COVID-19 Vaccines and Myocarditis: An Overview of Current Evidence
Abstract
:1. Introduction
2. Possible Molecular Mechanisms of COVID-19-Vaccine-Induced Myocarditis
3. Myocarditis and Cancer
4. Myocarditis Related to Genetics, Age, and Sex
5. COVID-19 Vaccines and Myocarditis in Children, Adolescents, and Young Adults
6. COVID-19 mRNA Vaccines and Myocarditis
Vaccine | Cases (N) | Frequency | Number of Biopsy Proven Myocarditis Cases | Findings |
---|---|---|---|---|
BNT162b2 | 54 | 2.13 case/10,000 | N/A | A small number of males in Israel [78] |
BNT162b2 mRNA-1273 | 42,200,614 | 3/1 million 12/1 million | N/A N/A | Increased risk of myocarditis after the first dose [71] Increased myocarditis risk after the first dose [71] |
BNT162b2 mRNA-1273 | Not declared | 14/1 million 101/1 million | N/A N/A | Increased risk of myocarditis after the second dose [71] Increased risk of myocarditis after the second dose [71] |
BNT162b2 | Not declared | 13/1 million | N/A | Increased risk of myocarditis after the third dose [71] |
BNT162b2 | 160 out of 1533 | 0.57 confidence intervals (CIs) | N/A | Increased risk of myocarditis risk after two doses [68] |
BNT162b2 mRNA-1273 | 48 21 | 1.4/100 K 4.2/100 K | N/A N/A | Increased risk of myocarditis in females [79] Increased risk of myocarditis risk in 12–39-year-olds [79] |
BNT162b2 mRNA-1273 | Not declared | 5.55/100 K 18.4/100 K | N/A N/A | Increased risk of myocarditis after the second dose [80] Increased myocarditis risk after the second dose [80] |
BNT162b2 | 20 | 4.8/100 K | 2 | Increased risk in 16–19-year-old males in Israel [81] |
BNT162b2 mRNA-1273 | 7 16 | 7/23 16/23 | N/A N/A | Myocarditis in previously healthy males after the second dose [77]. Myocarditis in previously healthy males after the second dose [77] |
7. Recombinant Adenovirus Vector-Based COVID-19 Vaccines and Myocarditis
8. Inactivated Virus and Protein Subunit COVID-19 Vaccines and Myocarditis
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Burden of Disease Study 2013 Collaborators. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 301 Acute and Chronic Diseases and Injuries in 188 Countries, 1990–2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 743–800. [Google Scholar] [CrossRef] [PubMed]
- Ammirati, E.; Cooper, L.T. Recovery from MRNA COVID-19 Vaccine-Related Myocarditis. Lancet Child Adolesc. Health 2022, 6, 749–751. [Google Scholar] [CrossRef] [PubMed]
- Lampejo, T.; Durkin, S.M.; Bhatt, N.; Guttmann, O. Acute Myocarditis: Aetiology, Diagnosis and Management. Clin. Med. 2021, 21, e505–e510. [Google Scholar] [CrossRef] [PubMed]
- Aretz, H.T.; Billingham, M.E.; Edwards, W.D.; Factor, S.M.; Fallon, J.T.; Fenoglio, J.J.; Olsen, E.G.; Schoen, F.J. Myocarditis: A Histopathologic Definition and Classification. Am. J. Cardiovasc. Pathol. 1987, 1, 3–14. [Google Scholar]
- Caforio, A.L.P.; Calabrese, F.; Angelini, A.; Tona, F.; Vinci, A.; Bottaro, S.; Ramondo, A.; Carturan, E.; Iliceto, S.; Thiene, G.; et al. A Prospective Study of Biopsy-Proven Myocarditis: Prognostic Relevance of Clinical and Aetiopathogenetic Features at Diagnosis. Eur. Heart J. 2007, 28, 1326–1333. [Google Scholar] [CrossRef]
- Ammirati, E.; Frigerio, M.; Adler, E.D.; Basso, C.; Birnie, D.H.; Brambatti, M.; Friedrich, M.G.; Klingel, K.; Lehtonen, J.; Moslehi, J.J.; et al. Management of Acute Myocarditis and Chronic Inflammatory Cardiomyopathy: An Expert Consensus Document. Circ. Heart Fail. 2020, 13, e007405. [Google Scholar] [CrossRef]
- Ammirati, E.; Cipriani, M.; Moro, C.; Raineri, C.; Pini, D.; Sormani, P.; Mantovani, R.; Varrenti, M.; Pedrotti, P.; Conca, C.; et al. Clinical Presentation and Outcome in a Contemporary Cohort of Patients with Acute Myocarditis: Multicenter Lombardy Registry. Circulation 2018, 138, 1088–1099. [Google Scholar] [CrossRef]
- Caforio, A.L.P. Receipt of MRNA Vaccine against COVID-19 and Myocarditis. N. Engl. J. Med. 2021, 385, 2189–2190. [Google Scholar] [CrossRef]
- Castiello, T.; Georgiopoulos, G.; Finocchiaro, G.; Claudia, M.; Gianatti, A.; Delialis, D.; Aimo, A.; Prasad, S. COVID-19 and Myocarditis: A Systematic Review and Overview of Current Challenges. Heart Fail. Rev. 2022, 27, 251–261. [Google Scholar] [CrossRef]
- Santoso, A.; Pranata, R.; Wibowo, A.; Al-Farabi, M.J.; Huang, I.; Antariksa, B. Cardiac Injury Is Associated with Mortality and Critically Ill Pneumonia in COVID-19: A Meta-Analysis. Am. J. Emerg. Med. 2021, 44, 352–357. [Google Scholar] [CrossRef]
