A Clinical and Pathophysiological Overview of Intestinal and Systemic Diseases Associated with Pancreatic Disorders: Causality or Casualty?
Abstract
:1. Introduction
2. Pancreatic Disorders in Inflammatory Bowel Diseases
2.1. Acute Pancreatitis
Pathogenesis of AP in IBD Patients
2.2. Autoimmune Pancreatitis
Pathogenesis of AIP in IBD Patients
2.3. Chronic Pancreatitis
Pathogenesis of CP in IBD Patients
2.4. Exocrine Pancreatic Insufficiency
Pathogenesis of EPI in IBD
2.5. Chronic Asymptomatic Pancreatic Hyperenzymemia (CAPH)
Pathogenesis of CAPH in IBD Patients
2.6. Pancreatic Cancer in IBD Patients
3. Pancreatic Disorders in Celiac Disease
3.1. Acute Pancreatitis in CelD Patients
3.2. Exocrine Pancreatic Insufficiency in CelD Patients
3.3. CAPH in CelD Patients
3.4. Pancreatic Cancer in CelD Patients
4. Systemic Diseases with Both Gastrointestinal and Pancreatic Involvement
4.1. IgG4-Related Disease
4.2. Sarcoidosis
4.3. Vasculitides
4.3.1. Henoch-Schönlein Purpura
4.3.2. ANCA-Associated Vasculitis (AAV)
4.3.3. Polyarteritis Nodosa (PAN)
4.3.4. Systemic Vasculitis Associated with SLE
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Jong, P.R.; González-Navajas, J.M.; Jansen, N.J.G. The digestive tract as the origin of systemic inflammation. Crit. Care 2016, 20, 279. [Google Scholar] [CrossRef]
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.; et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2019, 68 (Suppl. S3), s1–s106. [Google Scholar] [CrossRef]
- Antonini, F.; Pezzilli, R.; Angelelli, L.; Macarri, G. Pancreatic disorders in inflammatory bowel disease. World J. Gastrointest. Pathophysiol. 2016, 7, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Banks, P.A.; Bollen, T.L.; Dervenis, C.; Gooszen, H.G.; Johnson, C.D.; Sarr, M.G.; Tsiotos, G.G.; Vege, S.S.; Acute Pancreatitis Classification Working Group. Classification of acute pancreatitis—2012: Revision of the Atlanta classification and definitions by international consensus. Gut 2013, 62, 102–111. [Google Scholar] [CrossRef]
- Xiao, A.Y.; Tan, M.L.Y.; Wu, L.M.; Asrani, V.M.; Windsor, J.A.; Yadav, D.; Petrov, M.S. Global incidence and mortality of pancreatic diseases: A systematic review, meta-analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol. Hepatol. 2016, 1, 45–55. [Google Scholar] [CrossRef]
- Ramos, L.R.; Sachar, D.B.; DiMaio, C.J.; Colombel, J.-F.; Torres, J. Inflammatory Bowel Disease and Pancreatitis: A Review. J. Crohn’s Colitis 2016, 10, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Moroi, R.; Tarasawa, K.; Ikeda, M.; Matsumoto, R.; Shimoyama, Y.; Naito, T.; Takikawa, T.; Shiga, H.; Hamada, S.; Kakuta, Y.; et al. Severity of acute pancreatitis in patients with inflammatory bowel disease in the era of biologics: A propensity-score-matched analysis using a nationwide database in Japan. JGH Open 2022, 7, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Hwang, S.W.; Park, S.H.; Song, T.J.; Kim, M.-H.; Lee, H.-S.; Ye, B.D.; Yang, D.-H.; Kim, K.-J.; Byeon, J.-S.; et al. Clinical course of ulcerative colitis patients who develop acute pancreatitis. World J. Gastroenterol. 2017, 23, 3505–3512. [Google Scholar] [CrossRef]
- Montenegro, M.L.; Corral, J.E.; Lukens, F.J.; Ji, B.; Kröner, P.T.; Farraye, F.A.; Bi, Y. Pancreatic Disorders in Patients with Inflammatory Bowel Disease. Dig. Dis. Sci. 2022, 67, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Fraquelli, M.; Losco, A.; Visentin, S.; Cesana, B.M.; Pometta, R.; Colli, A.; Conte, D. Gallstone disease and related risk factors in patients with Crohn disease: Analysis of 330 consecutive cases. Arch. Intern. Med. 2001, 161, 2201–2204. [Google Scholar] [CrossRef]
- Admirand, W.H.; Small, D.M. The physicochemical basis of cholesterol gallstone formation in man. J. Clin. Investig. 1968, 47, 1043–1052. [Google Scholar] [CrossRef]
- Lapidus, A.; Åkerlund, J.-E.; Einarsson, C. Gallbladder bile composition in patients with Crohn’s disease. World J. Gastroenterol. 2006, 12, 70–74. [Google Scholar] [CrossRef]
- Fagagnini, S.; Heinrich, H.; Rossel, J.-B.; Biedermann, L.; Frei, P.; Zeitz, J.; Spalinger, M.; Battegay, E.; Zimmerli, L.; Vavricka, S.R.; et al. Risk factors for gallstones and kidney stones in a cohort of patients with inflammatory bowel diseases. PLoS ONE 2017, 12, e0185193. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, F.; Lopez-Sanroman, A.; Taxonera, C.; Gisbert, J.P.; Pérez-Calle, J.L.; Vera, I.; Menchén, L.; Martín-Arranz, M.D.; Opio, V.; Carneros, J.A.; et al. Acute pancreatitis in inflammatory bowel disease, with special reference to azathioprine-induced pancreatitis. Aliment. Pharmacol. Ther. 2008, 28, 623–628. [Google Scholar] [CrossRef] [PubMed]
- de Paredes, A.G.G.; de Santiago, E.R.; Rodriguez-Escaja, C.; Iborra, M.; Algaba, A.; Cameo, J.I.; de la Peña, L.; Gomollon, F.; Van Domselaar, M.; Busta, R.; et al. Idiopathic acute pancreatitis in patients with inflammatory bowel disease: A multicenter cohort study. Pancreatology 2020, 20, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Moolsintong, P.; Loftus, E.V.; Chari, S.T.; Egan, L.J.; Tremaine, W.J.; Sandborn, W.J. Acute pancreatitis in patients with Crohnʼs disease: Clinical features and outcomes. Inflamm. Bowel Dis. 2005, 11, 1080–1084. [Google Scholar] [CrossRef]
