15 (60) | 0.50 |
Vertical plane | |||
Normal Vertical | 6 (24) | 14 (56) | 0.07 |
Deep bite | 6 (24) | 5 (20) | 0.99 |
Open bite | 13 (52) | 6 (24) | 0.11 |
TMJ changes ** | |||
Sagittal plane | |||
Normal condyle position | 29 (58) | 32 (64) | 0.58 |
Anterior condyle position | 13 (26) | 12 (24) | 0.99 |
Posterior condyle position | 7 (14) | 6 (12) | 0.99 |
Superior condyle position | 1 (2) | 0 (0) | 0.99 |
Coronal plane | |||
Central position | 21(42) | 18(36) | 0.59 |
Medial position | 20 (40) | 18 (36) | 0.72 |
Lateral position | 9 (18) | 14 (28) | 0.12 |
Condyle flattening | 42 (84) | 43 (86) | 0.67 |
Degenerative bone changes | 14 (28) | 16 (32) | 0.99 |
Preoperative (T0) * | Postoperative (T1) * | p-Value | |
---|---|---|---|
Upper jaw | |||
Inter-canine distance | 35.5 ± 3.9 | 36.3 ± 3 | 0.07 |
Inter-first premolar | 44.1 [39.2–44.9] | 43.8 [40.6–44.4] | 0.38 |
Inter-first molar | 52.3 ± 4.1 | 53.2 ± 3.3 | 0.06 |
Lower jaw | |||
Inter-canine distance | 28.9 [27.6–30.3] | 29.2 [20.1–30.1] | 0.36 |
Inter-first premolar | 38.5 ± 3.1 | 38.8 ± 2.3 | 0.89 |
Inter-first molar | 50.6 ± 3.1 | 50.9 ± 3 | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crasnean, E.; Ban, A.; Roman, R.; Dinu, C.; Băciuț, M.; Nechita, V.-I.; Bran, S.; Onișor, F.; Badiu, T.; Almășan, O.; et al. The Impact of Benign Jawbone Tumors on the Temporomandibular Joint and Occlusion in Children: A Ten-Year Follow-Up Study. Biomedicines 2023, 11, 1210. https://doi.org/10.3390/biomedicines11041210
Crasnean E, Ban A, Roman R, Dinu C, Băciuț M, Nechita V-I, Bran S, Onișor F, Badiu T, Almășan O, et al. The Impact of Benign Jawbone Tumors on the Temporomandibular Joint and Occlusion in Children: A Ten-Year Follow-Up Study. Biomedicines. 2023; 11(4):1210. https://doi.org/10.3390/biomedicines11041210
Chicago/Turabian StyleCrasnean, Emil, Alina Ban, Raluca Roman, Cristian Dinu, Mihaela Băciuț, Vlad-Ionuț Nechita, Simion Bran, Florin Onișor, Teodora Badiu, Oana Almășan, and et al. 2023. "The Impact of Benign Jawbone Tumors on the Temporomandibular Joint and Occlusion in Children: A Ten-Year Follow-Up Study" Biomedicines 11, no. 4: 1210. https://doi.org/10.3390/biomedicines11041210
APA StyleCrasnean, E., Ban, A., Roman, R., Dinu, C., Băciuț, M., Nechita, V. -I., Bran, S., Onișor, F., Badiu, T., Almășan, O., & Hedeșiu, M. (2023). The Impact of Benign Jawbone Tumors on the Temporomandibular Joint and Occlusion in Children: A Ten-Year Follow-Up Study. Biomedicines, 11(4), 1210. https://doi.org/10.3390/biomedicines11041210