- Tian, W.; Jiang, W.; Yao, J.; Nicholson, C.J.; Li, R.H.; Sigurslid, H.H.; Wooster, L.; Rotter, J.I.; Guo, X.; Malhotra, R. Predictors of Mortality in Hospitalized COVID-19 Patients: A Systematic Review and Meta-Analysis. J. Med. Virol. 2020, 92, 1875–1883. [Google Scholar] [CrossRef]
- Peretto, G.; Sala, S.; Caforio, A.L.P. Acute Myocardial Injury, MINOCA, or Myocarditis? Improving Characterization of Coronavirus-Associated Myocardial Involvement. Eur. Heart J. 2020, 41, 2124–2125. [Google Scholar] [CrossRef]
- Escher, F.; Pietsch, H.; Aleshcheva, G.; Bock, T.; Baumeier, C.; Elsaesser, A.; Wenzel, P.; Hamm, C.; Westenfeld, R.; Schultheiss, M.; et al. Detection of Viral SARS-CoV-2 Genomes and Histopathological Changes in Endomyocardial Biopsies. ESC Heart Fail. 2020, 7, 2440–2447. [Google Scholar] [CrossRef]
- Caforio, A.L.P.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Heliö, T.; Heymans, S.; Jahns, R.; et al. Current State of Knowledge on Aetiology, Diagnosis, Management, and Therapy of Myocarditis: A Position Statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636–2648, 2648a–2648d. [Google Scholar] [CrossRef]
- Haas, E.J.; Angulo, F.J.; McLaughlin, J.M.; Anis, E.; Singer, S.R.; Khan, F.; Brooks, N.; Smaja, M.; Mircus, G.; Pan, K.; et al. Impact and Effectiveness of MRNA BNT162b2 Vaccine against SARS-CoV-2 Infections and COVID-19 Cases, Hospitalisations, and Deaths Following a Nationwide Vaccination Campaign in Israel: An Observational Study Using National Surveillance Data. Lancet 2021, 397, 1819–1829. [Google Scholar] [CrossRef]
- Lopez Bernal, J.; Andrews, N.; Gower, C.; Robertson, C.; Stowe, J.; Tessier, E.; Simmons, R.; Cottrell, S.; Roberts, R.; O’Doherty, M.; et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca Vaccines on Covid-19 Related Symptoms, Hospital Admissions, and Mortality in Older Adults in England: Test Negative Case-Control Study. BMJ 2021, 373, n1088. [Google Scholar] [CrossRef]
- Annie, F.H.; Alkhaimy, H.; Nanjundappa, A.; Elashery, A. Association Between Myocarditis and Mortality in COVID-19 Patients in a Large Registry. Mayo Clin. Proc. Innov. Qual. Outcomes 2022, 6, 114–119. [Google Scholar] [CrossRef]
- Bozkurt, B.; Kamat, I.; Hotez, P.J. Myocarditis With COVID-19 MRNA Vaccines. Circulation 2021, 144, 471–484. [Google Scholar] [CrossRef]
- Mitrani, R.D.; Dabas, N.; Goldberger, J.J. COVID-19 Cardiac Injury: Implications for Long-Term Surveillance and Outcomes in Survivors. Heart Rhythm. 2020, 17, 1984–1990. [Google Scholar] [CrossRef]
- Dhakal, B.P.; Sweitzer, N.K.; Indik, J.H.; Acharya, D.; William, P. SARS-CoV-2 Infection and Cardiovascular Disease: COVID-19 Heart. Heart Lung Circ. 2020, 29, 973–987. [Google Scholar] [CrossRef]
- Ammirati, E.; Lupi, L.; Palazzini, M.; Hendren, N.S.; Grodin, J.L.; Cannistraci, C.V.; Schmidt, M.; Hekimian, G.; Peretto, G.; Bochaton, T.; et al. Prevalence, Characteristics, and Outcomes of COVID-19-Associated Acute Myocarditis. Circulation 2022, 145, 1123–1139. [Google Scholar] [CrossRef] [PubMed]
- Tschöpe, C.; Ammirati, E.; Bozkurt, B.; Caforio, A.L.P.; Cooper, L.T.; Felix, S.B.; Hare, J.M.; Heidecker, B.; Heymans, S.; Hübner, N.; et al. Myocarditis and Inflammatory Cardiomyopathy: Current Evidence and Future Directions. Nat. Rev. Cardiol. 2021, 18, 169–193. [Google Scholar] [CrossRef] [PubMed]
- Adalbert, J.R.; Varshney, K.; Tobin, R.; Pajaro, R. Clinical Outcomes in Patients Co-Infected with COVID-19 and Staphylococcus Aureus: A Scoping Review. BMC Infect. Dis. 2021, 21, 985. [Google Scholar] [CrossRef] [PubMed]
- Benmalek, R.; Mechal, H.; Choukrallah, H.; Maaroufi, A.; Benouna, E.G.; Habbal, R.; Aissaoui, O.; Erragh, A.; Nssiri, A.; AlHarrar, R. Bacterial Co-Infections and Superinfections in COVID-19: A Case Report of Right Heart Infective Endocarditis and Literature Review. Pan Afr. Med. J. 2020, 35, 40. [Google Scholar] [CrossRef] [PubMed]
- Block, J.P.; Boehmer, T.K.; Forrest, C.B.; Carton, T.W.; Lee, G.M.; Ajani, U.A.; Christakis, D.A.; Cowell, L.G.; Draper, C.; Ghildayal, N.; et al. Cardiac Complications after SARS-CoV-2 Infection and MRNA COVID-19 Vaccination—PCORnet, United States, January 2021-January 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 517–523. [Google Scholar] [CrossRef]
- Basso, C.; Leone, O.; Rizzo, S.; De Gaspari, M.; van der Wal, A.C.; Aubry, M.-C.; Bois, M.C.; Lin, P.T.; Maleszewski, J.J.; Stone, J.R. Pathological Features of COVID-19-Associated Myocardial Injury: A Multicentre Cardiovascular Pathology Study. Eur. Heart J. 2020, 41, 3827–3835. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.; Chen, M.; Feng, Y.; Xiong, C. The ACE2 Expression in Human Heart Indicates New Potential Mechanism of Heart Injury among Patients Infected with SARS-CoV-2. Cardiovasc. Res. 2020, 116, 1097–1100. [Google Scholar] [CrossRef]