- Weber, P.; Seibold, F.; Jenss, H. Acute Pancreatitis in Crohn’s disease. J. Clin. Gastroenterol. 1993, 17, 286–291. [Google Scholar] [CrossRef]
- Kimura, Y.; Arata, S.; Takada, T.; Hirata, K.; Yoshida, M.; Mayumi, T.; Hirota, M.; Takeda, K.; Gabata, T.; Amano, H.; et al. Gallstone-induced acute pancreatitis. J. Hepato-Biliary-Pancreat. Sci. 2010, 17, 60–69. [Google Scholar] [CrossRef]
- Tenner, S.; Baillie, J.; DeWitt, J.; Vege, S.S. American College of Gastroenterology guideline: Management of acute pancreatitis. Am. J. Gastroenterol. 2013, 108, 1400–1415. [Google Scholar] [CrossRef]
- Wintzell, V.; Svanström, H.; Olén, O.; Melbye, M.; Ludvigsson, J.F.; Pasternak, B. Association between use of azathioprine and risk of acute pancreatitis in children with inflammatory bowel disease: A Swedish–Danish nationwide cohort study. Lancet Child Adolesc. Health 2019, 3, 158–165. [Google Scholar] [CrossRef]
- Teich, N.; Mohl, W.; Bokemeyer, B.; Bündgens, B.; Büning, J.; Miehlke, S.; Hüppe, D.; Maaser, C.; Klugmann, T.; Kruis, W.; et al. Azathioprine-induced Acute Pancreatitis in Patients with Inflammatory Bowel Diseases—A Prospective Study on Incidence and Severity. J. Crohn’s Colitis 2016, 10, 61–68. [Google Scholar] [CrossRef]
- Peixoto, A.; Pinto, E.R.; Silva, M.; Coelho, R.; Santos-Antunes, J.; Andrade, P.; Gaspar, R.; Nunes, A.; Lopes, S.; Macedo, G. Azathioprine-induced acute pancreatitis in inflammatory bowel disease: Natural history and severity spectrum. Acta Gastroenterol. Belg. 2018, 80, 87–88. [Google Scholar]
- Freitas, M.; Capela, T.L.; Silva, V.M.; Arieira, C.; Gonçalves, T.C.; de Castro, F.D.; Moreira, M.J.; Firmino-Machado, J.M.; Cotter, J.M. Finding Predictors of Azathioprine-Induced Pancreatitis in Patients with Inflammatory Bowel Disease. Pancreas 2022, 51, 288–294. [Google Scholar] [CrossRef]
- Wilson, A.; Wang, Q.; Choi, Y.-H.; Ponich, T.; Gregor, J.C.; Chande, N.; Yan, B.; Sey, M.; Beaton, M.; Kim, R.B. Pretreatment HLADQA1-HLADRB1 Testing for the Prevention of Azathioprine-Induced Pancreatitis in Inflammatory Bowel Disease: A Prospective Cohort Study. Clin. Transl. Gastroenterol. 2021, 12, e00332. [Google Scholar] [CrossRef] [PubMed]
- Ali, U.A.; Issa, Y.; Hagenaars, J.C.; Bakker, O.J.; van Goor, H.; Nieuwenhuijs, V.B.; Bollen, T.L.; van Ramshorst, B.; Witteman, B.J.; Brink, M.A.; et al. Risk of Recurrent Pancreatitis and Progression to Chronic Pancreatitis After a First Episode of Acute Pancreatitis. Clin. Gastroenterol. Hepatol. 2016, 14, 738–746. [Google Scholar] [CrossRef]
- Fusco, R.; Cordaro, M.; Siracusa, R.; D’amico, R.; Genovese, T.; Gugliandolo, E.; Peritore, A.F.; Crupi, R.; Impellizzeri, D.; Cuzzocrea, S.; et al. Biochemical Evaluation of the Antioxidant Effects of Hydroxytyrosol on Pancreatitis-Associated Gut Injury. Antioxidants 2020, 9, 781. [Google Scholar] [CrossRef] [PubMed]
- Frost, F.; Weiss, F.U.; Sendler, M.; Kacprowski, T.; Rühlemann, M.; Bang, C.; Franke, A.; Völker, U.; Völzke, H.; Lamprecht, G.; et al. The Gut Microbiome in Patients with Chronic Pancreatitis Is Characterized by Significant Dysbiosis and Overgrowth by Opportunistic Pathogens. Clin. Transl. Gastroenterol. 2020, 11, e00232. [Google Scholar] [CrossRef] [PubMed]
- Schepis, T.; De Lucia, S.S.; Nista, E.C.; Manilla, V.; Pignataro, G.; Ojetti, V.; Piccioni, A.; Gasbarrini, A.; Franceschi, F.; Candelli, M. Microbiota in Pancreatic Diseases: A Review of the Literature. J. Clin. Med. 2021, 10, 5920. [Google Scholar] [CrossRef]
- Gou, S.; Yang, Z.; Liu, T.; Wu, H.; Wang, C. Use of probiotics in the treatment of severe acute pancreatitis: A systematic review and meta-analysis of randomized controlled trials. Crit. Care 2014, 18, R57. [Google Scholar] [CrossRef]
- Pan, X.; Fang, X.; Wang, F.; Li, H.; Niu, W.; Liang, W.; Wu, C.; Li, J.; Tu, X.; Pan, L.; et al. Butyrate ameliorates caerulein-induced acute pancreatitis and associated intestinal injury by tissue-specific mechanisms. Br. J. Pharmacol. 2019, 176, 4446–4461. [Google Scholar] [CrossRef]
- Sudhakar, J.N.; Lu, H.-H.; Chiang, H.-Y.; Suen, C.-S.; Hwang, M.-J.; Wu, S.-Y.; Shen, C.-N.; Chang, Y.-M.; Li, F.-A.; Liu, F.-T.; et al. Lumenal Galectin-9-Lamp2 interaction regulates lysosome and autophagy to prevent pathogenesis in the intestine and pancreas. Nat. Commun. 2020, 11, 4286. [Google Scholar] [CrossRef]
- Frulloni, L.; Scattolini, C.; Falconi, M.; Zamboni, G.; Capelli, P.; Manfredi, R.; Graziani, R.; D’Onofrio, M.; Katsotourchi, A.M.; Amodio, A.; et al. Autoimmune pancreatitis: Differences between the focal and diffuse forms in 87 patients. Am. J. Gastroenterol. 2009, 104, 2288–2294. [Google Scholar] [CrossRef] [PubMed]
