Humoral Immune Response after COVID-19 mRNA Vaccination in Patients with Liver Cirrhosis: A Prospective Real-Life Single Center Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Humoral Response
2.2. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Antibody Response after COVID-19 Vaccination
3.3. Vaccine Safety
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus disease 2019 |
Anti-S | Anti-spike protein |
Anti-N | Anti-nucleocapsid protein |
AEs | Adverse Events |
HCWs | Health Care Workers |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
EASL | European Association for the Study of the Liver |
AASLD | American Association for the Study of Liver Diseases |
BMI | Body Mass Index |
e-GFR | Estimated Glomerular Filtration Rate |
INR | International Normalized Ratio |
COPD | Chronic Obstructive Pulmonary Disease |
MELD | Model for End-Stage Liver Disease |
ALD | Alcoholic Liver Disease |
AILD | Autoimmune Liver Disease |
PBC | Primary Biliary Cirrhosis |
BA | Biliary Atresia |
NASH | Non-Alcoholic Steatohepatitis |
AST | Aspartate amino-transferase |
ALT | Alanine amino-transferase |
MELD | Model for End-Stage Liver Disease |
INR | International Normalized Ratio |
RBD | Receptor Binding Domain |
HCC | Hepatocellular Carcinoma |
References
- Sarin, S.K.; Choudhury, A.; Lau, G.K.; Zheng, M.H.; Ji, D.; Abd-Elsalam, S.; Hwang, J.; Qi, X.; Cua, I.H.; Suh, J.I.; et al. Pre-existing liver disease is associated with poor outcome in patients with SARS CoV2 infection; The APCOLIS Study (APASL COVID-19 Liver Injury Spectrum Study). Hepatol. Int. 2020, 14, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Marjot, T.; Webb, G.J.; Barritt, A.S.; Ginès, P.; Lohse, A.W.; Moon, A.M.; Pose, E.; Trivedi, P.; Barnes, E. SARS-CoV-2 vaccination in patients with liver disease: Responding to the next big question. Lancet Gastroenterol. Hepatol. 2021, 6, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Pletcher, M.J.; Lai, J.C.; Harper, J.R.; Chute, C.G.; Haendel, M.A. Outcomes of SARS-CoV-2 Infection in Patients With Chronic Liver Disease and Cirrhosis: A National COVID Cohort Collaborative Study. Gastroenterology 2021, 161, 1487–1501.e5. [Google Scholar] [CrossRef] [PubMed]
- Belli, L.S.; Duvoux, C.; Cortesi, P.A.; Facchetti, R.; Iacob, S.; Perricone, G.; Radenne, S.; Conti, S.; Patrono, D.; Berlakovich, G.; et al. COVID-19 in liver transplant candidates: Pretransplant and post-transplant outcomes—An ELITA/ELTR multicentre cohort study. Gut 2021, 70, 1914–1924. [Google Scholar] [CrossRef]
- Cornberg, M.; Buti, M.; Eberhardt, C.S.; Grossi, P.A.; Shouval, D. EASL position paper on the use of COVID-19 vaccines in patients with chronic liver diseases, hepatobiliary cancer and liver transplant recipients. J. Hepatol. 2021, 74, 944–951. [Google Scholar] [CrossRef]