- De, A.; Bansal, M. Clinical Profile and the Extent of Residual Myocardial Dysfunction among Patients with Previous Coronavirus Disease 2019. Int. J. Cardiovasc. Imaging 2023, 39, 887–894. [Google Scholar] [CrossRef]
- Gao, J.; Feng, L.; Li, Y.; Lowe, S.; Guo, Z.; Bentley, R.; Xie, C.; Wu, B.; Xie, P.; Xia, W.; et al. A Systematic Review and Meta-analysis of the Association Between SARS-CoV-2 Vaccination and Myocarditis or Pericarditis. Am. J. Prev. Med. 2022, 64, 275–284. [Google Scholar] [CrossRef]
- Hromić-Jahjefendić, A.; Barh, D.; Uversky, V.; Aljabali, A.A.; Tambuwala, M.M.; Alzahrani, K.J.; Alzahrani, F.M.; Alshammeri, S.; Lundstrom, K. Can COVID-19 Vaccines Induce Premature Non-Communicable Diseases: Where Are We Heading To? Vaccines 2023, 11, 208. [Google Scholar] [CrossRef]
- Vojdani, A.; Kharrazian, D. Potential Antigenic Cross-Reactivity between SARS-CoV-2 and Human Tissue with a Possible Link to an Increase in Autoimmune Diseases. Clin. Immunol. 2020, 217, 108480. [Google Scholar] [CrossRef]
- Marrama, D.; Mahita, J.; Sette, A.; Peters, B. Lack of Evidence of Significant Homology of SARS-CoV-2 Spike Sequences to Myocarditis-Associated Antigens. EBioMedicine 2022, 75, 103807. [Google Scholar] [CrossRef]
- Heymans, S.; Cooper, L.T. Myocarditis after COVID-19 MRNA Vaccination: Clinical Observations and Potential Mechanisms. Nat. Rev. Cardiol. 2022, 19, 75–77. [Google Scholar] [CrossRef]
- Furqan, M.; Chawla, S.; Majid, M.; Mazumdar, S.; Mahalwar, G.; Harmon, E.; Klein, A. COVID-19 Vaccine-Related Myocardial and Pericardial Inflammation. Curr. Cardiol. Rep. 2022, 24, 2031–2041. [Google Scholar] [CrossRef]
- Terán Brage, E.; Roldán Ruíz, J.; González Martín, J.; Oviedo Rodríguez, J.D.; Vidal Tocino, R.; Rodríguez Diego, S.; Sánchez Hernández, P.L.; Bellido Hernández, L.; Fonseca Sánchez, E. Fulminant Myocarditis in a Patient with a Lung Adenocarcinoma after the Third Dose of Modern COVID-19 Vaccine. A Case Report and Literature Review. Curr. Probl. Cancer Case Rep. 2022, 6, 100153. [Google Scholar] [CrossRef]
- Golpour, A.; Patriki, D.; Hanson, P.J.; McManus, B.; Heidecker, B. Epidemiological Impact of Myocarditis. J. Clin. Med. 2021, 10, 603. [Google Scholar] [CrossRef]
- Ludden, T.E.; Edwards, J.E. Carditis in Poliomyelitis; an Anatomic Study of 35 Cases and Review of the Literature. Am. J. Pathol. 1949, 25, 357–381. [Google Scholar]
- Sainani, G.S.; Krompotic, E.; Slodki, S.J. Adult Heart Disease Due to the Coxsackie Virus B Infection. Medicine 1968, 47, 133–147. [Google Scholar] [CrossRef]
- Woodruff, J.F. Viral Myocarditis. A Review. Am. J. Pathol. 1980, 101, 425–484. [Google Scholar]
- Younis, A.; Mulla, W.; Matetzky, S.; Masalha, E.; Afel, Y.; Fardman, A.; Goitein, O.; Arad, M.; Mazin, I.; Beigel, R. Sex-Based Differences in Characteristics and In-Hospital Outcomes among Patients With Diagnosed Acute Myocarditis. Am. J. Cardiol. 2020, 125, 1694–1699. [Google Scholar] [CrossRef]
- Baggio, C.; Gagno, G.; Porcari, A.; Paldino, A.; Artico, J.; Castrichini, M.; Dal Ferro, M.; Bussani, R.; Merlo, M. Myocarditis: Which Role for Genetics? Curr. Cardiol. Rep. 2021, 23, 58. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, O.; Fernández-Falgueras, A.; Sarquella-Brugada, G.; Sanchez, O.; Cesar, S.; Mademont, I.; Allegue, C.; Mates, J.; Pérez-Serra, A.; Coll, M.; et al. A Genetically Vulnerable Myocardium May Predispose to Myocarditis. J. Am. Coll. Cardiol. 2015, 66, 2913–2914. [Google Scholar] [CrossRef] [PubMed]
- Heymans, S.; Eriksson, U.; Lehtonen, J.; Cooper, L.T. The Quest for New Approaches in Myocarditis and Inflammatory Cardiomyopathy. J. Am. Coll. Cardiol. 2016, 68, 2348–2364. [Google Scholar] [CrossRef] [PubMed]
- Enrico Ammirati, M.D.; Francesca Raimondi, M.D.; Nicolas Piriou, M.D.; Loren Sardo Infirri, M.D.; Saidi, A.; Mohiddin, M.D.; Andrea Mazzanti, M.D.; Chetan Shenoy, M.; Ugo, A.; Cavallari, M.D.; et al. Acute Myocarditis Associated With Desmosomal Gene Variants. Heart Fail. 2022, 10, 714–727. [Google Scholar] [CrossRef]
- Marshall, M.; Ferguson, I.D.; Lewis, P.; Jaggi, P.; Gagliardo, C.; Collins, J.S.; Shaughnessy, R.; Caron, R.; Fuss, C.; Corbin, K.J.E.; et al. Symptomatic Acute Myocarditis in 7 Adolescents after Pfizer-BioNTech COVID-19 Vaccination. Pediatrics 2021, 148, e2021052478. [Google Scholar] [CrossRef]