- Maire, F.; Le Baleur, Y.; Rebours, V.; Vullierme, M.P.; Couvelard, A.; Voitot, H.; Sauvanet, A.; Hentic, O.; Lévy, P.; Ruszniewski, P.; et al. Outcome of patients with type 1 or 2 autoimmune pancreatitis. Am. J. Gastroenterol. 2011, 106, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Hart, P.A.; Kamisawa, T.; Brugge, W.R.; Chung, J.B.; Culver, E.L.; Czakó, L.; Frulloni, L.; Go, V.L.W.; Gress, T.M.; Kim, M.-H.; et al. Long-term outcomes of autoimmune pancreatitis: A multicentre, international analysis. Gut 2013, 62, 1771–1776. [Google Scholar] [CrossRef]
- Bellocchi, M.C.C.; Marconato, E.; Lamonaca, L.; Mottes, M.C.; Ciccocioppo, R.M.; Carrara, S.; de Pretis, N.M.; Gabbrielli, A.; Crinò, S.F.; Frulloni, L. The features and clinical outcomes of inflammatory bowel disease associated with autoimmune pancreatitis. Medicine 2022, 101, e28602. [Google Scholar] [CrossRef]
- Oh, D.; Song, T.J.; Moon, S.-H.; Kim, J.H.; Lee, N.J.; Hong, S.-M.; Lee, J.S.; Jo, S.J.; Cho, D.H.; Park, D.H.; et al. Type 2 Autoimmune Pancreatitis (Idiopathic Duct-Centric Pancreatitis) Highlighting Patients Presenting as Clinical Acute Pancreatitis: A Single-Center Experience. Gut Liver 2019, 13, 461–470. [Google Scholar] [CrossRef]
- Lorenzo, D.; Maire, F.; Stefanescu, C.; Gornet, J.-M.; Seksik, P.; Serrero, M.; Bournet, B.; Marteau, P.; Amiot, A.; Laharie, D.; et al. Features of Autoimmune Pancreatitis Associated with Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2018, 16, 59–67. [Google Scholar] [CrossRef]
- Ueki, T.; Kawamoto, K.; Otsuka, Y.; Minoda, R.; Maruo, T.; Matsumura, K.; Noma, E.; Mitsuyasu, T.; Otani, K.; Aomi, Y.; et al. Prevalence and clinicopathological features of autoimmune pancreatitis in japanese patients with inflammatory bowel disease. Pancreas 2015, 44, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Kim, D.; Ye, B.D.; Yang, S.-K.; Kim, J.-H.; Yang, D.-H.; Jung, K.W.; Kim, K.-J.; Byeon, J.-S.; Myung, S.-J.; et al. The characteristics of ulcerative colitis associated with autoimmune pancreatitis. J. Clin. Gastroenterol. 2013, 47, 520–525. [Google Scholar] [CrossRef]
- Ravi, K.; Chari, S.T.; Vege, S.S.; Sandborn, W.J.; Smyrk, T.C.; Loftus, E.V. Inflammatory bowel disease in the setting of autoimmune pancreatitis. Inflamm. Bowel Dis. 2009, 15, 1326–1330. [Google Scholar] [CrossRef]
- Matsubayashi, H.; Kakushima, N.; Takizawa, K.; Tanaka, M.; Imai, K.; Hotta, K.; Ono, H. Diagnosis of autoimmune pancreatitis. World J. Gastroenterol. 2014, 20, 16559–16569. [Google Scholar] [CrossRef] [PubMed]
- de Pretis, N.; Vieceli, F.; Brandolese, A.; Brozzi, L.; Amodio, A.; Frulloni, L. Autoimmune pancreatitis not otherwise specified (NOS): Clinical features and outcomes of the forgotten type. Hepatobiliary Pancreat. Dis. Int. 2019, 18, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Terumi, K.; Mikio, Z.; Taminori, O. IgG4-related sclerosing disease. World J. Gastroenterol. 2008, 14, 3948–3955. [Google Scholar] [CrossRef]
- Aloisi, F.; Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. Nat. Rev. Immunol. 2006, 6, 205–217. [Google Scholar] [CrossRef]
- Sakai, Y.; Kobayashi, M. Lymphocyte ‘homing’ and chronic inflammation. Pathol. Int. 2015, 65, 344–354. [Google Scholar] [CrossRef]
- Kobayashi, M.; Hoshino, H.; Masumoto, J.; Fukushima, M.; Suzawa, K.; Kageyama, S.; Suzuki, M.; Ohtani, H.; Fukuda, M.; Nakayama, J. GlcNAc6ST-1-mediated decoration of MAdCAM-1 protein with L-selectin ligand carbohydrates directs disease activity of ulcerative colitis. Inflamm. Bowel Dis. 2009, 15, 697–706. [Google Scholar] [CrossRef]
- Tsen, A.; Alishahi, Y.; Rosenkranz, L. Autoimmune Pancreatitis and Inflammatory Bowel Disease: An Updated Review. J. Clin. Gastroenterol. 2017, 51, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Beyer, G.; Habtezion, A.; Werner, J.; Lerch, M.M.; Mayerle, J. Chronic pancreatitis. Lancet 2020, 396, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Amodio, A.; De Marchi, G.; de Pretis, N.; Crinò, S.F.; D’Onofrio, M.; Gabbrielli, A.; Ciccocioppo, R.; Frulloni, L. Painless chronic pancreatitis. Dig. Liver Dis. 2020, 52, 1333–1337. [Google Scholar] [CrossRef]
- Herrlinger, K.R.; Stange, E.F. The Pancreas and Inflammatory Bowel Diseases. Int. J. Pancreatol. 2000, 27, 171–180. [Google Scholar] [CrossRef]
- Heikius, B.; Niemelä, S.; Lehtola, J.; Karttunen, T.; Lähde, S. Pancreatic duct abnormalities and pancreatic function in patients with chronic inflammatory bowel disease. Scand. J. Gastroenterol. 1996, 31, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Ball, W.P.; Baggenstoss, A.H.; Bargen, J.A. Pancreatic lesions associated with chronic ulcerative colitis. Arch. Pathol. 1950, 50, 347–358. [Google Scholar]
- Chen, Y.-L.; Hsu, C.-W.; Cheng, C.-C.; Yiang, G.-T.; Lin, C.-S.; Lin, C.-L.; Sung, F.-C.; Liang, J.-A. Increased subsequent risk of inflammatory bowel disease association in patients with chronic pancreatitis: A nationwide population-based cohort study. Curr. Med. Res. Opin. 2017, 33, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Lerch, M.M.; Gorelick, F.S. Models of acute and chronic pancreatitis. Gastroenterology 2013, 144, 1180–1193. [Google Scholar] [CrossRef] [PubMed]
