Transcriptomic Context of RUNX3 Expression in Monocytes: A Cross-Sectional Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Correlation Analysis and Gene Ontology
3.2. Random Forest Feature Selection
3.3. Immune-Oriented DRAIMI
4. Discussion
4.1. Transcriptional Control of Monocyte Development
4.2. Cytoskeletal Structure for Monocyte Survival
4.3. Signal Transduction in Monocytes
4.4. Mitochondrial Dynamics
4.5. Particles Uptake and Trafficking
4.6. Immune Correlates
4.7. Generalization and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bain, C.C.; Mowat, A.M. Macrophages in Intestinal Homeostasis and Inflammation. Immunol. Rev. 2014, 260, 102–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, X.; Liu, W.; Chen, H.; Zuo, T.; Wu, X. Immune Cell Landscaping Reveals Distinct Immune Signatures of Inflammatory Bowel Disease. Front. Immunol. 2022, 13, 861790. [Google Scholar] [CrossRef] [PubMed]
- Na, Y.R.; Stakenborg, M.; Seok, S.H.; Matteoli, G. Macrophages in Intestinal Inflammation and Resolution: A Potential Therapeutic Target in IBD. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Adams, A.T.; Kennedy, N.A.; Hansen, R.; Ventham, N.T.; O’Leary, K.R.; Drummond, H.E.; Noble, C.L.; El-Omar, E.; Russell, R.K.; Wilson, D.C.; et al. Two-Stage Genome-Wide Methylation Profiling in Childhood-Onset Crohn’s Disease Implicates Epigenetic Alterations at the VMP1/MIR21 and HLA Loci. Inflamm. Bowel Dis. 2014, 20, 1784–1793. [Google Scholar] [CrossRef] [Green Version]
- Dybska, E.; Adams, A.T.; Duclaux-Loras, R.; Walkowiak, J.; Nowak, J.K. Waiting in the Wings: RUNX3 Reveals Hidden Depths of Immune Regulation with Potential Implications for Inflammatory Bowel Disease. Scand. J. Immunol. 2021, 93, e13025. [Google Scholar] [CrossRef]
- Nowak, J.K.; Adams, A.T.; Kalla, R.; Lindstrøm, J.C.; Vatn, S.; Bergemalm, D.; Keita, Å.V.; Gomollón, F.; Jahnsen, J.; Vatn, M.H.; et al. Characterisation of the Circulating Transcriptomic Landscape in Inflammatory Bowel Disease Provides Evidence for Dysregulation of Multiple Transcription Factors Including NFE2, SPI1, CEBPB, and IRF2. J. Crohns. Colitis 2022, 16, 1255–1268. [Google Scholar] [CrossRef]
- Desalegn, G.; Pabst, O. Inflammation Triggers Immediate Rather than Progressive Changes in Monocyte Differentiation in the Small Intestine. Nat. Commun. 2019, 10, 3229. [Google Scholar] [CrossRef] [Green Version]
- Schleier, L.; Wiendl, M.; Heidbreder, K.; Binder, M.-T.; Atreya, R.; Rath, T.; Becker, E.; Schulz-Kuhnt, A.; Stahl, A.; Schulze, L.L.; et al. Non-Classical Monocyte Homing to the Gut via A4β7 Integrin Mediates Macrophage-Dependent Intestinal Wound Healing. Gut 2020, 69, 252–263. [Google Scholar] [CrossRef]
- Menezes, A.C.; Jones, R.; Shrestha, A.; Nicholson, R.; Leckenby, A.; Azevedo, A.; Davies, S.; Baker, S.; Gilkes, A.F.; Darley, R.L.; et al. Increased Expression of RUNX3 Inhibits Normal Human Myeloid Development. Leukemia 2022, 36, 1769–1780. [Google Scholar] [CrossRef]