- Kohli, U.; Desai, L.; Chowdhury, D.; Harahsheh, A.S.; Yonts, A.B.; Ansong, A.; Sabati, A.; Nguyen, H.H.; Hussain, T.; Khan, D.; et al. MRNA Coronavirus Disease 2019 Vaccine-Associated Myopericarditis in Adolescents: A Survey Study. J. Pediatr. 2022, 243, 208–213.e3. [Google Scholar] [CrossRef]
- Banala, K.R.; Al-Anani, S.; Anne, P.; Covi, S. Outcome of Post-Covid Vaccination Myocarditis in an Adolescent Male. Clin. Pediatr. 2023, 62, 162–165. [Google Scholar] [CrossRef]
- Su, W.-J.; Liu, Y.-L.; Chang, C.-H.; Lin, Y.-C.; Huang, W.-I.; Wu, L.-C.; Chen, S.-F.; Lin, Y.-S.; Hsieh, Y.-L.; Yang, C.-A.; et al. Risk of Myocarditis and Pericarditis Following Coronavirus Disease 2019 Messenger RNA Vaccination-A Nationwide Study. J. Microbiol. Immunol. Infect. 2023; in press. [Google Scholar] [CrossRef]
- Arola, A.; Pikkarainen, E.; Sipilä, J.O.; Pykäri, J.; Rautava, P.; Kytö, V. Occurrence and Features of Childhood Myocarditis: A Nationwide Study in Finland. J. Am. Heart Assoc. 2017, 6, e005306. [Google Scholar] [CrossRef]
- Gargano, J.W.; Wallace, M.; Hadler, S.C.; Langley, G.; Su, J.R.; Oster, M.E.; Broder, K.R.; Gee, J.; Weintraub, E.; Shimabukuro, T.; et al. Use of MRNA COVID-19 Vaccine after Reports of Myocarditis Among Vaccine Recipients: Update from the Advisory Committee on Immunization Practices—United States, June 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 977–982. [Google Scholar] [CrossRef]
- Frenck, R.W.; Klein, N.P.; Kitchin, N.; Gurtman, A.; Absalon, J.; Lockhart, S.; Perez, J.L.; Walter, E.B.; Senders, S.; Bailey, R.; et al. Safety, Immunogenicity, and Efficacy of the BNT162b2 COVID-19 Vaccine in Adolescents. N. Engl. J. Med. 2021, 385, 239–250. [Google Scholar] [CrossRef]
- CDC. COVID-19 ACIP Vaccine Recommendations. Available online: https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/covid-19.html (accessed on 23 March 2023).
- CDC. COVID Data Tracker. Available online: https://covid.cdc.gov/covid-data-tracker (accessed on 23 March 2023).
- Shimabukuro, T. COVID-19 Vaccine Safety Updates. Available online: https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-06/03-COVID-Shimabukuro-508.pdf (accessed on 10 February 2023).
- Schauer, J.; Buddhe, S.; Colyer, J.; Sagiv, E.; Law, Y.; Mallenahalli Chikkabyrappa, S.; Portman, M.A. Myopericarditis after the Pfizer Messenger Ribonucleic Acid Coronavirus Disease Vaccine in Adolescents. J. Pediatr. 2021, 238, 317–320. [Google Scholar] [CrossRef]
- Li, M.; Yuan, J.; Lv, G.; Brown, J.; Jiang, X.; Lu, Z.K. Myocarditis and Pericarditis Following COVID-19 Vaccination: Inequalities in Age and Vaccine Types. J. Pers. Med. 2021, 11, 1106. [Google Scholar] [CrossRef]
- CDC. ACIP June 2021 Presentation Slides. Immunization Practices. Available online: https://www.cdc.gov/vaccines/acip/meetings/slides-2021-06.html (accessed on 23 March 2023).
- Nygaard, U.; Holm, M.; Bohnstedt, C.; Chai, Q.; Schmidt, L.S.; Hartling, U.B.; Petersen, J.J.H.; Thaarup, J.; Bjerre, J.; Vejlstrup, N.G.; et al. Population-Based Incidence of Myopericarditis after COVID-19 Vaccination in Danish Adolescents. Pediatr. Infect. Dis. J. 2022, 41, e25–e28. [Google Scholar] [CrossRef]
- Krug, A.; Stevenson, J.; Høeg, T.B. BNT162b2 Vaccine-Associated Myo/Pericarditis in Adolescents: A Stratified Risk-Benefit Analysis. Eur. J. Clin. Investig. 2022, 52, e13759. [Google Scholar] [CrossRef]
- June Choe, Y.; Yi, S.; Hwang, I.; Kim, J.; Park, Y.-J.; Cho, E.; Jo, M.; Lee, H.; Hwa Choi, E. Safety and Effectiveness of BNT162b2 MRNA Covid-19 Vaccine in Adolescents. Vaccine 2022, 40, 691–694. [Google Scholar] [CrossRef]
- Hause, A.M.; Shay, D.K.; Klein, N.P.; Abara, W.E.; Baggs, J.; Cortese, M.M.; Fireman, B.; Gee, J.; Glanz, J.M.; Goddard, K.; et al. Safety of COVID-19 Vaccination in United States Children Ages 5 to 11 Years. Pediatrics 2022, 150, e2022057313. [Google Scholar] [CrossRef]
- Nygaard, U.; Holm, M.; Dungu, K.H.S.; Matthesen, A.T.; Stensballe, L.G.; Espenhain, L.; Hartling, U. Risk of Myopericarditis after COVID-19 Vaccination in Danish Children Aged 5 to 11 Years. Pediatrics 2022, 150, e2022057508. [Google Scholar] [CrossRef]
- Tenforde, M.W. Effectiveness of Pfizer-BioNTech and Moderna Vaccines against COVID-19 Among Hospitalized Adults Aged ≥65 Years—United States, January–March 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 674–679. [Google Scholar] [CrossRef]