- Mora-Buch, R.; Dotti, I.; Planell, N.; Calderón-Gómez, E.; Jung, P.; Masamunt, M.C.; Llach, J.; Ricart, E.; Batlle, E.; Panés, J.; et al. Epithelial IL-1R2 acts as a homeostatic regulator during remission of ulcerative colitis. Mucosal Immunol. 2016, 9, 950–959. [Google Scholar] [CrossRef]
- Pastorelli, L.; Garg, R.R.; Hoang, S.B.; Spina, L.; Mattioli, B.; Scarpa, M.; Fiocchi, C.; Vecchi, M.; Pizarro, T.T. Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proc. Natl. Acad. Sci. USA 2010, 107, 8017–8022. [Google Scholar] [CrossRef]
- Kurimoto, M.; Watanabe, T.; Kamata, K.; Minaga, K.; Kudo, M. IL-33 as a Critical Cytokine for Inflammation and Fibrosis in Inflammatory Bowel Diseases and Pancreatitis. Front. Physiol. 2021, 12, 781012. [Google Scholar] [CrossRef]
- Pinho-Ribeiro, F.A.; Verri, W.A., Jr.; Chiu, I.M. Nociceptor Sensory Neuron–Immune Interactions in Pain and Inflammation. Trends Immunol. 2017, 38, 5–19. [Google Scholar] [CrossRef]
- Holland, A.M.; Bon-Frauches, A.C.; Keszthelyi, D.; Melotte, V.; Boesmans, W. The enteric nervous system in gastrointestinal disease etiology. Cell Mol. Life Sci. 2021, 78, 4713–4733. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, X.; Cui, X.; Wang, M.; Jiao, C.; Li, J.; Yang, Y.; Li, Y.; Zhang, H. A Pilot Study of Clinical Evaluation and Formation Mechanism of Irritable Bowel Syndrome-like Symptoms in Inflammatory Bowel Disease Patients in Remission. J. Neurogastroenterol. Motil. 2021, 27, 612–625. [Google Scholar] [CrossRef]
- Grubišić, V.; McClain, J.L.; Fried, D.E.; Grants, I.; Rajasekhar, P.; Csizmadia, E.; Ajijola, O.A.; Watson, R.E.; Poole, D.P.; Robson, S.C.; et al. Enteric Glia Modulate Macrophage Phenotype and Visceral Sensitivity following Inflammation. Cell Rep. 2020, 32, 108100. [Google Scholar] [CrossRef] [PubMed]
- Yissachar, N.; Zhou, Y.; Ung, L.; Lai, N.Y.; Mohan, J.F.; Ehrlicher, A.; Weitz, D.A.; Kasper, D.L.; Chiu, I.M.; Mathis, D.; et al. An Intestinal Organ Culture System Uncovers a Role for the Nervous System in Microbe-Immune Crosstalk. Cell 2017, 168, 1135–1148.e12. [Google Scholar] [CrossRef]
- Bonaz, B.; Sinniger, V.; Hoffmann, D.; Clarençon, D.; Mathieu, N.; Dantzer, C.; Vercueil, L.; Picq, C.; Trocmé, C.; Faure, P.; et al. Chronic vagus nerve stimulation in Crohn’s disease: A 6-month follow-up pilot study. Neurogastroenterol. Motil. 2016, 28, 948–953. [Google Scholar] [CrossRef]
- Demir, I.E.; Ceyhan, G.O.; Rauch, U.; Altintas, B.; Klotz, M.; Muller, M.W.; Buchler, M.W.; Friess, H.; Schäfer, K.-H. The microenvironment in chronic pancreatitis and pancreatic cancer induces neuronal plasticity. Neurogastroenterol. Motil. 2010, 22, 480-e113. [Google Scholar] [CrossRef]
- Diéguez-Castillo, C.; Jiménez-Luna, C.; Prados, J.; Martín-Ruiz, J.L.; Caba, O. State of the Art in Exocrine Pancreatic Insufficiency. Medicina 2020, 56, 523. [Google Scholar] [CrossRef] [PubMed]
- Min, M.; Patel, B.D.; Han, S.; Bocelli, L.D.; Kheder, J.; Vaze, A.; Wassef, W. Exocrine Pancreatic Insufficiency and Malnutrition in Chronic Pancreatitis: Identification, Treatment, and Consequences. Pancreas 2018, 47, 1015–1018. [Google Scholar] [CrossRef]
- Maconi, G.; Dominici, R.; Molteni, M.; Ardizzone, S.; Bosani, M.; Ferrara, E.; Gallus, S.; Panteghini, M.; Porro, G.B. Prevalence of pancreatic insufficiency in inflammatory bowel diseases. Assessment by fecal elastase-1. Dig. Dis. Sci. 2008, 53, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Barthet, M.; Lesavre, N.; Desplats, S.; Panuel, M.; Gasmi, M.; Bernard, J.-P.; Dagorn, J.-C.; Grimaud, J.-C. Frequency and characteristics of pancreatitis in patients with inflammatory bowel disease. Pancreatology 2006, 6, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Lakatos, P.L.; Altorjay, I.; Szamosi, T.; Palatka, K.; Vitalis, Z.; Tumpek, J.; Sipka, S.; Udvardy, M.; Dinya, T.; Lakatos, L.; et al. Pancreatic autoantibodies are associated with reactivity to microbial antibodies, penetrating disease behavior, perianal disease, and extraintestinal manifestations, but not with NOD2/CARD15 or TLR4 genotype in a Hungarian IBD cohort. Inflamm. Bowel Dis. 2009, 15, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.M.; Lam, V.W.T.; Pleass, H.C. Significant elevations of serum lipase not caused by pancreatitis: A systematic review. HPB 2015, 17, 99–112. [Google Scholar] [CrossRef]
- Cavallo, P.; Carpinelli, L.; Zingone, F.; Sepe, I.; De Santis, M.; Ciacci, C. Prevalence and correlates of Benign Pancreatic Hyperenzymemia in a large general population sample: The Damocles sword perception. Pancreatology 2019, 19, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Lankisch, P.G.; Doobe, C.; Finger, T.; Lübbers, H.; Mahlke, R.; Brinkmann, G.; Klöppel, G.; Maisonneuve, P.; Lowenfels, A.B. Hyperamylasaemia and/or hyperlipasaemia: Incidence and underlying causes in hospitalized patients with non-pancreatic diseases. Scand. J. Gastroenterol. 2009, 44, 237–241. [Google Scholar] [CrossRef]
