Transcriptome Profiling of Rhipicephalus annulatus Reveals Differential Gene Expression of Metabolic Detoxifying Enzymes in Response to Acaricide Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Rearing of Ticks
2.2. Larval Packet Test
2.3. Adult Immersion Test
2.4. Total RNA Extraction and RNA Sequencing
2.5. Transcriptome Assembly
2.6. Annotation of Sequenced Transcriptome Data
2.7. Differential Expression Analysis Using RNAseq Method
2.8. Real-Time PCR
3. Results
3.1. Larval Packet Test
3.2. Adult Immersion Test and Pattern of Mortality
3.3. De Novo Transcriptome Assembly Statistics
3.4. Transcriptome Annotation
3.5. KEGG Pathway Analysis
3.6. Identification of Simple Sequence Repeats
3.7. Transcripts Encoding Detoxification Enzymes and Insecticide Targets
3.8. Comparative Transcriptomic Analysis of Acaricide Treated and Untreated R. (B.) annulatus Larvae
3.9. Gene Expression Profile of Metabolic Detoxifying Genes in Acaricides Treated R. (B.) annulatus Larvae and Adults Using RT PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, J.F.; Magnarelli, L.A. Biology of Ticks. Infect. Dis. Clin. N. Am. 2008, 22, 195–215. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.Z.; Jabbar, B.; Ahmed, N.; Rehman, A.; Nasir, H.; Nadeem, S.; Jabbar, I.; Rahman, Z.U.; Azam, S. Epidemiology, pathogenesis, and control of a tick-borne disease-Kyasanur forest disease: Current Status and Future Directions. Front. Cell. Infect. Microbiol. 2018, 8, 149. [Google Scholar] [CrossRef]
- Brites-Neto, J.; Duarte, K.M.R.; Martins, T.F. Tick-borne infections in human and animal population worldwide. Vet. World 2015, 8, 301–315. [Google Scholar] [CrossRef]
- de Castro, J.J. Sustainable tick and tickborne disease control in livestock improvement in developing countries. Vet. Parasitol. 1997, 71, 77–97. [Google Scholar] [CrossRef]
- Uilenberg, G. Veterinary significance of ticks and tick-borne diseases. In Tick Vector Biology: Medical and Veterinary Aspects; Fivaz, B., Petney, T., Horak, I., Eds.; Springer: Heidelberg/Berlin, Germany, 1992; pp. 23–33. [Google Scholar]
- Walker, A.R.; Bouattour, A.; Camicas, J.L.; Estrada-Peña, A.; Horak, I.G.; Latif, A.A.; Preston, P.M. Ticks of Domestic Animals in Africa: A Guide to Identification of Species; Bioscience Reports; Food and Agriculture Organization of the United Nations: Edinburgh, UK, 2003; pp. 3–210. [Google Scholar]
- Bock, R.; Jackson, L.; De Vos, A.; Jorgensen, W. Babesiosis of cattle. Parasitology 2004, 129, S247–S269. [Google Scholar] [CrossRef] [PubMed]
- Chauvin, A.; Moreau, E.; Bonnet, S.; Plantard, O.; Malandrin, L. Babesia and its hosts: Adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet. Res. 2009, 40, 18–37. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Nagar, G. Problem of ticks and tick-borne diseases in india with special emphasis on progress in tick control research: A review. J. Vector Borne Dis. 2014, 51, 259–270. [Google Scholar]
- Rajamohanan, K. Identification of vector for babesiosis of cattle in Kerala. In Proceedings of the All India Symposium of Vectors and Vector Borne Diseases, Trivandrum, Kerala, 26–28 February 1982; pp. 125–128. [Google Scholar]
- Prakasan, K.; Ramani, N. Tick parasites of domestic animals of Kerala, South India. Asian J. Anim. Vet. Adv. 2007, 2, 74–80. [Google Scholar] [CrossRef]