- Levi, N.; Moravsky, G.; Weitsman, T.; Amsalem, I.; Bar-Sheshet Itach, S.; Algur, N.; Lapidus, I.; Mitz, O.; Glikson, M.; Wiener-Well, Y.; et al. A Prospective Study on Myocardial Injury after BNT162b2 MRNA COVID-19 Fourth Dose Vaccination in Healthy Persons. Eur. J. Heart Fail. 2023, 25, 313–318. [Google Scholar] [CrossRef]
- Abdeldayem, E.H.; Raief Mosaad, B.M.; Yassin, A.; Abdelrahman, A.S. Cardiac MRI in Patients with COVID-19 Infection. Eur. Radiol. 2022, 33, 3867–3877. [Google Scholar] [CrossRef] [PubMed]
- Sawalha, K.; Abozenah, M.; Kadado, A.J.; Battisha, A.; Al-Akchar, M.; Salerno, C.; Hernandez-Montfort, J.; Islam, A.M. Systematic Review of COVID-19 Related Myocarditis: Insights on Management and Outcome. Cardiovasc. Revasc. Med. 2021, 23, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Fazlollahi, A.; Zahmatyar, M.; Noori, M.; Nejadghaderi, S.A.; Sullman, M.J.M.; Shekarriz-Foumani, R.; Kolahi, A.-A.; Singh, K.; Safiri, S. Cardiac Complications Following MRNA COVID-19 Vaccines: A Systematic Review of Case Reports and Case Series. Rev. Med. Virol. 2022, 32, e2318. [Google Scholar] [CrossRef] [PubMed]
- Lai, F.T.T.; Li, X.; Peng, K.; Huang, L.; Ip, P.; Tong, X.; Chui, C.S.L.; Wan, E.Y.F.; Wong, C.K.H.; Chan, E.W.Y.; et al. Carditis after COVID-19 Vaccination with a Messenger RNA Vaccine and an Inactivated Virus Vaccine. Ann. Intern. Med. 2022, 175, 362–370. [Google Scholar] [CrossRef]
- Paknahad, M.H.; Yancheshmeh, F.B.; Soleimani, A. Cardiovascular Complications of COVID-19 Vaccines: A Review of Case-Report and Case-Series Studies. Heart Lung 2023, 59, 173–180. [Google Scholar] [CrossRef]
- Ohnishi, M.; Tanaka, Y.; Nishida, S.; Sugimoto, T. Case Report of Acute Myocarditis after Administration of Coronavirus Disease 2019 Vaccine in Japan. Eur. Heart J. Case Rep. 2022, 6, ytab534. [Google Scholar] [CrossRef]
- Patone, M.; Mei, X.W.; Handunnetthi, L.; Dixon, S.; Zaccardi, F.; Shankar-Hari, M.; Watkinson, P.; Khunti, K.; Harnden, A.; Coupland, C.A.C.; et al. Risk of Myocarditis after Sequential Doses of COVID-19 Vaccine and SARS-CoV-2 Infection by Age and Sex. Circulation 2022, 146, 743–754. [Google Scholar] [CrossRef]
- Hadley, S.M.; Prakash, A.; Baker, A.L.; de Ferranti, S.D.; Newburger, J.W.; Friedman, K.G.; Dionne, A. Follow-up Cardiac Magnetic Resonance in Children with Vaccine-Associated Myocarditis. Eur. J. Pediatr. 2022, 181, 2879–2883. [Google Scholar] [CrossRef]
- Tsilingiris, D.; Vallianou, N.G.; Karampela, I.; Liu, J.; Dalamaga, M. Potential Implications of Lipid Nanoparticles in the Pathogenesis of Myocarditis Associated with the Use of MRNA Vaccines against SARS-CoV-2. Metabol. Open 2022, 13, 100159. [Google Scholar] [CrossRef]
- Chin, S.E.; Bhavsar, S.M.; Corson, A.; Ghersin, Z.J.; Kim, H.S. Cardiac Complications Associated with COVID-19, MIS-C, and MRNA COVID-19 Vaccination. Pediatr. Cardiol. 2022, 43, 483–488. [Google Scholar] [CrossRef]
- Patone, M.; Mei, X.W.; Handunnetthi, L.; Dixon, S.; Zaccardi, F.; Shankar-Hari, M.; Watkinson, P.; Khunti, K.; Harnden, A.; Coupland, C.A.C.; et al. Risks of Myocarditis, Pericarditis, and Cardiac Arrhythmias Associated with COVID-19 Vaccination or SARS-CoV-2 Infection. Nat. Med. 2022, 28, 410–422. [Google Scholar] [CrossRef]
- Le Vu, S.; Bertrand, M.; Jabagi, M.-J.; Botton, J.; Drouin, J.; Baricault, B.; Weill, A.; Dray-Spira, R.; Zureik, M. Age and Sex-Specific Risks of Myocarditis and Pericarditis Following COVID-19 Messenger RNA Vaccines. Nat. Commun. 2022, 13, 3633. [Google Scholar] [CrossRef]
- Montgomery, J.; Ryan, M.; Engler, R.; Hoffman, D.; McClenathan, B.; Collins, L.; Loran, D.; Hrncir, D.; Herring, K.; Platzer, M.; et al. Myocarditis Following Immunization With MRNA COVID-19 Vaccines in Members of the US Military. JAMA Cardiol. 2021, 6, 1202–1206. [Google Scholar] [CrossRef]
- Witberg, G.; Magen, O.; Hoss, S.; Talmor-Barkan, Y.; Richter, I.; Wiessman, M.; Aviv, Y.; Grinberg, T.; Shiyovich, A.; Schamroth-Pravda, N.; et al. Myocarditis after BNT162b2 Vaccination in Israeli Adolescents. N. Engl. J. Med. 2022, 386, 998–999. [Google Scholar] [CrossRef]
- Husby, A.; Hansen, J.V.; Fosbøl, E.; Thiesson, E.M.; Madsen, M.; Thomsen, R.W.; Sørensen, H.T.; Andersen, M.; Wohlfahrt, J.; Gislason, G.; et al. SARS-CoV-2 Vaccination and Myocarditis or Myopericarditis: Population Based Cohort Study. BMJ 2021, 375, e068665. [Google Scholar] [CrossRef]
- Karlstad, Ø.; Hovi, P.; Husby, A.; Härkänen, T.; Selmer, R.M.; Pihlström, N.; Hansen, J.V.; Nohynek, H.; Gunnes, N.; Sundström, A.; et al. SARS-CoV-2 Vaccination and Myocarditis in a Nordic Cohort Study of 23 Million Residents. JAMA Cardiol. 2022, 7, 600–612. [Google Scholar] [CrossRef]