- Steinberg, W.M.; Nauck, M.A.; Zinman, B.; Daniels, G.H.; Bergenstal, R.M.; Mann, J.F.; Ravn, L.S.; Moses, A.C.; Stockner, M.; Baeres, F.M.; et al. LEADER 3—Lipase and amylase activity in subjects with type 2 diabetes: Baseline data from over 9000 subjects in the LEADER Trial. Pancreas 2014, 43, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Vanella, G.; Arcidiacono, P.G.; Capurso, G. Chronic Asymptomatic Pancreatic Hyperenzymemia (CAPH): Meta-analysis of pancreatic findings at second-level imaging. Pancreatology 2019, 19, 237–244. [Google Scholar] [CrossRef]
- Amodio, A.; De Marchi, G.; Granato, A.; de Pretis, N.; Gabbrielli, A.; Manfredi, R.; Mucelli, R.P.; Frulloni, L. Chronic Asymptomatic Pancreatic Hyperenzymemia: A Long-term Follow-up. Pancreas 2019, 48, 544–547. [Google Scholar] [CrossRef]
- Bokemeyer, B. Asymptomatic elevation of serum lipase and amylase in conjunction with Crohn’s disease and ulcerative co-litis. Z. Gastroenterol. 2002, 40, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Heikius, B.; Niemelä, S.; Lehtola, J.; Karttunen, T.J. Elevated pancreatic enzymes in inflammatory bowel disease are associated with extensive disease. Am. J. Gastroenterol. 1999, 94, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Liverani, E.; Leonardi, F.; Castellani, L.; Cardamone, C.; Belluzzi, A. Asymptomatic and persistent elevation of pancreatic enzymes in an ulcerative colitis patient. Case Rep. Gastrointest. Med. 2013, 2013, 415619. [Google Scholar] [CrossRef] [PubMed]
- Greuter, T.; Vavricka, S.; König, A.O.; Beaugerie, L.; Scharl, M. Malignancies in Inflammatory Bowel Disease. Digestion 2020, 101 (Suppl. S1), 136–145. [Google Scholar] [CrossRef] [PubMed]
- Bergquist, A.; Ekbom, A.; Olsson, R.; Kornfeldt, D.; Lööf, L.; Danielsson, A.; Hultcrantz, R.; Lindgren, S.; Prytz, H.; Sandberg-Gertzén, H.; et al. Hepatic and extrahepatic malignancies in primary sclerosing cholangitis. J. Hepatol. 2002, 36, 321–327. [Google Scholar] [CrossRef]
- Pedersen, N.; Duricova, D.; Elkjaer, M.; Gamborg, M.; Munkholm, P.; Jess, T. Risk of extra-intestinal cancer in inflammatory bowel disease: Meta-analysis of population-based cohort studies. Am. J. Gastroenterol. 2010, 105, 1480–1487. [Google Scholar] [CrossRef]
- Ananthakrishnan, A.N.; Cagan, A.; Gainer, V.S.; Cheng, S.-C.; Cai, T.; Szolovits, P.; Shaw, S.Y.; Churchill, S.; Karlson, E.W.; Murphy, S.N.; et al. Mortality and extraintestinal cancers in patients with primary sclerosing cholangitis and inflammatory bowel disease. J. Crohn’s Colitis 2014, 8, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Everhov, H.; Erichsen, R.; Sachs, M.C.; Pedersen, L.; Halfvarson, J.; Askling, J.; Ekbom, A.; Ludvigsson, J.; Sørensen, H.T.; Olén, O. Inflammatory bowel disease and pancreatic cancer: A Scandinavian register-based cohort study 1969–2017. Aliment. Pharmacol. Ther. 2020, 52, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Refsum, E.; Helsingen, L.M.; Folseraas, T.; Ploner, A.; Wieszczy, P.; Barua, I.; Jodal, H.C.; Melum, E.; Løberg, M.; et al. Risk of hepato-pancreato-biliary cancer is increased by primary sclerosing cholangitis in patients with inflammatory bowel disease: A population-based cohort study. United Eur. Gastroenterol. J. 2022, 10, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Ludvigsson, J.F.; Montgomery, S.M.; Ekbom, A. Risk of pancreatitis in 14,000 individuals with celiac disease. Clin. Gastroenterol. Hepatol. 2007, 5, 1347–1353.e2. [Google Scholar] [CrossRef] [PubMed]
- Kylökäs, A.; Kaukinen, K.; Huhtala, H.; Collin, P.; Mäki, M.; Kurppa, K. Type 1 and type 2 diabetes in celiac disease: Prevalence and effect on clinical and histological presentation. BMC Gastroenterol. 2016, 16, 76. [Google Scholar] [CrossRef] [PubMed]
- Sadr–Azodi, O.; Sanders, D.S.; Murray, J.A.; Ludvigsson, J.F. Patients with celiac disease have an increased risk for pancreatitis. Clin. Gastroenterol. Hepatol. 2012, 10, 1136–1142.e3. [Google Scholar] [CrossRef] [PubMed]
- Alkhayyat, M.; Saleh, M.A.; Abureesh, M.; Khoudari, G.; Qapaja, T.; Mansoor, E.; Simons-Linares, C.R.; Vargo, J.; Stevens, T.; Rubio-Tapia, A.; et al. The Risk of Acute and Chronic Pancreatitis in Celiac Disease. Dig. Dis. Sci. 2020, 66, 2691–2699. [Google Scholar] [CrossRef] [PubMed]
- Osagiede, O.M.; Lukens, F.J.; Wijarnpreecha, K.; Corral, J.E.; Raimondo, M.; Kröner, P.T.M. Acute Pancreatitis in Celiac Disease: Has the Inpatient Prevalence Changed and Is It Associated With Worse Outcomes? Pancreas 2020, 49, 1202–1206. [Google Scholar] [CrossRef]
- Patel, R.S.; Johlin, F.C.; Murray, J.A. Celiac disease and recurrent pancreatitis. Gastrointest. Endosc. 1999, 50, 823–827. [Google Scholar] [CrossRef]
- De Marchi, G.; Zanoni, G.; Bellocchi, M.C.C.; Betti, E.; Brentegani, M.; Capelli, P.; Zuliani, V.; Frulloni, L.; Klersy, C.; Ciccocioppo, R. There Is No Association between Coeliac Disease and Autoimmune Pancreatitis. Nutrients 2018, 10, 1157. [Google Scholar] [CrossRef]