- Kumar, K.G.A.; Ravindran, R.; Johns, J.; Chandy, G.; Rajagopal, K.; Chandrasekhar, L.; George, A.J.; Ghosh, S. Ixodid tick vectors of wild mammals and reptiles of southern india. J. Arthropod-Borne Dis. 2018, 12, 276–285. [Google Scholar] [CrossRef]
- Kumar, K.; Balakrishanan, N.; Katyal, R.; Gill, K.S. Prevalence of ixodid ticks in nilgiri district of Tamil Nadu state (India). J. Commun. Dis. 2002, 34, 124–127. [Google Scholar]
- FAO. Ticks and Ticks Borne Disease Control: A Practical Field Manual; FAO: Rome, Italy, 1984; Volume 2, pp. 374–380. [Google Scholar]
- Padda, P.; Shrivastava, A.; Sodha, S.; Venkatesh, S.; Kr, V. Outbreak investigation of Kyasanur Forest Disease (KFD) in wayanad district, Kerala, India 2015. Int. J. Infect. Dis. 2016, 45, 236. [Google Scholar] [CrossRef]
- Kumar, B.; Maharana, B.R.; Prasad, A.; Joseph, J.P.; Patel, B.; Patel, J. Seasonal incidence of parasitic diseases in bovines of southwestern Gujarat (Junagadh), India. J. Parasit. Dis. 2015, 40, 1342–1346. [Google Scholar] [CrossRef]
- Bal, M.S.; Mahajan, V.; Filia, G.; Kaur, P.; Singh, A. Diagnosis and management of bovine babesiosis outbreaks in cattle in Punjab state. Vet. World 2016, 9, 1370–1374. [Google Scholar] [CrossRef] [PubMed]
- Murhekar, M.V.; Kasabi, G.S.; Mehendale, S.M.; Mourya, D.T.; Yadav, P.D.; Tandale, B.V. On the transmission pattern of Kyasanur Forest Disease (KFD) in India. Infect. Dis. Poverty 2015, 4, 37. [Google Scholar] [CrossRef] [PubMed]
- Pipano, E.; Alekceev, E.; Galker, F.; Fish, L.; Samish, M.; Shkap, V. Immunity against Boophilus annulatus induced by the Bm86 (Tick-GARD) vaccine. Exp. Appl. Acarol. 2003, 29, 141–149. [Google Scholar] [CrossRef]
- Lew-Tabor, A.E.; Rodriguez, V.M. A review of reverse vaccinology approaches for the development of vaccines against ticks and tick borne diseases. Ticks Tick Borne Dis. 2016, 7, 573–585. [Google Scholar] [CrossRef]
- Fragoso, H.; Rad, P.; Ortiz, M.; Rodríguez, M.; Redondo, M.; Herrera, L.; de la Fuente, J. Protection against Boophilus annulatus infestations in cattle vaccinated with the B. microplus Bm86-containing vaccine Gavac. Vaccine 1998, 16, 1990–1992. [Google Scholar] [CrossRef]
- De Vos, S.; Zeinstra, L.; Taoufik, A.; Willadsen, P.; Jongejan, F. Evidence for the Utility of the Bm86 Antigen from Boophilus microplus in Vaccination against Other Tick Species. Exp. Appl. Acarol. 2001, 25, 245–261. [Google Scholar] [CrossRef]
- Díaz-Martín, V.; Manzano-Román, R.; Obolo-Mvoulouga, P.; Oleaga, A.; Pérez-Sánchez, R. Development of vaccines against Ornithodoros soft ticks: An update. Ticks Tick-Borne Dis. 2015, 6, 211–220. [Google Scholar] [CrossRef]
- De La Fuente, J.; Villar, M.; Estrada-Peña, A.; Olivas, J.A. High throughput discovery and characterization of tick and pathogen vaccine protective antigens using vaccinomics with intelligent Big data analytic techniques. Expert Rev. Vaccines 2018, 17, 569–576. [Google Scholar] [CrossRef]