- Brenner, O.; Levanon, D.; Negreanu, V.; Golubkov, O.; Fainaru, O.; Woolf, E.; Groner, Y. Loss of Runx3 Function in Leukocytes Is Associated with Spontaneously Developed Colitis and Gastric Mucosal Hyperplasia. Proc. Natl. Acad. Sci. USA 2004, 101, 16016–16021. [Google Scholar] [CrossRef] [Green Version]
- Estecha, A.; Aguilera-Montilla, N.; Sánchez-Mateos, P.; Puig-Kröger, A. RUNX3 Regulates Intercellular Adhesion Molecule 3 (ICAM-3) Expression during Macrophage Differentiation and Monocyte Extravasation. PLoS ONE 2012, 7, e33313. [Google Scholar] [CrossRef] [Green Version]
- Hantisteanu, S.; Dicken, Y.; Negreanu, V.; Goldenberg, D.; Brenner, O.; Leshkowitz, D.; Lotem, J.; Levanon, D.; Groner, Y. Runx3 Prevents Spontaneous Colitis by Directing the Differentiation of Anti-Inflammatory Mononuclear Phagocytes. PLoS ONE 2020, 15, e0233044. [Google Scholar] [CrossRef] [PubMed]
- Lavin, Y.; Winter, D.; Blecher-Gonen, R.; David, E.; Keren-Shaul, H.; Merad, M.; Jung, S.; Amit, I. Tissue-Resident Macrophage Enhancer Landscapes Are Shaped by the Local Microenvironment. Cell 2014, 159, 1312–1326. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Reynolds, L.M.; Ding, J.; Hou, L.; Lohman, K.; Young, T.; Cui, W.; Huang, Z.; Grenier, C.; Wan, M.; et al. Blood Monocyte Transcriptome and Epigenome Analyses Reveal Loci Associated with Human Atherosclerosis. Nat. Commun. 2017, 8, 393. [Google Scholar] [CrossRef] [Green Version]
- Bild, D.E.; Bluemke, D.A.; Burke, G.L.; Detrano, R.; Diez Roux, A.V.; Folsom, A.R.; Greenland, P.; Jacob, D.R.; Kronmal, R.; Liu, K.; et al. Multi-Ethnic Study of Atherosclerosis: Objectives and Design. Am. J. Epidemiol. 2002, 156, 871–881. [Google Scholar] [CrossRef] [Green Version]
- Momozawa, Y.; Dmitrieva, J.; Théâtre, E.; Deffontaine, V.; Rahmouni, S.; Charloteaux, B.; Crins, F.; Docampo, E.; Elansary, M.; Gori, A.-S.; et al. IBD Risk Loci Are Enriched in Multigenic Regulatory Modules Encompassing Putative Causative Genes. Nat. Commun. 2018, 9, 2427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mysore, V.; Tahir, S.; Furuhashi, K.; Arora, J.; Rosetti, F.; Cullere, X.; Yazbeck, P.; Sekulic, M.; Lemieux, M.E.; Raychaudhuri, S.; et al. Monocytes Transition to Macrophages within the Inflamed Vasculature via Monocyte CCR2 and Endothelial TNFR2. J. Exp. Med. 2022, 219, e20210562. [Google Scholar] [CrossRef]
- Lehtonen, A.; Ahlfors, H.; Veckman, V.; Miettinen, M.; Lahesmaa, R.; Julkunen, I. Gene Expression Profiling during Differentiation of Human Monocytes to Macrophages or Dendritic Cells. J. Leukoc. Biol. 2007, 82, 710–720. [Google Scholar] [CrossRef]