- Mevorach, D.; Anis, E.; Cedar, N.; Bromberg, M.; Haas, E.J.; Nadir, E.; Olsha-Castell, S.; Arad, D.; Hasin, T.; Levi, N.; et al. Myocarditis after BNT162b2 MRNA Vaccine against COVID-19 in Israel. N. Engl. J. Med. 2021, 385, 2140–2149. [Google Scholar] [CrossRef]
- Wong, H.-L.; Hu, M.; Zhou, C.K.; Lloyd, P.C.; Amend, K.L.; Beachler, D.C.; Secora, A.; McMahill-Walraven, C.N.; Lu, Y.; Wu, Y.; et al. Risk of Myocarditis and Pericarditis after the COVID-19 MRNA Vaccination in the USA: A Cohort Study in Claims Databases. Lancet 2022, 399, 2191–2199. [Google Scholar] [CrossRef]
- Lane, S.; Yeomans, A.; Shakir, S. Reports of Myocarditis and Pericarditis Following MRNA COVID-19 Vaccination: A Systematic Review of Spontaneously Reported Data from the UK, Europe and the USA and of the Scientific Literature. BMJ Open 2022, 12, e059223. [Google Scholar] [CrossRef]
- Yamoah, P.; Mensah, K.B.; Attakorah, J.; Padayachee, N.; Oosthuizen, F.; Bangalee, V. Adverse Events Following Immunization Associated with Coronavirus Disease 2019 (COVID-19) Vaccines: A Descriptive Analysis from VigiAccess. Hum. Vaccin. Immunother. 2022, 18, 2109365. [Google Scholar] [CrossRef]
- Nasreen, S.; Calzavara, A.; Buchan, S.A.; Thampi, N.; Johnson, C.; Wilson, S.E.; Kwong, J.C. Background Incidence Rates of Adverse Events of Special Interest Related to COVID-19 Vaccines in Ontario, Canada, 2015 to 2020, to Inform COVID-19 Vaccine Safety Surveillance. Vaccine 2022, 40, 3305–3312. [Google Scholar] [CrossRef] [PubMed]
- Lane, S.; Yeomans, A.; Shakir, S. Systematic Review of Spontaneous Reports of Myocarditis and Pericarditis in Transplant Recipients and Immunocompromised Patients Following COVID-19 MRNA Vaccination. BMJ Open 2022, 12, e060425. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, X.; Feng, J.; Feng, Z.; Li, W.; Ya, B. Myocarditis or Pericarditis Following the COVID-19 Vaccination in Adolescents: A Systematic Review. Vaccines 2022, 10, 1316. [Google Scholar] [CrossRef] [PubMed]
- Oster, M.E.; Shay, D.K.; Su, J.R.; Gee, J.; Creech, C.B.; Broder, K.R.; Edwards, K.; Soslow, J.H.; Dendy, J.M.; Schlaudecker, E.; et al. Myocarditis Cases Reported after MRNA-Based COVID-19 Vaccination in the US From December 2020 to August 2021. JAMA 2022, 327, 331–340. [Google Scholar] [CrossRef]
- Isaak, A.; Feisst, A.; Luetkens, J.A. Myocarditis Following COVID-19 Vaccination. Radiology 2021, 301, E378–E379. [Google Scholar] [CrossRef]
- Fact Sheet for Health Workers: Pfizer–BioNTech COVID-19 Vaccine, BNT162b2: Updated Version: 07/07/2021 (International Nonproprietary Name: Tozinameran). Available online: https://apps.who.int/iris/handle/10665/343082 (accessed on 23 March 2023).
- Schauer, J.; Buddhe, S.; Gulhane, A.; Sagiv, E.; Studer, M.; Colyer, J.; Chikkabyrappa, S.M.; Law, Y.; Portman, M.A. Persistent Cardiac Magnetic Resonance Imaging Findings in a Cohort of Adolescents with Post-Coronavirus Disease 2019 MRNA Vaccine Myopericarditis. J. Pediatr. 2022, 245, 233–237. [Google Scholar] [CrossRef]
- Kerneis, M.; Bihan, K.; Salem, J.-E. COVID-19 Vaccines and Myocarditis. Arch. Cardiovasc. Dis. 2021, 114, 515–517. [Google Scholar] [CrossRef]
- Rosenblum, H.G. Use of COVID-19 Vaccines after Reports of Adverse Events Among Adult Recipients of Janssen (Johnson & Johnson) and MRNA COVID-19 Vaccines (Pfizer-BioNTech and Moderna): Update from the Advisory Committee on Immunization Practices—United States, July 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1094–1099. [Google Scholar] [CrossRef]
- Wu, C.-T.; Chin, S.-C.; Chu, P.-H. Acute Fulminant Myocarditis after ChAdOx1 NCoV-19 Vaccine: A Case Report and Literature Review. Front. Cardiovasc. Med. 2022, 9, 856991. [Google Scholar] [CrossRef]
- Badorff, C.; Lee, G.H.; Lamphear, B.J.; Martone, M.E.; Campbell, K.P.; Rhoads, R.E.; Knowlton, K.U. Enteroviral Protease 2A Cleaves Dystrophin: Evidence of Cytoskeletal Disruption in an Acquired Cardiomyopathy. Nat. Med. 1999, 5, 320–326. [Google Scholar] [CrossRef]
- Murphy, W.J.; Longo, D.L. A Possible Role for Anti-Idiotype Antibodies in SARS-CoV-2 Infection and Vaccination. N. Engl. J. Med. 2022, 386, 394–396. [Google Scholar] [CrossRef]
- Hassanzadeh, S.; Sadeghi, S.; Mirdamadi, A.; Nematollahi, A. Myocarditis Following AstraZeneca (an Adenovirus Vector Vaccine) COVID-19 Vaccination: A Case Report. Clin. Case Rep. 2022, 10, e05744. [Google Scholar] [CrossRef]