- Antunes, S.; Couto, J.; Ferrolho, J.; Rodrigues, F.; Nobre, J.; Santos, A.S.; Santos-Silva, M.M.; de la Fuente, J.; Domingos, A. Rhipicephalus bursa salotranscriptomic response to blood feeding and Babesia ovis Infection: Identification of candidate protective antigens. Front. Cell. Infect. Microbiol. 2018, 8, 116. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, S.R.; Garcia, G.R.; Teixeira, F.R.; Brandão, L.G.; Anderson, J.M.; Ribeiro, J.M.C.; Valenzuela, J.G.; Horackova, J.; Veríssimo, C.J.; Katiki, L.M.; et al. Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations. Parasites Vectors 2017, 10, 206. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Maggi, F.; Romano, D.; Stefanini, C.; Vaseeharan, B.; Kumar, S.; Higuchi, A.; Alarfaj, A.A.; Mehlhorn, H.; Canale, A. Nanoparticles as effective acaricides against ticks—A review. Ticks Tick-Borne Dis. 2017, 8, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.Z.; Zaman, M.A.; Colwell, D.D.; Gilleard, J.; Iqbal, Z. Acaricide resistance in cattle ticks and approaches to its management: The state of play. Vet. Parasitol. 2014, 203, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Vudriko, P.; Okwee-Acai, J.; Tayebwa, D.S.; Byaruhanga, J.; Kakooza, S.; Wampande, E.; Omara, R.; Muhindo, J.B.; Tweyongyere, R.; Owiny, D.O.; et al. Emergence of multi-acaricide resistant Rhipicephalus ticks and its implication on chemical tick control in Uganda. Parasites Vectors 2016, 9, 4. [Google Scholar] [CrossRef]
- Reck, J.; Klafke, G.M.; Webster, A.; Dall’Agnol, B.; Scheffer, R.; Souza, U.A.; Corassini, V.B.; Vargas, R.; dos Santos, J.S.; Martins, J.R.D.S. First report of fluazuron resistance in Rhipicephalus microplus: A field tick population resistant to six classes of acaricides. Vet. Parasitol. 2014, 201, 128–136. [Google Scholar] [CrossRef]
- Vudriko, P.; Okwee-Acai, J.; Byaruhanga, J.; Tayebwa, D.S.; Omara, R.; Muhindo, J.B.; Lagu, C.; Umemiya-Shirafuji, R.; Xuan, X.; Suzuki, H. Evidence-based tick acaricide resistance intervention strategy in Uganda: Concept and feedback of farmers and stakeholders. Ticks Tick-Borne Dis. 2018, 9, 254–265. [Google Scholar] [CrossRef]
- Graf, J.-F.; Gogolewski, R.; Leach-Bing, N.; Sabatini, G.A.; Molento, M.B.; Bordin, E.L.; Arantes, G.J. Tick control: An industry point of view. Parasitology 2004, 129, S427–S442. [Google Scholar] [CrossRef]
- Le Gall, V.L.; Klafke, G.M.; Torres, T.T. Detoxification mechanisms involved in ivermectin resistance in the cattle tick, Rhipicephalus (Boophilus) microplus. Sci. Rep. 2018, 8, 12401. [Google Scholar] [CrossRef]
- Cossío-Bayúgar, R.; Martínez-Ibañez, F.; Aguilar-Díaz, H.; Miranda-Miranda, E. Pyrethroid acaricide resistance is proportional to P-450 Cytochrome oxidase expression in the cattle tick Rhipicephalus microplus. BioMed Res. Int. 2018, 2018, 8292465. [Google Scholar] [CrossRef]
- Guerrero, F.D.; Bendele, K.G.; Chen, A.C.; Li, A.Y.; Miller, R.J.; Pleasance, E.; Varhol, R.; Rousseau, M.-E.; Nene, V.M. Serial analysis of gene expression in the southern cattle tick following acaricide treatment of larvae from organophosphate resistant and susceptible strains. Insect Mol. Biol. 2007, 16, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Egekwu, N.; Sonenshine, D.E.; Bissinger, B.W.; Roe, R. Transcriptome of the Female Synganglion of the Black-Legged Tick Ixodes scapularis (Acari: Ixodidae) with Comparison between Illumina and 454 Systems. PLoS ONE 2014, 9, e102667. [Google Scholar] [CrossRef]
- Heekin, A.M.; Guerrero, F.D.; Bendele, K.G.; Saldivar, L.; Scoles, G.A.; Dowd, S.E.; Gondro, C.; Nene, V.; Djikeng, A.; Brayton, K.A. Gut transcriptome of replete adult female cattle ticks, Rhipicephalus (Boophilus) microplus, feeding upon a Babesia bovis-infected bovine host. Parasitol. Res. 2013, 112, 3075–3090. [Google Scholar] [CrossRef]