- Puig-Kröger, A.; Aguilera-Montilla, N.; Martínez-Nuñez, R.; Domínguez-Soto, A.; Sánchez-Cabo, F.; Martín-Gayo, E.; Zaballos, A.; Toribio, M.L.; Groner, Y.; Ito, Y.; et al. The Novel RUNX3/P33 Isoform Is Induced upon Monocyte-Derived Dendritic Cell Maturation and Downregulates IL-8 Expression. Immunobiology 2010, 215, 812–820. [Google Scholar] [CrossRef]
- Hervouet, E.; Vallette, F.M.; Cartron, P.-F. Dnmt1/Transcription Factor Interactions: An Alternative Mechanism of DNA Methylation Inheritance. Genes Cancer 2010, 1, 434–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Qiu, Y.; Yang, J.; Bian, S.; Chen, G.; Deng, M.; Kang, H.; Huang, L. DNMT1-PPARγ Pathway in Macrophages Regulates Chronic Inflammation and Atherosclerosis Development in Mice. Sci. Rep. 2016, 6, 30053. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, N.; Yang, T.; Li, Y.; Li, J.; Huang, Q.; Wu, C.; Sun, L.; Zhou, X.; Cheng, X.; et al. DNMT1-Mediated Methylation of BEX1 Regulates Stemness and Tumorigenicity in Liver Cancer. J. Hepatol. 2021, 75, 1142–1153. [Google Scholar] [CrossRef] [PubMed]
- Guyot, R.; Vincent, S.; Bertin, J.; Samarut, J.; Ravel-Chapuis, P. The Transforming Acidic Coiled Coil (TACC1) Protein Modulates the Transcriptional Activity of the Nuclear Receptors TR and RAR. BMC Mol. Biol. 2010, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.D.; Honda, K.; Cafuir, L.; McDuffie, M.; Wotton, D. The Runx3 Distal Transcript Encodes an Additional Transcriptional Activation Domain. FEBS J. 2007, 274, 3429–3439. [Google Scholar] [CrossRef]
- Watanabe, K.; Sugai, M.; Nambu, Y.; Osato, M.; Hayashi, T.; Kawaguchi, M.; Komori, T.; Ito, Y.; Shimizu, A. Requirement for Runx Proteins in IgA Class Switching Acting Downstream of TGF-Beta 1 and Retinoic Acid Signaling. J. Immunol. 2010, 184, 2785–2792. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.-Y.; Yang, C.-X.; Lang, X.-P.; Duan, L.-J.; Wang, R.-J.; Zhou, W.; Wu, G.-S.; Li, Y.; Qian, T.; Xiao, S.; et al. Identification of a Novel RUNX1-TACC1 Fusion Transcript in Acute Myeloid Leukaemia. Br. J. Haematol. 2020, 189, e52–e56. [Google Scholar] [CrossRef] [Green Version]
- Grady, W.M.; Parkin, R.K.; Mitchell, P.S.; Lee, J.H.; Kim, Y.-H.; Tsuchiya, K.D.; Washington, M.K.; Paraskeva, C.; Willson, J.K.V.; Kaz, A.M.; et al. Epigenetic Silencing of the Intronic MicroRNA Hsa-miR-342 and Its Host Gene EVL in Colorectal Cancer. Oncogene 2008, 27, 3880–3888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbst, F.; Lang, T.J.L.; Eckert, E.S.P.; Wünsche, P.; Wurm, A.A.; Kindinger, T.; Laaber, K.; Hemmati, S.; Hotz-Wagenblatt, A.; Zavidij, O.; et al. The Balance between the Intronic MiR-342 and Its Host Gene Evl Determines Hematopoietic Cell Fate Decision. Leukemia 2021, 35, 2948–2963. [Google Scholar] [CrossRef]