- Fix, O.K.; Blumberg, E.A.; Chang, K.; Chu, J.; Chung, R.T.; Goacher, E.K.; Hameed, B.; Kaul, D.R.; Kulik, L.M.; Kwok, R.M.; et al. American Association for the Study of Liver Diseases Expert Panel Consensus Statement: Vaccines to Prevent Coronavirus Disease 2019 Infection in Patients With Liver Disease. Hepatology 2021, 74, 1049–1064. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Baden, L.R.; Sahly, H.M.E.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- John, B.V.; Deng, Y.; Scheinberg, A.; Mahmud, N.; Taddei, T.H.; Kaplan, D.; Labrada, M.; Baracco, G.; Dahman, B. Association of BNT162b2 mRNA and mRNA-1273 Vaccines With COVID-19 Infection and Hospitalization Among Patients With Cirrhosis. JAMA Intern. Med. 2021, 181, 1306. [Google Scholar] [CrossRef]
- McCashland, T.; Preheim, L.; Gentry, M. Pneumococcal Vaccine Response in Cirrhosis and Liver Transplantation. J. Infect. Dis. 2000, 181, 757–760. [Google Scholar] [CrossRef]
- Aggeletopoulou, I.; Davoulou, P.; Konstantakis, C.; Thomopoulos, K.; Triantos, C. Response to hepatitis B vaccination in patients with liver cirrhosis. Rev. Med Virol. 2017, 27, e1942. [Google Scholar] [CrossRef]
- Härmälä, S.; Parisinos, C.A.; Shallcross, L.; O’Brien, A.; Hayward, A. Effectiveness of influenza vaccines in adults with chronic liver disease: A systematic review and meta-analysis. BMJ Open 2019, 9, e031070. [Google Scholar] [CrossRef]
- Cheung, K.S.; Mok, C.H.; Mao, X.; Zhang, R.; Hung, I.F.; Seto, W.K.; Yuen, M.F. COVID-19 vaccine immunogenicity among chronic liver disease patients and liver transplant recipients: A meta-analysis. Clin. Mol. Hepatol. 2022, 28, 890–911. [Google Scholar] [CrossRef]
- D’Offizi, G.; Agrati, C.; Visco-Comandini, U.; Castilletti, C.; Puro, V.; Piccolo, P.; Montalbano, M.; Meschi, S.; Tartaglia, E.; Sorace, C.; et al. Coordinated cellular and humoral immune responses after two-dose SARS-CoV2 mRNA vaccination in liver transplant recipients. Liver Int. Off. J. Int. Assoc. Study Liver 2022, 42, 180–186. [Google Scholar] [CrossRef]
- Montalbano, M.; Piccolo, P.; Lionetti, R.; Visco-Comandini, U.; Agrati, C.; Grassi, G.; Meschi, S.; Matusali, G.; Conte, F.; Angelone, F.; et al. Third dose of SARS-CoV2 mRNA vaccination produces robust persistent cellular and humoral immune responses in liver transplant recipients. Liver Int. 2023, 43, 1120–1125. [Google Scholar] [CrossRef]
- Ho, D.E.; Imai, K.; King, G.; Stuart, E.A. MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. J. Stat. Softw. 2011, 42, 1–28. [Google Scholar] [CrossRef]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. 2022. R package version 0.4.6. Available online: https://CRAN.R-project.org/package=DHARMa (accessed on 1 October 2022).
- Dunn, P.K.; Smyth, G.K. Randomized Quantile Residuals. J. Comput. Graph. Stat. 1996, 5, 236. [Google Scholar] [CrossRef]
- Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Thuluvath, P.J.; Robarts, P.; Chauhan, M. Analysis of antibody responses after COVID-19 vaccination in liver transplant recipients and those with chronic liver diseases. J. Hepatol. 2021, 75, 1434–1439. [Google Scholar] [CrossRef]
- Willuweit, K.; Frey, A.; Passenberg, M.; Korth, J.; Saka, N.; Anastasiou, O.E.; Möhlendick, B.; Schütte, A.; Schmidt, H.; Rashidi-Alavijeh, J. Patients with Liver Cirrhosis Show High Immunogenicity upon COVID-19 Vaccination but Develop Premature Deterioration of Antibody Titers. Vaccines 2022, 10, 377. [Google Scholar] [CrossRef]