- Alarcon-Chaidez, F.J.; Sun, J.; Wikel, S.K. Transcriptome analysis of the salivary glands of Dermacentor andersoni Stiles (Acari: Ixodidae). Insect Biochem. Mol. Biol. 2007, 37, 48–71. [Google Scholar] [CrossRef]
- Lees, K.; Woods, D.J.; Bowman, A.S. Transcriptome analysis of the synganglion from the brown dog tick, Rhipicephalus sanguineus. Insect Mol. Biol. 2009, 19, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, F.D.; Lovis, L.; Martins, J.R. Acaricide resistance mechanisms in Rhipicephalus (Boophilus) microplus. Rev. Bras. De Parasitol. Veterinária 2012, 21, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Vivas, R.I.; Jonsson, N.N.; Bhushan, C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitol. Res. 2017, 117, 3–29. [Google Scholar] [CrossRef] [PubMed]
- Shakya, M.; Kumar, S.; Fular, A.; Upadhaya, D.; Sharma, A.K.; Bisht, N.; Nandi, A.; Ghosh, S. Emergence of fipronil resistant Rhipicephalus microplus populations in Indian states. Exp. Appl. Acarol. 2020, 80, 591–602. [Google Scholar] [CrossRef]
- Baron, S.; Barrero, R.A.; Black, M.; Bellgard, M.I.; van Dalen, E.M.; Fourie, J.; Maritz-Olivier, C. Differentially expressed genes in response to amitraz treatment suggests a proposed model of resistance to amitraz in R. decoloratus ticks. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 361–371. [Google Scholar] [CrossRef]
- Kanapadinchareveetil, S.; Chandrasekhar, L.; Pious, A.; Kartha, H.S.; Ravindran, R.; Juliet, S.; Nair, S.N.; Ajithkumar, K.G.; Ghosh, S. Molecular, histological and ultrastructural characterization of cytotoxic effects of amitraz on the ovaries of engorged females of Rhipicephalus (Boophilus) annulatus. Exp. Parasitol. 2019, 204, 107732. [Google Scholar] [CrossRef]
- Ravindran, R.; Jyothimol, G.; Amithamol, K.K.; Sunil, A.R.; Chandrasekhar, L.; Lenka, D.R.; Amritha, A.; Sreelekha, K.; Sathish, N.; Udayan, D.; et al. In vitro efficacy of amitraz, coumaphos, deltamethrin and lindane against engorged female Rhipicephalus (Boophilus) annulatus and Haemaphysalis bispinosa ticks. Exp. Appl. Acarol. 2018, 75, 241–253. [Google Scholar] [CrossRef] [PubMed]
- FAO. Recommended methods for the detection and measurement of resistance of agricultural pests to pesticides–tentative method for larvae of cattle ticks, Boophilus microplus spp. FAO method No.7. FAO Plant Proc. Bull. 1971, 19, 15–18. [Google Scholar]
- Ravindran, R.; Juliet, S.; Kumar, K.A.; Sunil, A.; Nair, S.N.; Amithamol, K.; Rawat, A.K.S.; Ghosh, S. Toxic effects of various solvents against Rhipicephalus (Boophilus) annulatus. Ticks Tick-Borne Dis. 2011, 2, 160–162. [Google Scholar] [CrossRef] [PubMed]
- Drummond, R.O.; Ernst, S.E.; Trevino, J.L.; Gladney, W.J.; Graham, O.H. Boophilus annulatus and B. microplus: Laboratory tests of insecticides. J. Econ. Entomol. 1973, 66, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.K.; Jain, M. NGS QC Toolkit: A Toolkit for quality control of next generation sequencing data. PLoS ONE 2012, 7, e30619. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2015, 44, D457–D462. [Google Scholar] [CrossRef]
- Thiel, T.; Michalek, W.; Varshney, R.; Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 2003, 106, 411–422. [Google Scholar] [CrossRef]
- Anders, S. Analysing RNA-Seq data with the DESeq package. Mol. Biol. 2010, 43, 1–17. Available online: https://www.anjoumacpherson.com/packages/2.10/bioc/vignettes/DESeq/inst/doc/DESeq.pdf (accessed on 25 August 2015).