- Singh, V.K.; Haupt, M.E.; Geller, D.E.; Hall, J.A.; Diez, P.M.Q. Less common etiologies of exocrine pancreatic insufficiency. World J. Gastroenterol. 2017, 23, 7059–7076. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.S.; Dambalkar, A.; Chhabra, P.; Sharma, R.; Nada, R.; Sharma, V.; Rana, S.; Bhasin, D.K. Is pancreatic exocrine insufficiency in celiac disease related to structural alterations in pancreatic parenchyma? Ann. Gastroenterol. 2016, 29, 363–366. [Google Scholar] [CrossRef]
- Evans, K.E.; Leeds, J.S.; Morley, S.; Sanders, D.S. Pancreatic insufficiency in adult celiac disease: Do patients require long-term enzyme supplementation? Dig. Dis. Sci. 2010, 55, 2999–3004. [Google Scholar] [CrossRef]
- Carroccio, A.; Iacono, G.; Montalto, G.; Cavataio, F.; Di Marco, C.; Balsamo, V.; Notarbartolo, A. Exocrine pancreatic function in children with coeliac disease before and after a gluten free diet. Gut 1991, 32, 796–799. [Google Scholar] [CrossRef] [PubMed]
- Nousia-Arvanitakis, S.; Fotoulaki, M.; Tendzidou, K.; Vassilaki, C.; Agguridaki, C.; Karamouzis, M. Subclinical exocrine pancreatic dysfunction resulting from decreased cholecystokinin secretion in the pres-ence of intestinal villous atrophy. J. Pediatr. Gastroenterol. Nutr. 2006, 43, 307–312. [Google Scholar] [CrossRef]
- Kumar, S.; Gress, F.; Green, P.H.; Lebwohl, B. Chronic Pancreatitis is a Common Finding in Celiac Patients Who Undergo Endoscopic Ultrasound. J. Clin. Gastroenterol. 2019, 53, e128–e129. [Google Scholar] [CrossRef]
- Freeman, H.J. Celiac-associated pancreatic disease. Ann. Gastroenterol. 2016, 29, 241–242. [Google Scholar] [CrossRef]
- Leeds, J.S.; Sanders, D.S. Risk of pancreatitis in patients with celiac disease: Is autoimmune pancreatitis a biologically plausible mechanism? Clin. Gastroenterol. Hepatol. 2008, 6, 951. [Google Scholar] [CrossRef]
- Carroccio, A.; Di Prima, L.; Scalici, C.; Soresi, M.; Cefalu’, A.B.; Noto, D.; Averna, M.; Montalto, G.; Iacono, G. Unexplained elevated serum pancreatic enzymes: A reason to suspect celiac disease. Clin. Gastroenterol. Hepatol. 2006, 4, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Migliori, M.; Galassi, E.; Gullo, L. Search for celiac disease in subjects with asymptomatic pancreatic hyperenzymemia. Pancreas 2011, 40, 979–981. [Google Scholar] [CrossRef] [PubMed]
- Gromny, I.; Neubauer, K. Pancreatic Cancer in Celiac Disease Patients—A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 1565. [Google Scholar] [CrossRef] [PubMed]
- Lebwohl, B.; Green, P.H.R.; Emilsson, L.; Mårild, K.; Söderling, J.; Roelstraete, B.; Ludvigsson, J.F. Cancer Risk in 47,241 Individuals with Celiac Disease—A Nationwide Cohort Study. Clin. Gastroenterol. Hepatol. 2021; in press. [Google Scholar] [CrossRef]
- Askling, J.; Linet, M.; Gridley, G.; Halstensen, T.S.; Ekström, K.; Ekbom, A. Cancer incidence in a population-based cohort of individuals hospitalized with celiac disease or dermatitis herpetiformis. Gastroenterology 2002, 123, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Elfström, P.; Granath, F.; Ye, W.; Ludvigsson, J.F. Low Risk of gastrointestinal cancer among patients with celiac disease, inflammation, or latent celiac disease. Clin. Gastroenterol. Hepatol. 2012, 10, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Ilus, T.; Kaukinen, K.; Virta, L.J.; Pukkala, E.; Collin, P. Incidence of malignancies in diagnosed celiac patients: A population-based estimate. Am. J. Gastroenterol. 2014, 109, 1471–1477. [Google Scholar] [CrossRef]
- Card, T.R.; West, J.; Holmes, G.K.T. Risk of malignancy in diagnosed coeliac disease: A 24-year prospective, population-based, cohort study. Aliment. Pharmacol. Ther. 2004, 20, 769–775. [Google Scholar] [CrossRef]
- Stone, J.H.; Khosroshahi, A.; Deshpande, V.; Chan, J.K.C.; Heathcote, J.G.; Aalberse, R.; Azumi, A.; Bloch, D.; Brugge, W.R.; Carruthers, M.N.; et al. Recommendations for the nomenclature of IgG4-related disease and its individual organ system manifestations. Arthritis Rheum. 2012, 64, 3061–3067. [Google Scholar] [CrossRef]
- Wallace, Z.S.; Zhang, Y.; Perugino, C.A.; Naden, R.; Choi, H.K.; Stone, J.H. Clinical phenotypes of IgG4-related disease: An analysis of two international cross-sectional cohorts. Ann. Rheum. Dis. 2019, 78, 406–412. [Google Scholar] [CrossRef]
- Löhr, J.; Beuers, U.; Vujasinovic, M.; Alvaro, D.; Frøkjær, J.B.; Buttgereit, F.; Capurso, G.; Culver, E.L.; De-Madaria, E.; Della-Torre, E.; et al. European Guideline on IgG4-related digestive disease—UEG and SGF evidence-based recommendations. United Eur. Gastroenterol. J. 2020, 8, 637–666. [Google Scholar] [CrossRef] [PubMed]
- Mastalerz, K.; Kenig, J.; Skorus, U. IgG4-related disease manifesting as an isolated gastric lesion- a literature review. Ann. Surg. 2018, 90, 29–33. [Google Scholar] [CrossRef]
- Notohara, K.; Kamisawa, T.; Uchida, K.; Zen, Y.; Kawano, M.; Kasashima, S.; Sato, Y.; Shiokawa, M.; Uehara, T.; Yoshifuji, H.; et al. Gastrointestinal manifestation of immunoglobulin G4-related disease: Clarification through a multicenter survey. J. Gastroenterol. 2017, 53, 845–853. [Google Scholar] [CrossRef]