- Dang, T.-M.; Wong, W.-C.; Ong, S.-M.; Li, P.; Lum, J.; Chen, J.; Poidinger, M.; Zolezzi, F.; Wong, S.-C. MicroRNA Expression Profiling of Human Blood Monocyte Subsets Highlights Functional Differences. Immunology 2015, 145, 404–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, T.D.; Vidigal, V.M.; Felipe, A.V.; DE Lima, J.M.; Neto, R.A.; Saad, S.S.; Forones, N.M. DNA Methylation as an Epigenetic Biomarker in Colorectal Cancer. Oncol. Lett. 2013, 6, 1687–1692. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, H.; Tanoue, T. The Circumferential Actomyosin Belt in Epithelial Cells Is Regulated by the Lulu2-P114RhoGEF System. Small GTPases 2012, 3, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Rosengart, M.R.; Arbabi, S.; Bauer, G.J.; Garcia, I.; Jelacic, S.; Maier, R.V. The Actin Cytoskeleton: An Essential Component for Enhanced TNFalpha Production by Adherent Monocytes. Shock 2002, 17, 109–113. [Google Scholar] [CrossRef]
- Frauenstein, A.; Ebner, S.; Hansen, F.M.; Sinha, A.; Phulphagar, K.; Swatek, K.; Hornburg, D.; Mann, M.; Meissner, F. Identification of Covalent Modifications Regulating Immune Signaling Complex Composition and Phenotype. Mol. Syst. Biol. 2021, 17, e10125. [Google Scholar] [CrossRef]
- Kim, H.S.; Ullevig, S.L.; Zamora, D.; Lee, C.F.; Asmis, R. Redox Regulation of MAPK Phosphatase 1 Controls Monocyte Migration and Macrophage Recruitment. Proc. Natl. Acad. Sci. USA 2012, 109, E2803–E2812. [Google Scholar] [CrossRef] [Green Version]
- Gan, H.; Hao, Q.; Idell, S.; Tang, H. Interferon-γ Promotes Double-Stranded RNA-Induced TLR3-Dependent Apoptosis via Upregulation of Transcription Factor Runx3 in Airway Epithelial Cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 311, L1101–L1112. [Google Scholar] [CrossRef]
- Qiao, C.-X.; Xu, S.; Wang, D.-D.; Gao, S.-Y.; Zhao, S.-F.; Zhang, M.-L.; Yu, B.; Yin, Q.; Zhao, G. MicroRNA-19b Alleviates Lipopolysaccharide-Induced Inflammatory Injury in Human Intestinal Cells by up-Regulation of Runx3. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 5284–5294. [Google Scholar] [CrossRef]
- Caroleo, M.C.; Costa, N.; Bracci-Laudiero, L.; Aloe, L. Human Monocyte/Macrophages Activate by Exposure to LPS Overexpress NGF and NGF Receptors. J. Neuroimmunol. 2001, 113, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.S.; Killebrew, D.A.; Clary, G.P.; Seawell, J.A.; Meeker, R.B. Differential Regulation of Macrophage Phenotype by Mature and Pro-Nerve Growth Factor. J. Neuroimmunol. 2015, 285, 76–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rost, B.; Hanf, G.; Ohnemus, U.; Otto-Knapp, R.; Groneberg, D.A.; Kunkel, G.; Noga, O. Monocytes of Allergics and Non-Allergics Produce, Store and Release the Neurotrophins NGF, BDNF and NT-3. Regul. Pept. 2005, 124, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Kaebisch, A.; Brokt, S.; Seay, U.; Lohmeyer, J.; Jaeger, U.; Pralle, H. Expression of the Nerve Growth Factor Receptor C-TRK in Human Myeloid Leukaemia Cells. Br. J. Haematol. 1996, 95, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Senzaki, K.; Yoshikawa, M.; Nishimura, M.; Inoue, K.