- Giambra, V.; Piazzolla, A.V.; Cocomazzi, G.; Squillante, M.M.; Santis, E.D.; Totti, B.; Cavorsi, C.; Giuliani, F.; Serra, N.; Mangia, A. Effectiveness of Booster Dose of Anti SARS-CoV-2 BNT162b2 in Cirrhosis: Longitudinal Evaluation of Humoral and Cellular Response. Vaccines 2022, 10, 1281. [Google Scholar] [CrossRef]
- Iavarone, M.; Tosetti, G.; Facchetti, F.; Topa, M.; Er, J.M.; Hang, S.K.; Licari, D.; Lombardi, A.; D’Ambrosio, R.; Degasperi, E.; et al. Spike-specific humoral and cellular immune responses after COVID-19 mRNA vaccination in patients with cirrhosis: A prospective single center study. Dig. Liver Dis. 2023, 55, 160–168. [Google Scholar] [CrossRef]
- Calleri, A.; Saracco, M.; Pittaluga, F.; Cavallo, R.; Romagnoli, R.; Martini, S. Seroconversion After Coronavirus Disease 2019 Vaccination in Patients Awaiting Liver Transplantation: Fact or Fancy? Liver Transplant. 2022, 28, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Bakasis, A.D.; Bitzogli, K.; Mouziouras, D.; Pouliakis, A.; Roumpoutsou, M.; Goules, A.V.; Androutsakos, T. Antibody Responses after SARS-CoV-2 Vaccination in Patients with Liver Diseases. Viruses 2022, 14, 207. [Google Scholar] [CrossRef] [PubMed]
- Ruether, D.F.; Schaub, G.M.; Duengelhoef, P.M.; Haag, F.; Brehm, T.T.; Fathi, A.; Wehmeyer, M.; Jahnke-Triankowski, J.; Mayer, L.; Hoffmann, A.; et al. SARS-CoV2-specific Humoral and T-cell Immune Response After Second Vaccination in Liver Cirrhosis and Transplant Patients. Clin. Gastroenterol. Hepatol. 2022, 20, 162–172.e9. [Google Scholar] [CrossRef] [PubMed]
- Bajema, K.L.; Dahl, R.M.; Prill, M.M.; Meites, E.; Rodriguez-Barradas, M.C.; Marconi, V.C.; Beenhouwer, D.O.; Brown, S.T.; Holodniy, M.; Lucero-Obusan, C.; et al. Effectiveness of COVID-19 mRNA Vaccines Against COVID-19–Associated Hospitalization — Five Veterans Affairs Medical Centers, United States, February 1–August 6, 2021. MMWR. Morb. Mortal. Wkly. Rep. 2021, 70, 1294–1299. [Google Scholar] [CrossRef]
- Steensels, D.; Pierlet, N.; Penders, J.; Mesotten, D.; Heylen, L. Comparison of SARS-CoV-2 Antibody Response Following Vaccination With BNT162b2 and mRNA-1273. JAMA 2021, 326, 1533. [Google Scholar] [CrossRef] [PubMed]
- Delgado, J.F.; Berenguer-Llergo, A.; Julià, G.; Navarro, G.; Espasa, M.; Rodríguez, S.; Sánchez, N.; Eynde, E.V.D.; Navarro, M.; Calvet, J.; et al. Antibody Response Induced by BNT162b2 and mRNA-1273 Vaccines against the SARS-CoV-2 in a Cohort of Healthcare Workers. Viruses 2022, 14, 1235. [Google Scholar] [CrossRef] [PubMed]
- Yau, K.; Chan, C.T.; Abe, K.T.; Jiang, Y.; Atiquzzaman, M.; Mullin, S.I.; Shadowitz, E.; Liu, L.; Kostadinovic, E.; Sukovic, T.; et al. Differences in mRNA-1273 (Moderna) and BNT162b2 (Pfizer-BioNTech) SARS-CoV-2 vaccine immunogenicity among patients undergoing dialysis. CMAJ 2022, 194, E297–E305. [Google Scholar] [CrossRef]
- Denault, E.; Nakajima, E.; Naranbhai, V.; Hutchinson, J.A.; Mortensen, L.; Neihoff, E.; Barabell, C.; Comander, A.; Juric, D.; Kuter, I.; et al. Immunogenicity of SARS-CoV-2 vaccines in patients with breast cancer. Ther. Adv. Med Oncol. 2022, 14, 17588359221119370. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Zhou, Y.; Xu, P.; Ling, N.; Chen, M.; Huang, T.; Zhang, B.; Yang, Z.; Ao, L.; Li, H.; et al. Safety and antibody response to inactivated COVID-19 vaccine in patients with chronic hepatitis B virus infection. Liver Int. 2022, 42, 1287–1296. [Google Scholar] [CrossRef]