- Muto, O.; Tamakawa, S.; Takahashi, K.; Yokohama, S.; Takasoe, A.; Hirano, F.; Nishimura, H.; Saito, H. IgG4-related Disease Manifesting as Gastroduodenal Ulcer Diagnosed by an Endoscopic Biopsy. Intern. Med. 2020, 59, 2491–2497. [Google Scholar] [CrossRef]
- Wong, D.D.; Pillai, S.R.; Kumarasinghe, M.P.; McGettigan, B.; Thin, L.W.; Segarajasingam, D.S.; Hollingsworth, P.N.; Spagnolo, D.V. IgG4-related sclerosing disease of the small bowel presenting as necrotizing mesenteric arteritis and a solitary jejunal ulcer. Am. J. Surg. Pathol. 2012, 36, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Umehara, H.; Okazaki, K.; Masaki, Y.; Kawano, M.; Yamamoto, M.; Saeki, T.; Matsui, S.; Sumida, T.; Mimori, T.; Tanaka, Y.; et al. A novel clinical entity, IgG4-related disease (IgG4RD): General concept and details. Mod. Rheumatol. 2011, 22, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kuwata, G.; Kamisawa, T.; Koizumi, K.; Tabata, T.; Hara, S.; Kuruma, S.; Fujiwara, T.; Chiba, K.; Egashira, H.; Fujiwara, J.; et al. Ulcerative colitis and immunoglobulin G4. Gut Liver 2014, 8, 29–34. [Google Scholar] [CrossRef]
- Demirci, H.; Polat, Z.; Ozturk, K.; Kekilli, M.; Kantarcioglu, M.; Sahiner, F.; Uygun, A.; Bagci, S. The degree of mucosal damage to the small intestine and serum immunoglobulin G4 levels correlate with celiac disease. Eur. J. Gastroenterol. Hepatol. 2015, 27, 781–784. [Google Scholar] [CrossRef]
- Zhao, M.; Li, C.; Zheng, J.; Yu, J.; Sha, H.; Yan, M.; Jin, J.; Sun, K.; Wang, Z. Extranodal Rosai-Dorfman disease involving appendix and mesenteric nodes with a protracted course: Report of a rare case lacking relationship to IgG4-related disease and review of the literature. Int. J. Clin. Exp. Pathol. 2013, 6, 2569. [Google Scholar] [PubMed]
- Rebours, V.; Le Baleur, Y.; Cazals–Hatem, D.; Stefanescu, C.; Hentic, O.; Maire, F.; Bouhnik, Y.; Bedossa, P.; Hammel, P.; Ruszniewski, P.; et al. Immunoglobulin G4 immunostaining of gastric, duodenal, or colonic biopsies is not helpful for the diagnosis of autoimmune pancreatitis. Clin. Gastroenterol. Hepatol. 2012, 10, 91–94. [Google Scholar] [CrossRef]
- Harder, H.; Büchler, M.W.; Fröhlich, B.; Ströbel, P.; Bergmann, F.; Neff, W.; Singer, M.V. Extrapulmonary sarcoidosis of liver and pancreas: A case report and review of literature. World J. Gastroenterol. 2007, 13, 2504–2509. [Google Scholar] [CrossRef]
- Palmucci, S.; Torrisi, S.E.; Caltabiano, D.C.; Puglisi, S.; Lentini, V.; Grassedonio, E.; Vindigni, V.; Reggio, E.; Giuliano, R.; Micali, G.; et al. Clinical and radiological features of extra-pulmonary sarcoidosis: A pictorial essay. Insights Imaging 2016, 7, 571–587. [Google Scholar] [CrossRef]
- Azemoto, N.; Kumagi, T.; Koizumi, M.; Kuroda, T.; Yamanishi, H.; Ohno, Y.; Imamura, Y.; Takeshita, E.; Soga, Y.; Ikeda, Y.; et al. Diagnostic Challenge in Pancreatic Sarcoidosis Using Endoscopic Ultrasonography. Intern. Med. 2018, 57, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Rao, D.A.; Dellaripa, P.F. Extrapulmonary manifestations of sarcoidosis. Rheum. Dis. Clin. N. Am. 2013, 39, 277–297. [Google Scholar] [CrossRef] [PubMed]
- Hatemi, I.; Hatemi, G.; Çelik, A.F. Systemic vasculitis and the gut. Curr. Opin. Rheumatol. 2017, 29, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Soowamber, M.; Weizman, A.V.; Pagnoux, C. Gastrointestinal aspects of vasculitides. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.-Y.; Li, Q.; Jiang, K.-R.; Xiao, B.; Chen, G.-S.; Miao, Y. Henoch-Schönlein Purpura: A Rare Cause of Recurrent Acute Pancreatitis. Chin. Med. J. 2016, 129, 2510–2511. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, Q.; Gui, M.; Ren, Z.; Hu, B.; Lü, L.; Deng, F. Henoch-Schönlein purpura with acute pancreatitis: Analysis of 13 cases. BMC Pediatr. 2018, 18, 159. [Google Scholar] [CrossRef]
- Yates, M.; Watts, R. ANCA-associated vasculitis. Clin. Med. 2017, 17, 60–64. [Google Scholar] [CrossRef]
- Garbe, N.; Keyßer, G.; Schäfer, C.; Garbe, J. Pancreatitis as the Leading Manifestation of Granulomatosis with Polyangiitis: Case Report and Review of the Literature. Pancreas 2021, 50, e85–e88. [Google Scholar] [CrossRef]
- Pagnoux, C.; Mahr, A.; Cohen, P.; Guillevin, L. Presentation and outcome of gastrointestinal involvement in systemic necrotizing vasculitides: Analysis of 62 patients with polyarteritis nodosa, microscopic polyangiitis, Wegener granulomatosis, Churg-Strauss syndrome, or rheumatoid arthritis-associated vasculitis. Medicine 2005, 84, 115–128. [Google Scholar] [CrossRef]
- Ebert, E.C.; Hagspiel, K.D.; Nagar, M.; Schlesinger, N. Gastrointestinal involvement in polyarteritis nodosa. Clin. Gastroenterol. Hepatol. 2008, 6, 960–966. [Google Scholar] [CrossRef]