-I.; Ito, Y.; Ozaki, S.; Shiga, T. Dynamic Regulation of the Expression of Neurotrophin Receptors by Runx3. Development 2008, 135, 1703–1711. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, H.; Kim, K.; Lee, H.; Lee, S.; Lee, D. Arhgap17, a RhoGTPase Activating Protein, Regulates Mucosal and Epithelial Barrier Function in the Mouse Colon. Sci. Rep. 2016, 6, 26923. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.; Deng, Y.; Fu, J.; Zhang, Y.; Zhang, Z.; Ru, X.; Qin, X. Tumor Suppressive Role of ARHGAP17 in Colon Cancer through Wnt/β-Catenin Signaling. Cell Physiol. Biochem. 2018, 46, 2138–2148. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Dai, M.; Zhang, C.; Teng, K.; Wang, F.; Li, H.; Sun, W.; Feng, Z.; Kang, T.; Guan, X.; et al. KIF2C: A Novel Link between Wnt/β-Catenin and MTORC1 Signaling in the Pathogenesis of Hepatocellular Carcinoma. Protein. Cell 2021, 12, 788–809. [Google Scholar] [CrossRef] [PubMed]
- Singla, R.D.; Wang, J.; Singla, D.K. Regulation of Notch 1 Signaling in THP-1 Cells Enhances M2 Macrophage Differentiation. Am. J. Physiol.-Heart Circ. Physiol. 2014, 307, H1634–H1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giambra, V.; Jenkins, C.R.; Wang, H.; Lam, S.H.; Shevchuk, O.O.; Nemirovsky, O.; Wai, C.; Gusscott, S.; Chiang, M.Y.; Aster, J.C.; et al. NOTCH1 Promotes T Cell Leukemia-Initiating Activity by RUNX-Mediated Regulation of PKC-θ and Reactive Oxygen Species. Nat. Med. 2012, 18, 1693–1698. [Google Scholar] [CrossRef] [PubMed]
- Prossomariti, A.; Piazzi, G.; Alquati, C.; Ricciardiello, L. Are Wnt/β-Catenin and PI3K/AKT/MTORC1 Distinct Pathways in Colorectal Cancer? Cell Mol. Gastroenterol. Hepatol. 2020, 10, 491–506. [Google Scholar] [CrossRef]
- Westerman, K.; Sebastiani, P.; Jacques, P.; Liu, S.; DeMeo, D.; Ordovás, J.M. DNA Methylation Modules Associate with Incident Cardiovascular Disease and Cumulative Risk Factor Exposure. Clin. Epigenetics 2019, 11, 142. [Google Scholar] [CrossRef] [Green Version]
- Bocanegra, V.; Gil Lorenzo, A.F.; Cacciamani, V.; Benardón, M.E.; Costantino, V.V.; Vallés, P.G. RhoA and MAPK Signal Transduction Pathways Regulate NHE1-Dependent Proximal Tubule Cell Apoptosis after Mechanical Stretch. Am. J. Physiol. Renal. Physiol. 2014, 307, F881–F889. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zou, J.; Li, B.; Wang, Y.; Wang, D.; Hao, Y.; Ke, X.; Li, X. RUNX3 Modulates Hypoxia-Induced Endothelial-to-Mesenchymal Transition of Human Cardiac Microvascular Endothelial Cells. Int. J. Mol. Med. 2017, 40, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Tang, X.; Ke, H.; Zhou, Q.; Zhou, Z.; Tang, S.; Ke, R. Gene Regulation Network of Prognostic Biomarker YAP1 in Human Cancers: An Integrated Bioinformatics Study. Pathol. Oncol. Res. 2021, 27, 1609768. [Google Scholar] [CrossRef]