- Ujueta, F.; Azimi, R.; Lozier, M.R.; Poppiti, R.; Ciment, A. Lymphohistocytic Myocarditis after Ad26.COV2.S Viral Vector COVID-19 Vaccination. Int. J. Cardiol. Heart Vasc. 2021, 36, 100869. [Google Scholar] [CrossRef]
- Rosner, C.M.; Genovese, L.; Tehrani, B.N.; Atkins, M.; Bakhshi, H.; Chaudhri, S.; Damluji, A.A.; de Lemos, J.A.; Desai, S.S.; Emaminia, A.; et al. Myocarditis Temporally Associated With COVID-19 Vaccination. Circulation 2021, 144, 502–505. [Google Scholar] [CrossRef]
- Gong, T.; Liu, L.; Jiang, W.; Zhou, R. DAMP-Sensing Receptors in Sterile Inflammation and Inflammatory Diseases. Nat. Rev. Immunol. 2020, 20, 95–112. [Google Scholar] [CrossRef]
- Takeda, K. Toll-like Receptors in Innate Immunity. Int. Immunol. 2004, 17, 1–14. [Google Scholar] [CrossRef]
- Boyd, J.H.; Mathur, S.; Wang, Y.; Bateman, R.M.; Walley, K.R. Toll-like Receptor Stimulation in Cardiomyoctes Decreases Contractility and Initiates an NF-KappaB Dependent Inflammatory Response. Cardiovasc. Res. 2006, 72, 384–393. [Google Scholar] [CrossRef]
- Quagliariello, V. SARS-CoV-2 Infection: NLRP3 Inflammasome as Plausible Target to Prevent Cardiopulmonary Complications? Eur. Rev. 2020, 24, 9169–9171. [Google Scholar]
- Hajsadeghi, S.; Gholizadeh Mesgarha, M.; Saberi Shahrbabaki, E.; Pishgahi, M.; Ebadi Fard Azar, A.; Pour Mohammad, A. Constrictive Pericarditis Following Inactivated Virus COVID-19 Vaccine: A Case Report with Review of the Literature. Radiol. Case Rep. 2022, 17, 3774–3778. [Google Scholar] [CrossRef]
- Viani, G.M.; Pedrotti, P.; Seregni, R.; Antonio, B. Effusive–Constrictive Pericarditis after the Second Dose of BNT162b2 Vaccine (Comirnaty): A Case Report. Eur. Heart J.-Case Rep. 2022, 6, ytac012. [Google Scholar] [CrossRef]
- Ching, S.; Yue, C.S. Acute Perimyocarditis Following Heterologous Vaccination of CoronaVac and BNT162b2 SARS-CoV-2 Vaccine in an Elderly Woman. J. Geriatr. Cardiol. 2022, 19, 785–787. [Google Scholar] [CrossRef] [PubMed]
- Koiwaya, H.; Nishihira, K.; Tomozoe, K.; Shibata, Y. Serial Histopathologic Assessment of Fulminant Myocarditis after the First MRNA COVID-19 Vaccine Dose. Eur. Heart J. 2022, 43, 1995. [Google Scholar] [CrossRef] [PubMed]
- Chou, O.H.I.; Zhou, J.; Lee, T.T.L.; Kot, T.; Lee, S.; Wai, A.K.C.; Wong, W.T.; Zhang, Q.; Cheng, S.H.; Liu, T.; et al. Comparisons of the Risk of Myopericarditis between COVID-19 Patients and Individuals Receiving COVID-19 Vaccines: A Population-Based Study. Clin. Res. Cardiol. 2022, 111, 1098–1103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dong, X.; Cao, Y.; Yuan, Y.; Yang, Y.; Yan, Y.; Akdis, C.A.; Gao, Y. Clinical Characteristics of 140 Patients Infected with SARS-CoV-2 in Wuhan, China. Allergy 2020, 75, 1730–1741. [Google Scholar] [CrossRef]
- Tiwari, A.; Karna, G.; Chakrabarti, S.S.; Panda, P.K.; Kaur, U. Hyper-Eosinophilic Syndrome with Myocarditis after Inactivated SARSCoV- 2 Vaccination—A Case Study. Curr. Drug. Saf. 2023, 18, 103–106. [Google Scholar] [CrossRef]
- Ab Rahman, N.; Lim, M.T.; Lee, F.Y.; Lee, S.C.; Ramli, A.; Saharudin, S.N.; King, T.L.; Anak Jam, E.B.; Ayub, N.A.; Sevalingam, R.K.; et al. Risk of Serious Adverse Events after the BNT162b2, CoronaVac, and ChAdOx1 Vaccines in Malaysia: A Self-Controlled Case Series Study. Vaccine 2022, 40, 4394–4402. [Google Scholar] [CrossRef]
- Wan, E.Y.F.; Wang, Y.; Chui, C.S.L.; Mok, A.H.Y.; Xu, W.; Yan, V.K.C.; Lai, F.T.T.; Li, X.; Wong, C.K.H.; Chan, E.W.Y.; et al. Safety of an Inactivated, Whole-Virion COVID-19 Vaccine (CoronaVac) in People Aged 60 Years or Older in Hong Kong: A Modified Self-Controlled Case Series. Lancet Healthy Longev. 2022, 3, e491–e500. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, X.; Yang, C.; Qi, Q.; Shi, W.; Li, Y.; Zuo, M.; Wang, S.; Bi, H.; Ma, R.; et al. Case Report: Myocarditis Following COVID-19 Protein Subunit Vaccination. Front. Cardiovasc. Med. 2022, 9, 970045. [Google Scholar] [CrossRef]
- Panthong, S.; Vimonsuntirungsri, T.; Thapanasuta, M.; Wanlapakorn, C.; Udayachalerm, W.; Ariyachaipanich, A. Acute Coronary Syndrome after Inactivated SARS-COV-2 Vaccine. Int. Heart J. 2022, 63, 388–392. [Google Scholar] [CrossRef]
- Özdemir, İ.H.; Özlek, B.; Özen, M.B.; Gündüz, R.; Bayturan, Ö. Type 1 Kounis Syndrome Induced by Inactivated SARS-COV-2 Vaccine. J. Emerg. Med. 2021, 61, e71–e76. [Google Scholar] [CrossRef]
- Cui, G.; Li, R.; Zhao, C.; Wang, D.W. Case Report: COVID-19 Vaccination Associated Fulminant Myocarditis. Front. Cardiovasc. Med. 2022, 8, 2280. [Google Scholar] [CrossRef]