- Takamatsu, K.; Kusanagi, Y.; Horikoshi, H.; Nakanishi, T.; Wada, A.; Koumoto, S.; Katsurada, Y.; Tsuda, H.; Hokari, R.; Kimura, F.; et al. Acute pancreatitis coincided with multiple arteriolar aneurysms in a patient with polyarteritis nodosa. Mod. Rheumatol. Case Rep. 2022, 6, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, Y.; Nakamura, I.; Kaneko, T.; Sawayanagi, T.; Watahiki, Y.; Kuroda, M. Pancreatic mass as an initial manifestation of polyarteritis nodosa: A case report and review of the literature. World J. Gastroenterol. 2015, 21, 1014–1019. [Google Scholar] [CrossRef]
- Tian, X.-P. Gastrointestinal involvement in systemic lupus erythematosus: Insight into pathogenesis, diagnosis and treatment. World J. Gastroenterol. 2010, 16, 2971–2977. [Google Scholar] [CrossRef] [PubMed]
- Frittoli, R.B.; Vivaldo, J.F.; Costallat, L.T.L.; Appenzeller, S. Gastrointestinal involvement in systemic lupus erythematosus: A systematic review. J. Transl. Autoimmun. 2021, 4, 100106. [Google Scholar] [CrossRef]
- Rim, D.; Kaye, A.; Choi, C.; Ahlawat, S. Inpatient Outcomes of Acute Pancreatitis among Patients with Systemic Lupus Erythematosus: A Nationwide Analysis. Cureus 2021, 13, e16349. [Google Scholar] [CrossRef] [PubMed]
Authors | AP Frequency | Number of Patients | Etiology | Recurrence Rate of AP | Diagnostic Criteria for AP |
---|---|---|---|---|---|
Bermejo, 2008 [14] | 1.6% | 82 (79% CD; 21% UC) | Drug induced 63% Gallstones 12.2% Idiopathic 20.7% | 13% | Not specified |
Garcia, 2020 [15] | 1.5% | 185 (68.7% CD; 31.3% UC) | Drug induced 59% Gallstones 18.4% Idiopathic 20.6% | 5% | Not specified |
Moolsintong, 2005 [16] | n/a | 48 (50% CD, 50% UC) | Drug induced 17% Gallstones 21% Idiopathic 4% | 20% | CT or US in 56% of cases and pancreatic abnormality found in 54% of them; pancreatic enzyme elevation |
Weber, 1993 [17] | 1.4% | 12 (100% CD) | Not mentioned | 16% | CT performed in 75% of cases and pancreatic abnormality in 77% of them |
Authors | Study Design | Total Number of Patients | Number of IBD-AIP Patients | Type of AIP According to ICDC | Findings about the Association |
---|---|---|---|---|---|
Conti Bellocchi, 2022 [35] | Retrospective; AIP cohort | 267 AIP patients | 45 (UC) |
|
|
Oh, 2019 [36] | Retrospective: AIP cohort | 244 AIP patients | 12 (UC) |
|
|
Lorenzo, 2018 [37] | Retrospective: IBD cohort | unknown | 91 (58 UC, 33 CD) |
|
|
Kim, 2017 [8] | Retrospective: IBD cohort | 3307 IBD patients | 13 (UC) |
|
|
Ramos, 2016 [6] | Retrospective (IBD cohort) | Unknown | 5 (UC) |
|
|
Ueki, 2015 [38] | Retrospective (IBD cohort) | 1751 IBD patients | 7 (5 UC, 2 CD) [3 probable excluded] |
|
|
Park, 2013 [39] | Retrospective (AIP cohort) | 104 AIP patients | 6 UC |
|
|
Ravi, 2009 [40] | Retrospective (AIP cohort) | 71 AIP patients | 4 (3 UC, 1 CD) | Type 1 |
|
Authors | Total Number of Patients | Number of Pancreatic Cancers | Calculated Risk of Pancreatic Cancer in CelD Patients | Findings about the Association |
---|---|---|---|---|
Askling, 2002; Sweden [104] | 11,019 | 9 | 1.9 (95% CI 0.9–3.6) | Adults CelD patients (but not children and adolescents) have a risk for pancreatic cancer that declines with time and eventually reaches unity. |
Elfstrom, 2012; Sweden [105] | 28,892 | 64 | 1.4 (95% CI 0.9–2.0) | Risk increase in the first year from diagnosis for all CelD, latent CelD and duodenal inflammatory findings. |
Ilus, 2014; Finland [106] | 11,991 | 45 | 0.7 (95% CI 0.5–0.9) | No increased risk of cancer in the whole series, but risk increased after 5 years from the diagnosis of celiac disease |
Lebwohl, 2022; Sweden [103] | 47,241 | 152 | 2.3 (95% CI 1.8–2.8) | Risk increase, confined to diagnosis > 40 yo, primarily present within the first year of diagnosis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conti Bellocchi, M.C.; Crinò, S.F.; De Marchi, G.; De Pretis, N.; Ofosu, A.; Caldart, F.; Ciccocioppo, R.; Frulloni, L. A Clinical and Pathophysiological Overview of Intestinal and Systemic Diseases Associated with Pancreatic Disorders: Causality or Casualty? Biomedicines 2023, 11, 1393. https://doi.org/10.3390/biomedicines11051393
Conti Bellocchi MC, Crinò SF, De Marchi G, De Pretis N, Ofosu A, Caldart F, Ciccocioppo R, Frulloni L. A Clinical and Pathophysiological Overview of Intestinal and Systemic Diseases Associated with Pancreatic Disorders: Causality or Casualty? Biomedicines. 2023; 11(5):1393. https://doi.org/10.3390/biomedicines11051393
Chicago/Turabian StyleConti Bellocchi, Maria Cristina, Stefano Francesco Crinò, Giulia De Marchi, Nicolò De Pretis, Andrew Ofosu, Federico Caldart, Rachele Ciccocioppo, and Luca Frulloni. 2023. "A Clinical and Pathophysiological Overview of Intestinal and Systemic Diseases Associated with Pancreatic Disorders: Causality or Casualty?" Biomedicines 11, no. 5: 1393. https://doi.org/10.3390/biomedicines11051393
APA StyleConti Bellocchi, M. C., Crinò, S. F., De Marchi, G., De Pretis, N., Ofosu, A., Caldart, F., Ciccocioppo, R., & Frulloni, L. (2023). A Clinical and Pathophysiological Overview of Intestinal and Systemic Diseases Associated with Pancreatic Disorders: Causality or Casualty? Biomedicines, 11(5), 1393. https://doi.org/10.3390/biomedicines11051393