- Wang, J.; Hou, Z.; Liu, J.; Gu, Y.; Wu, Y.; Chen, Z.; Ji, J.; Diao, S.; Qiu, Y.; Zou, S.; et al. Safety and immunogenicity of COVID-19 vaccination in patients with non-alcoholic fatty liver disease (CHESS2101): A multicenter study. J. Hepatol. 2021, 75, 439–441. [Google Scholar] [CrossRef] [PubMed]
- Ashhab, A.A.; Rodin, H.; Campos, M.; Abu-Sulb, A.; Hall, J.A.; Powell, J.; Debes, J.D. Response to hepatitis B virus vaccination in individuals with chronic hepatitis C virus infection. PLoS ONE 2020, 15, e0237398. [Google Scholar] [CrossRef]
- Liu, J.; Wu, H.; Chen, H. Immune response to hepatitis B vaccine in patients with chronic hepatitis C infection: A systematic review and meta-analysis. Hepatol. Res. 2018, 48, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Lu, J.; Jia, L.; Feng, Y.; Wang, J.; Meng, X.; Liang, X.; Wang, F.; Wan, Y.; Xu, A.; et al. Impaired long-term anti-HBs responses in choronic hepatitis C patients: Results from a five-year follow-up study with healthy control. Hum. Vaccines Immunother. 2023, 2, 2168432. [Google Scholar] [CrossRef] [PubMed]
- Elefsiniotis, I.S. Immunogenicity of recombinant hepatitis B vaccine in treatment-naïve and treatment-experienced chronic hepatitis C patients: The effect of pegylated interferon plus ribavirin treatment. World J. Gastroenterol. 2006, 12, 4420. [Google Scholar] [CrossRef]
- Wedemeyer, H.; Khera, T.; Strunz, B.; Björkström, N.K. Reversal of Immunity After Clearance of Chronic HCV Infection—All Reset? Front. Immunol. 2020, 11, 571166. [Google Scholar] [CrossRef]
- Aregay, A.; Sekyere, S.O.; Deterding, K.; Port, K.; Dietz, J.; Berkowski, C.; Sarrazin, C.; Manns, M.P.; Cornberg, M.; Wedemeyer, H. Elimination of hepatitis C virus has limited impact on the functional and mitochondrial impairment of HCV-specific CD8+ T cell responses. J. Hepatol. 2019, 71, 889–899. [Google Scholar] [CrossRef]
- Ai, J.; Wang, J.; Liu, D.; Xiang, H.; Guo, Y.; Lv, J.; Zhang, Q.; Li, J.; Zhang, X.; Li, Q.; et al. Safety and Immunogenicity of SARS-CoV-2 Vaccines in Patients With Chronic Liver Diseases (CHESS-NMCID 2101): A Multicenter Study. Clin. Gastroenterol. Hepatol. 2022, 20, 1516–1524.e2. [Google Scholar] [CrossRef]
- Brigger, D.; Guntern, P.; Jonsdottir, H.R.; Pennington, L.F.; Weber, B.; Taddeo, A.; Zimmer, G.; Leborgne, N.G.F.; Benarafa, C.; Jardetzky, T.S.; et al. Sex-specific differences in immune response to SARS-CoV-2 vaccination vanish with age. Allergy 2023. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Xu, P.; Wang, X.; Deng, H.; Lei, Y.; Zhong, S. Analysis of neutralizing antibodies to COVID-19 inactivated or subunit recombinant vaccines in hospitalized patients with liver dysfunction. Front. Immunol. 2023, 14. [Google Scholar] [CrossRef]