- Nagahama, Y.; Ishimaru, M.; Osaki, M.; Inoue, T.; Maeda, A.; Nakada, C.; Moriyama, M.; Sato, K.; Oshimura, M.; Ito, H. Apoptotic Pathway Induced by Transduction of RUNX3 in the Human Gastric Carcinoma Cell Line MKN-1. Cancer Sci. 2008, 99, 23–30. [Google Scholar] [CrossRef]
- Jang, J.-W.; Kim, M.-K.; Lee, Y.-S.; Lee, J.-W.; Kim, D.-M.; Song, S.-H.; Lee, J.-Y.; Choi, B.-Y.; Min, B.; Chi, X.-Z.; et al. RAC-LATS1/2 Signaling Regulates YAP Activity by Switching between the YAP-Binding Partners TEAD4 and RUNX3. Oncogene 2017, 36, 999–1011. [Google Scholar] [CrossRef]
- Zhao, F.; Qi, Y.; Liu, J.; Wang, W.; Xie, W.; Sun, J.; Liu, J.; Hao, Y.; Wang, M.; Li, Y.; et al. Low Very Low-Density Lipoprotein Cholesterol but High Very Low-Density Lipoprotein Receptor mRNA Expression in Peripheral White Blood Cells: An Atherogenic Phenotype for Atherosclerosis in a Community-Based Population. EBioMedicine 2017, 25, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Zhao, G.; Zhong, M.; Yue, Y.; Wu, L.; Xiong, S. RNA Sequencing and Transcriptomal Analysis of Human Monocyte to Macrophage Differentiation. Gene 2013, 519, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Ruiz, I.; Puchalska, P.; Narasimhulu, C.A.; Sengupta, B.; Parthasarathy, S. Differential Lipid Metabolism in Monocytes and Macrophages: Influence of Cholesterol Loading. J. Lipid Res. 2016, 57, 574–586. [Google Scholar] [CrossRef] [Green Version]
- Jackson, W.D.; Weinrich, T.W.; Woollard, K.J. Very-Low and Low-Density Lipoproteins Induce Neutral Lipid Accumulation and Impair Migration in Monocyte Subsets. Sci. Rep. 2016, 6, 20038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, E.A.; Gore, S.D.; Hooker, C.; McDevitt, M.A.; Karp, J.E.; Smith, B.D.; Mohammad, H.P.; Ye, Y.; Herman, J.G.; Carraway, H.E. Acute Myeloid Leukemia Is Characterized by Wnt Pathway Inhibitor Promoter Hypermethylation. Leuk Lymphoma 2010, 51, 1711–1719. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Lim, A.C.-B.; Salto-Tellez, M.; Motoda, L.; Osato, M.; Chuang, L.S.H.; Lee, C.W.L.; Voon, D.C.-C.; Koo, J.K.W.; Wang, H.; et al. RUNX3 Attenuates Beta-Catenin/T Cell Factors in Intestinal Tumorigenesis. Cancer Cell 2008, 14, 226–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braggio, D.; Zewdu, A.; Londhe, P.; Yu, P.; Lopez, G.; Batte, K.; Koller, D.; Costas Casal de Faria, F.; Casadei, L.; Strohecker, A.M.; et al. β-Catenin S45F Mutation Results in Apoptotic Resistance. Oncogene 2020, 39, 5589–5600. [Google Scholar] [CrossRef]
- Nowak, J.; Dybska, E.; Adams, A.; Walkowiak, J. Immune Cell-Specific Smoking-Related Expression Characteristics Are Revealed by Re-Analysis of Transcriptomes from the CEDAR Cohort. Cent. Eur. J. Immunol. 2022, 47, 246–259. [Google Scholar] [CrossRef] [PubMed]
Gene | rmean | rMESA | pFDR-MESA | rCEDAR | pFDR-CEDAR | Gene Name |
---|---|---|---|---|---|---|
Positive correlates of RUNX3 | ||||||