- Samimisedeh, P.; Sehati, F.; Jafari Afshar, E. COVID-19 Associated Fulminant Myocarditis in a Fully-Vaccinated Female: A Case Report with Clinical Follow-Up. Clin. Med. Insights Case Rep. 2023, 16, 1–7. [Google Scholar] [CrossRef]
- Mittal, N.; Pawar, D.; Parmar, K.; Sly, Z.; Del Rio-Pertuz, G.; Ansari, M.M.; Nair, N. Covaxin-Induced Lymphocytic Myocarditis. Cureus 2022, 14, e26759. [Google Scholar] [CrossRef]
- Thonginnetra, S.; Tawinprai, K.; Niemsorn, K.; Promsena, P.; Tandhansakul, M.; Kasemlawan, N.; Ruangkijpaisal, N.; Banomyong, N.; Phattraprayoon, N.; Rangkakulnuwat, P.; et al. Safety after BBIBP-CorV (Sinopharm) COVID-19 Vaccine in Adolescents Aged 10–17 Years in Thailand. Vaccines 2022, 10, 1765. [Google Scholar] [CrossRef]
Patients (N) | Age | Gender M/F | Presence of Coronary Artery Disease | Symptoms | Biopsy Confirmation of Virus-Negative Myocarditis (ESC 2013 Criteria) | Vaccine Type | Dose | Time Post-Infection | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | 50 | Male | N/A | Acute onset of chest discomfort at rest | N/A | CoronaVac | 1st | 12 h | [114] |
1 | 49 | Male | Yes | Retrosternal chest pressure at rest | N/A | CoronaVac | 2nd | 18 h | [114] |
1 | 41 | Female | No | Flushing, palpitation, lip and tongue swelling, shortness of breath, and chest pain | N/A | CoronaVac | 1st | 15 min | [115] |
1 | 72 | Female | N/A | Chest pain and dyspnea Interstitial fibrosis with patchy myofibrillar loss without significant lymphocyte infiltration | no | BNT162b2 booster 6 months after 3 CoronaVac doses | Booster | 2 days | [106] |
60 | >18 | 36/24 | No | Carditis cases represented background incidence of 0.31 per 100.000 doses, absolute risk increase of 0.26 per 100,000 doses, 0.17 per 100.000 doses after 1st dose, and 0.4 per 100.000 doses after 2nd dose | N/A | CoronaVac | 1st and 2nd 39 people received 2nd dose | Screening for 14–30 days | [68] |
2 | 63, 57 | 1/1 | no/no | Fulminant myocarditis | yes/yes | Inactivated BBIBP-CorV (Vero cell) Sinovac | 1st | 1/4 days | [116] |
1 | 29 | Female | No | Fulminant myocarditis | N/A | BIBP (Sinopharm) | 2nd | 3 months | [117] |
1 | 72 | Male | N/A | Constrictive pericarditis, exertional dyspnea, heart failure Unusual fatigue, decreased appetite abdominal swelling as concurrent symptoms but no chest pain, orthopnea, or abdominal pain | N/A | Inactivated BBIBP-CorV (Vero cell) Sinovac | 3rd | 8 days | [104] |
1 | Early 20s | Male | N/A | Myocarditis, deep cramping pain Endocardial biopsy showed active lymphocytic myocarditis with infiltrates and focal myocyte injury | yes | COVAXIN | 1st | 2 months | [118] |
1 | 33 | Male | N/A | F Hyper-eosinophilia; multiorgan involvement of skin, subcutaneous tissue, and myocardium; shortness of breath exertion, even while talking | N/A | COVAXIN | 1st | 25 days | [110] |
1 | 34 | Female | N/A | Fulminant myocarditis Postmortem examination showed a bilateral pleural cavity Biopsy revealed mild atherosclerotic stenosis in left anterior descending coronary artery and right coronary artery Multi-focal inflammatory infiltration | N/A | ZF2001 RBD-subunit | 1st | 8 days | [113] |
1 | 13 | Male | N/A | Myocarditis Chest pain on day 5, lasting for 2 days | N/A | Inactivated BBIBP-CorV | 1st | 5 days | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hromić-Jahjefendić, A.; Sezer, A.; Aljabali, A.A.A.; Serrano-Aroca, Á.; Tambuwala, M.M.; Uversky, V.N.; Redwan, E.M.; Barh, D.; Lundstrom, K. COVID-19 Vaccines and Myocarditis: An Overview of Current Evidence. Biomedicines 2023, 11, 1469. https://doi.org/10.3390/biomedicines11051469
Hromić-Jahjefendić A, Sezer A, Aljabali AAA, Serrano-Aroca Á, Tambuwala MM, Uversky VN, Redwan EM, Barh D, Lundstrom K. COVID-19 Vaccines and Myocarditis: An Overview of Current Evidence. Biomedicines. 2023; 11(5):1469. https://doi.org/10.3390/biomedicines11051469
Chicago/Turabian StyleHromić-Jahjefendić, Altijana, Abas Sezer, Alaa A. A. Aljabali, Ángel Serrano-Aroca, Murtaza M. Tambuwala, Vladimir N. Uversky, Elrashdy M. Redwan, Debmalya Barh, and Kenneth Lundstrom. 2023. "COVID-19 Vaccines and Myocarditis: An Overview of Current Evidence" Biomedicines 11, no. 5: 1469. https://doi.org/10.3390/biomedicines11051469
APA StyleHromić-Jahjefendić, A., Sezer, A., Aljabali, A. A. A., Serrano-Aroca, Á., Tambuwala, M. M., Uversky, V. N., Redwan, E. M., Barh, D., & Lundstrom, K. (2023). COVID-19 Vaccines and Myocarditis: An Overview of Current Evidence. Biomedicines, 11(5), 1469. https://doi.org/10.3390/biomedicines11051469