- Lustig, Y.; Sapir, E.; Regev-Yochay, G.; Cohen, C.; Fluss, R.; Olmer, L.; Indenbaum, V.; Mandelboim, M.; Doolman, R.; Amit, S.; et al. BNT162b2 COVID-19 vaccine and correlates of humoral immune responses and dynamics: A prospective, single-centre, longitudinal cohort study in health-care workers. Lancet Respir. Med. 2021, 9, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Uwamino, Y.; Kurafuji, T.; Takato, K.; Sakai, A.; Tanabe, A.; Noguchi, M.; Yatabe, Y.; Arai, T.; Ohno, A.; Tomita, Y.; et al. Dynamics of antibody titers and cellular immunity among Japanese healthcare workers during the 6 months after receiving two doses of BNT162b2 mRNA vaccine. Vaccine 2022, 40, 4538–4543. [Google Scholar] [CrossRef] [PubMed]
- Fischinger, S.; Boudreau, C.M.; Butler, A.L.; Streeck, H.; Alter, G. Sex differences in vaccine-induced humoral immunity. Semin. Immunopathol. 2019, 41, 239–249. [Google Scholar] [CrossRef] [PubMed]
Whole Sample (n = 149) | Child-Pugh A (n = 133) | Child-Pugh B/C (n = 16) | |
---|---|---|---|
Demographic Characteristics | |||
Age, years | 60 (55–64) | 60 (55–64) | 60 (56–62.5) |
Male sex | 106 (71.14) | 92 (69.17) | 14 (87.5) |
BMI, Kg/m2 | 26.15 (23.78–29) | 26 (23.8–28.5) | 29.94 (23.85–34.35) |
Laboratory parameters | |||
e-GFR, mL/min/1.73 m2 | 96.02 (82.23–103.07) | 94.81 (81.16–102.58) | 101.71 (97.58–108.94) |
Total bilirubin, mg/dL | 0.93 (0.7–1.36) | 0.9 (0.7–1.23) | 2.26 (1.91–3.07) |
INR | 1.1 (1.01–1.2) | 1.09 (1–1.17) | 1.27 (1.19–1.47) |
ALT, U/L | 24 (16–38.75) | 24 (16–37.5) | 33 (18.5–43) |
AST, U/L | 29 (22–41.75) | 28 (22–40.5) | 39 (27.5–65) |
Comorbidities | |||
Any comorbidity | 91 (61.07) | 81 (60.9) | 10 (62.5) |
Diabetes | 20 (13.42) | 17 (12.78) | 3 (18.75) |
COPD | 11 (7.38) | 8 (6.02) | 3 (18.75) |
Arterial Hypertension | 28 (18.79) | 27 (20.3) | 1 (6.25) |
HIV infection | 10 (6.71) | 10 (7.52) | 0 (0.0) |
History of Myocardial Infarction | 4 (2.68) | 4 (3.01) | 0 (0.0) |
History of malignancies | 25 (16.78) | 23 (17.29) | 2 (12.5) |
Other | 57 (38.26) | 51 (38.35) | 6 (37.5) |
Etiology of Cirrhosis | |||
HCV | 96 (64.43) | 86 (64.66) | 10 (62.5) |
HBV | 30 (20.13) | 28 (21.05) | 2 (12.5) |
HBV+HDV | 7 (4.7) | 7 (5.26) | 0 (0.0) |
ALD | 41 (27.52) | 31 (23.31) | 10 (62.5) |
AILD | 5 (3.36) | 5 (3.76) | 0 (0.0) |
PBC | 9 (6.04) | 9 (6.77) | 0 (0.0) |
BA | 1 (0.67) | 1 (0.75) | 0 (0.0) |
NASH | 4 (2.68) | 4 (3.01) | 0 (0.0) |
Cryptogenic | 4 (2.68) | 4 (3.01) | 0 (0.0) |
Cirrhosis Staging Scores | |||
CP A | 133 (89.26) | 133 (100.0) | 0 (0.0) |
CP B | 15 (10.07) | 0 (0.0) | 15 (93.75) |
CP C | 1 (0.67) | 0 (0.0) | 1 (6.25) |
MELD-Na score | 9.7 (7.72–12.27) | 9.31 (7.52–11.26) | 14.34 (13.28–16.86) |
Complications of Cirrhosis | |||
Any complication | 70 (46.98) | 56 (42.11) | 14 (87.5) |
Hepatocellular carcinoma | 31 (20.81) | 26 (19.55) | 5 (31.25) |
Esophageal varices | 45 (30.2) | 33 (24.81) | 12 (75) |
Ascites | 14 (9.4) | 6 (4.51) | 8 (50) |
Therapy | |||
Immunosuppressive therapy | 10 (6.71) | 10 (7.52) | 0 (0.0) |
Univariable Analysis | Multivariable Analysis | |||||
---|---|---|---|---|---|---|
Category | Coefficient (95% CI) | p | Coefficient (95% CI) | p | Validated Coefficients | |
Age, years | Continuous | −0.01 (−0.02, 0.01) | 0.3105 | −0.01 (−0.02, 0.01) | 0.4301 | −0.006 (−0.019, 0.008) |
Sex | Male vs. Female | −0.32 (−0.61, −0.04) | 0.0283 | −0.34 (−0.64, −0.04) | 0.027 | −0.339 (−0.606, −0.041) |