EVL | 0.75 | 0.65 | 5.37 × 10−140 | 0.86 | 5.52 × 10−80 | Enah/Vasp-Like |
ARHGAP17 | 0.74 | 0.69 | 1.13 × 10−169 | 0.79 | 9.20 × 10−59 | Rho GTPase-Activating Protein 17 |
DNMT1 | 0.74 | 0.69 | 1.10 × 10−169 | 0.79 | 1.67 × 10−58 | DNA Methyltransferase 1 |
RAPGEF1 | 0.73 | 0.69 | 1.66 × 10−168 | 0.76 | 2.09 × 10−51 | Rap Guanine Nucleotide Exchange Factor 1 |
CLEC16A | 0.72 | 0.67 | 3.51 × 10−154 | 0.78 | 2.27 × 10−55 | C-Type Lectin Domain Containing 16A |
ARHGEF18 | 0.72 | 0.67 | 6.61 × 10−152 | 0.77 | 1.14 × 10−53 | Rho/Rac Guanine Nucleotide Exchange Factor 18 |
SIPA1 | 0.71 | 0.64 | 9.91 × 10−137 | 0.79 | 1.08 × 10−57 | Signal-Induced Proliferation-Associated 1 |
GLG1 | 0.71 | 0.65 | 4.24 × 10−143 | 0.77 | 2.45 × 10−53 | Golgi Glycoprotein 1 |
HNRNPUL2 | 0.71 | 0.68 | 7.38 × 10−161 | 0.74 | 1.31 × 10−47 | Heterogeneous Nuclear Ribonucleoprotein U Like 2 |
FNBP1 | 0.71 | 0.66 | 1.21 × 10−146 | 0.76 | 1.56 × 10−51 | Formin-Binding Protein 1 |
Negative correlates of RUNX3 (most significant at the bottom) | ||||||
C11ORF54 | −0.50 | −0.47 | 2.07 × 10−67 | −0.53 | 1.18 × 10−20 | Chromosome 11 Open Reading Frame 54 |
LOC100132510 | −0.50 | −0.43 | 2.56 × 10−55 | −0.57 | 1.22 × 10−24 | - |
HNMT | −0.51 | −0.44 | 3.96 × 10−58 | −0.58 | 4.75 × 10−25 | Histamine N-Methyltransferase |
PRKAG1 | −0.52 | −0.51 | 1.81 × 10−79 | −0.54 | 2.16 × 10−21 | Protein Kinase AMP-Activated Non-Catalytic Subunit Gamma 1 |
TMEM120A | −0.54 | −0.43 | 1.97 × 10−54 | −0.64 | 2.94 × 10−32 | Transmembrane Protein 120A |
CHCHD1 | −0.54 | −0.55 | 1.36 × 10−93 | −0.53 | 1.72 × 10−20 | Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 1 |
ELMOD2 | −0.54 | −0.53 | 8.30 × 10−86 | −0.56 | 6.61 × 10−23 | ELMO Domain Containing 2 |
LOC100129118 | −0.55 | −0.56 | 2.50 × 10−97 | −0.54 | 4.80 × 10−21 | - |
TBC1D7 | −0.55 | −0.48 | 1.36 × 10−69 | −0.62 | 7.81 × 10−30 | TBC1 Domain Family Member 7 |
C2ORF76 | −0.57 | −0.55 | 8.70 × 10−94 | −0.58 | 1.31 × 10−25 | Chromosome 2 Open Reading Frame 76 |
Ontology Term | FDR q-Value |
---|---|
Transcripts positively correlated with RUNX3 | |
mRNA metabolic process | 7.94 × 10−9 |
Regulation of mRNA metabolic process | 5.87 × 10−6 |
Small GTPase-mediated signal transduction | 5.87 × 10−6 |
Cytoskeleton organization | 1.42 × 10−5 |
Chromosome organization | 2.62 × 10−5 |
Histone modification | 3.19 × 10−5 |
Positive regulation of nucleobase containing compound metabolic process | 9.20 × 10−5 |
Positive regulation of RNA metabolic process | 9.20 × 10−5 |
Establishment of RNA localization | 9.20 × 10−5 |
Chromatin organization | 1.07 × 10−4 |
Transcripts negatively correlated with RUNX3 | |
Protein insertion into mitochondrial inner membrane | 6.40 × 10−3 |
Mitochondrial transport | 6.40 × 10−3 |
Intracellular transport | 4.13 × 10−2 |
Establishment of protein localization to mitochondrial membrane | 4.13 × 10−2 |