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve, 2nd ed.; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Arcot, S.S.; Wang, Z.; Weber, J.L.; Deininger, P.; Batzer, M.A. Alu Repeats: A Source for the genesis of primate microsatellites. Genomics 1995, 29, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Holt, R.A.; Subramanian, G.M.; Halpern, A.; Sutton, G.G.; Charlab, R.; Nusskern, D.R.; Wincker, P.; Clark, A.G.; Ribeiro, J.C.; Wides, R.; et al. The Genome Sequence of the Malaria Mosquito Anopheles gambiae. Science 2002, 298, 129–149. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Gibbs, R.A.; Weinstock, G.M.; Brown, S.J.; Denell, R.; Yue Tribolium Genome Sequencing Consortium. The genome of the model beetle and pest Tribolium castaneum. Nature 2008, 452, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.D.; Celniker, S.E.; Holt, R.A.; Evans, C.A.; Gocayne, J.D.; Amanatides, P.G.; Scherer, S.E.; Li, P.W.; Hoskins, R.A.; Galle, R.F.; et al. The Genome Sequence of Drosophila melanogaster. Science 2000, 287, 2185–2195. [Google Scholar] [CrossRef]
- de León, A.A.P.; Teel, P.D.; Auclair, A.N.; Messenger, M.T.; Guerrero, F.D.; Schuster, G.; Miller, R.J. Integrated strategy for sustainable cattle fever tick eradication in USA is required to mitigate the impact of global change. Front. Physiol. 2012, 3, 195. [Google Scholar] [CrossRef]
- Rashid, M.; Akbar, H.; Ahmad, L.; Hassan, M.A.; Ashraf, K.; Saeed, K.; Gharbi, M. A systematic review on modelling approaches for economic losses studies caused by parasites and their associated diseases in cattle. Parasitology 2019, 146, 129–141. [Google Scholar] [CrossRef]
- Parkinson, A. Biotransformation of xenobiotics. In Cassarett and Doulls Toxicology: The Basic Science of Poisons; Klaassen, C.D., Ed.; McGraw-Hill: New York, NY, USA, 1996; pp. 113–196. [Google Scholar]
- Jamroz, R.; Guerrero, F.; Pruett, J.; Oehler, D.; Miller, R. Molecular and biochemical survey of acaricide resistance mechanisms in larvae from Mexican strains of the southern cattle tick, Boophilus microplus. J. Insect Physiol. 2000, 46, 685–695. [Google Scholar] [CrossRef]
- Duscher, G.G.; Galindo, R.C.; Tichy, A.; Hummel, K.; Kocan, K.M.; de la Fuente, J. Glutathione S-transferase affects permethrin detoxification in the brown dog tick, Rhipicephalus sanguineus. Ticks Tick-Borne Dis. 2014, 5, 225–233. [Google Scholar] [CrossRef]
- Li, X.; Schuler, M.A.; Berenbaum, M.R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 2007, 52, 231–253. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.Z.; Dou, W.; Ding, T.B.; Shen, G.M.; Zhang, K.; Smagghe, G.; Wang, J.J.; Niu, W.; Dou, T.-B.; Ding, G.M.; et al. Transcriptome analysis of the citrus red mite, Panonychus citri, and its gene expression by exposure to insecticide/acaricide. Insect Mol. Biol. 2012, 21, 422–436. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, N.N.; Klafke, G.; Corley, S.W.; Tidwell, J.; Berry, C.M.; Koh-Tan, H.C. Molecular biology of amitraz resistance in cattle ticks of the genus Rhipicephalus. Front. Biosci. 2018, 23, 796–810. [Google Scholar] [CrossRef] [PubMed]
- Shyma, K.P.; Gupta, J.P.; Singh, V.; Patel, K.K. In vitro detection of acaricidal resistance status of Rhipicephalus (Boophilus) microplus against commercial preparation of deltamethrin, flumethrin, and fipronil from North Gujarat, India. J. Parasitol. Res. 2015, 2015, 506586. [Google Scholar] [CrossRef]
- Mekonnen, S. In vivo evaluation of amitraz against ticks under field conditions in Ethiopia: Research communication. J. S. Afr. Vet. Assoc. 2001, 72, 44–45. [Google Scholar] [CrossRef]
- Ghubash, R. Parasitic Miticidal Therapy. Clin. Tech. Small Anim. Pract. 2006, 21, 135–144. [Google Scholar] [CrossRef]
- Sharma, A.K.; Kumar, R.; Kumar, S.; Nagar, G.; Singh, N.K.; Rawat, S.S.; Dhakad, M.; Rawat, A.; Ray, D.; Ghosh, S. Deltamethrin and cypermethrin resistance status of Rhipicephalus (Boophilus) microplus collected from six agroclimatic regions of India. Vet. Parasitol. 2012, 188, 337–345. [Google Scholar] [CrossRef]