BMI, Kg/m2 | Continuous | 0 (0, 0.02) | 0.3425 | |||
One or more comorbidities | Yes vs. No | 0.09 (−0.19, 0.36) | 0.5384 | |||
Two or more comorbidities | Yes vs. No | −0.15 (−0.44, 0.14) | 0.2963 | |||
Three or more comorbidities | Yes vs. No | −0.21 (−0.62, 0.26) | 0.3492 | |||
Child-Pugh score | B/C vs. A | 0.19 (−0.24, 0.67) | 0.4146 | 0.23 (−0.19, 0.7) | 0.3084 | −0.43 (−1.088, 0.129) |
MELD-Na | Continuous | 0.01 (−0.03, 0.05) | 0.5666 | |||
e-GFR, mL/min/1.73 m2 | Continuous | 0 (0, 0.01) | 0.5339 | |||
Immunosuppressive Therapy | Yes vs. No | −0.15 (−0.65, 0.43) | 0.5756 | −0.4 (−0.92, 0.19) | 0.1444 | 0.221 (−0.368, 0.719) |
HCV | Yes vs. No | −0.36 (−0.63, −0.09) | 0.0108 | −0.31 (−0.59, −0.04) | 0.0287 | −0.314 (−0.594, −0.007) |
HBV | Yes vs. No | −0.11 (−0.42, 0.22) | 0.5083 | |||
HBV+HDV | Yes vs. No | −0.06 (−0.61, 0.61) | 0.855 | |||
ALD | Yes vs. No | 0.27 (−0.02, 0.57) | 0.0753 | |||
AILD | Yes vs. No | 0.24 (−0.22, 0.77) | 0.3348 | |||
NASH | Yes vs. No | 0.02 (−0.69, 0.92) | 0.9632 | |||
HIV | Yes vs. No | −0.17 (−0.65, 0.37) | 0.502 | |||
Hepatocellular carcinoma | Yes vs. No | −0.07 (−0.39, 0.26) | 0.6585 |
Whole Sample (n = 149) | Child–Pugh A (n = 133) | Child–Pugh B/C (n = 16) | |
---|---|---|---|
Any AE | 101 (67.79) | 91 (68.42) | 10 (62.5) |
Local Adverse Events | |||
Any local AE | 92 (61.74) | 83 (62.41) | 9 (56.25) |
Pain | 91 (61.07) | 82 (61.65) | 9 (56.25) |
Redness | 13 (8.72) | 11 (8.27) | 2 (12.5) |
Swelling | 16 (10.74) | 16 (12.03) | 0 (0.0) |
Lymphadenopathy | 1 (0.67) | 1 (0.75) | 0 (0.0) |
Systemic Adverse Events | |||
Any systemic AE | 47 (31.54) | 42 (31.58) | 5 (31.25) |
Fever | 13 (8.72) | 13 (9.77) | 0 (0.0) |
Fatigue | 37 (24.83) | 32 (24.06) | 5 (31.25) |
Headache | 14 (9.4) | 13 (9.77) | 1 (6.25) |
Myalgia | 10 (6.71) | 10 (7.52) | 0 (0.0) |
Arthralgia | 11 (7.38) | 11 (8.27) | 0 (0.0) |
Nausea | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Vomiting | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Diarrhea | 1 (0.67) | 1 (0.75) | 0 (0.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biliotti, E.; Caioli, A.; Sorace, C.; Lionetti, R.; Milozzi, E.; Taibi, C.; Visco Comandini, U.; Maggi, F.; Puro, V.; D’Offizi, G. Humoral Immune Response after COVID-19 mRNA Vaccination in Patients with Liver Cirrhosis: A Prospective Real-Life Single Center Study. Biomedicines 2023, 11, 1320. https://doi.org/10.3390/biomedicines11051320
Biliotti E, Caioli A, Sorace C, Lionetti R, Milozzi E, Taibi C, Visco Comandini U, Maggi F, Puro V, D’Offizi G. Humoral Immune Response after COVID-19 mRNA Vaccination in Patients with Liver Cirrhosis: A Prospective Real-Life Single Center Study. Biomedicines. 2023; 11(5):1320. https://doi.org/10.3390/biomedicines11051320
Chicago/Turabian StyleBiliotti, Elisa, Alessandro Caioli, Chiara Sorace, Raffaella Lionetti, Eugenia Milozzi, Chiara Taibi, Ubaldo Visco Comandini, Fabrizio Maggi, Vincenzo Puro, and Gianpiero D’Offizi. 2023. "Humoral Immune Response after COVID-19 mRNA Vaccination in Patients with Liver Cirrhosis: A Prospective Real-Life Single Center Study" Biomedicines 11, no. 5: 1320. https://doi.org/10.3390/biomedicines11051320