- Kumar, S.; Paul, S.; Sharma, A.K.; Kumar, R.; Tewari, S.S.; Chaudhuri, P.; Ray, D.; Rawat, A.K.S.; Ghosh, S. Diazinon resistant status in Rhipicephalus (Boophilus) microplus collected from different agroclimatic regions of India. Vet. Parasitol. 2011, 181, 274–281. [Google Scholar] [CrossRef]
- Feyereisen, R. Molecular biology of insecticide resistance. Toxicol. Lett. 1995, 82–83, 83–90. [Google Scholar] [CrossRef]
- Li, A.Y.; Davey, R.B.; Miller, R.J.; George, J.E. Resistance to coumaphos and diazinon in Boophilus microplus (Acari: Ixodidae) and Evidence for the involvement of an oxidative detoxification mechanism. J. Med. Entomol. 2003, 40, 482–490. [Google Scholar] [CrossRef]
- Chung, H.; Sztal, T.; Pasricha, S.; Sridhar, M.; Batterham, P.; Daborn, P.J. Characterization of Drosophila melanogaster cytochrome P450 genes. Proc. Natl. Acad. Sci. USA 2009, 106, 5731–5736. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Vivas, R.I.; Pérez-Cogollo, L.C.; Rosado-Aguilar, J.A.; Ojeda-Chi, M.M.; Trinidad-Martinez, I.; Miller, R.J.; Li, A.Y.; De León, A.P.; Guerrero, F.; Klafke, G.M. Rhipicephalus (Boophilus) microplus resistant to acaricides and ivermectin in cattle farms of Mexico. Rev. Bras. Parasitol. Vet. 2014, 23, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Baxter, G.D.; Barker, S.C. Acetylcholinesterase cDNA of the cattle tick, Boophilus microplus: Characterisation and role in organophosphate resistance. Insect Biochem. Mol. Biol. 1998, 28, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Nagar, G.; Upadhaya, D.; Sharma, A.K.; Kumar, R.; Fular, A.; Ghosh, S. Association between overexpression of cytochrome P450 genes and deltamethrin resistance in Rhipicephalus microplus. Ticks Tick-Borne Dis. 2020, 12, 101610. [Google Scholar] [CrossRef]
- Villarino, M.A.; Waghela, S.D.; Wagner, G.G. Biochemical Detection of Esterases in the adult female integument of organophosphate-resistant Boophilus Microplus (Acari: Ixodidae). J. Med. Entomol. 2003, 40, 52–57. [Google Scholar] [CrossRef]
- Mamta, B.; Rajam, M.V. RNAi technology: A new platform for crop pest control. Physiol. Mol. Biol. Plants 2017, 23, 487–501. [Google Scholar] [CrossRef]
Gene Names | No. of Upregulated Genes | No. of Downregulated Genes | No. of Neutrally Regulated Genes | No. of Genes Expressed Only in Untreated Condition | No. of Genes Expressed Only in Treated Condition |
---|---|---|---|---|---|
Cytochrome P450 | 11 | 11 | 16 | 1 | 1 |
Glutathione–S-Transferases | 18 | 1 | 8 | 0 | 0 |
Esterases | 0 | 0 | 3 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achuthkumar, A.; Uchamballi, S.; Arvind, K.; Vasu, D.A.; Varghese, S.; Ravindran, R.; Grace, T. Transcriptome Profiling of Rhipicephalus annulatus Reveals Differential Gene Expression of Metabolic Detoxifying Enzymes in Response to Acaricide Treatment. Biomedicines 2023, 11, 1369. https://doi.org/10.3390/biomedicines11051369
Achuthkumar A, Uchamballi S, Arvind K, Vasu DA, Varghese S, Ravindran R, Grace T. Transcriptome Profiling of Rhipicephalus annulatus Reveals Differential Gene Expression of Metabolic Detoxifying Enzymes in Response to Acaricide Treatment. Biomedicines. 2023; 11(5):1369. https://doi.org/10.3390/biomedicines11051369
Chicago/Turabian StyleAchuthkumar, Amritha, Shamjana Uchamballi, Kumar Arvind, Deepa Azhchath Vasu, Sincy Varghese, Reghu Ravindran, and Tony Grace. 2023. "Transcriptome Profiling of Rhipicephalus annulatus Reveals Differential Gene Expression of Metabolic Detoxifying Enzymes in Response to Acaricide Treatment" Biomedicines 11, no. 5: 1369. https://doi.org/10.3390/biomedicines11051369
APA StyleAchuthkumar, A., Uchamballi, S., Arvind, K., Vasu, D. A., Varghese, S., Ravindran, R., & Grace, T. (2023). Transcriptome Profiling of Rhipicephalus annulatus Reveals Differential Gene Expression of Metabolic Detoxifying Enzymes in Response to Acaricide Treatment. Biomedicines, 11(5), 1369. https://doi.org/10.3390/biomedicines11051369