MESA | CEDAR | ||
---|---|---|---|
Gene | Importance | Gene | Importance |
SLC9A1 | 100.00 | RIOK1 | 100.00 |
C14ORF43 | 98.28 | ADAR | 96.82 |
FAM193A | 96.45 | CNIH4 | 94.51 |
BICD2 | 93.41 | FRMD8 | 93.03 |
CCDC88A | 90.24 | SLC35C2 | 89.46 |
ASAP1 | 88.84 | LARP4B | 88.81 |
ARHGAP17 | 83.68 | BOP1 | 85.59 |
ARHGEF18 | 82.81 | C14orf142 | 83.66 |
FGR | 81.21 | MID2 | 81.05 |
TNK2 | 80.50 | ADD3 | 79.50 |
SFRS2IP | 79.80 | RBL2 | 78.56 |
LOC100130914 | 76.74 | SAFB2 | 78.30 |
SCAPER | 75.22 | CHD1L | 76.89 |
MYPOP | 72.76 | DIAPH2 | 76.86 |
PRKCD | 70.49 | IFT122 | 73.77 |
CEP110 | 69.97 | NARG2 | 72.48 |
PRR13 | 69.31 | ARHGEF18 | 72.42 |
TNFRSF1B | 69.29 | PRKCH | 71.86 |
RHBDF2 | 68.89 | LAMP1 | 69.39 |
ZDHHC8 | 68.23 | CCDC130 | 69.07 |
Gene | Importance in MESA | Importance in CEDAR |
---|---|---|
ARHGEF18 | 82.81 | 72.42 |
SLC9A1 | 100.00 | 42.47 |
ARHGAP17 | 83.68 | 50.20 |
TACC1 | 40.01 | 59.56 |
Gene | MESA | CEDAR | Mean | Gene Name |
---|---|---|---|---|
NGF | 0.24 | 0.23 | 0.23 | Nerve Growth Factor |
CBL | 0.27 | 0.12 | 0.20 | Cbl Proto-Oncogene |
RAP1B | 0.28 | 0.10 | 0.19 | RAP1B, Member Of RAS Oncogene Family |
VLDLR | 0.29 | 0.06 | 0.17 | Very Low Density Lipoprotein Receptor |
MET | 0.17 | 0.11 | 0.14 | MET Proto-Oncogene, Receptor Tyrosine Kinase |
FRS2 | 0.15 | 0.12 | 0.13 | Fibroblast Growth Factor Receptor Substrate 2 |
RAP1A | 0.17 | 0.08 | 0.12 | RAP1A, Member Of RAS Oncogene Family |
HLA-E | 0.05 | 0.19 | 0.12 | Major Histocompatibility Complex, Class I, E |
PTPN11 | 0.14 | 0.09 | 0.12 | Protein Tyrosine Phosphatase Non-Receptor Type 11 |
PSMD1 | 0.17 | 0.05 | 0.11 | Proteasome 26S Subunit, Non-ATPase 1 |
VAMP8 | 0.17 | 0.04 | 0.11 | Vesicle Associated Membrane Protein 8 |
RHOA | 0.07 | 0.14 | 0.10 | Ras Homolog Family Member A |
LCK | 0.12 | 0.08 | 0.10 | LCK Proto-Oncogene, Src Family Tyrosine Kinase |
FYN | 0.11 | 0.08 | 0.10 | FYN Proto-Oncogene, Src Family Tyrosine Kinase |
GAB1 | 0.14 | 0.05 | 0.09 | GRB2 Associated Binding Protein 1 |
PSMB8 | 0.06 | 0.13 | 0.09 | Proteasome 20S Subunit Beta 8 |
ACTG1 | 0.04 | 0.15 | 0.09 | Actin Gamma 1 |
BRAF | 0.13 | 0.04 | 0.09 | B-Raf Proto-Oncogene, Serine/Threonine Kinase |
KPNB1 | 0.12 | 0.05 | 0.09 | Karyopherin Subunit Beta 1 |
YES1 | 0.11 | 0.06 | 0.08 | YES Proto-Oncogene 1, Src Family Tyrosine Kinase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dybska, E.; Nowak, J.K.; Walkowiak, J. Transcriptomic Context of RUNX3 Expression in Monocytes: A Cross-Sectional Analysis. Biomedicines 2023, 11, 1698. https://doi.org/10.3390/biomedicines11061698
Dybska E, Nowak JK, Walkowiak J. Transcriptomic Context of RUNX3 Expression in Monocytes: A Cross-Sectional Analysis. Biomedicines. 2023; 11(6):1698. https://doi.org/10.3390/biomedicines11061698
Chicago/Turabian StyleDybska, Emilia, Jan Krzysztof Nowak, and Jarosław Walkowiak. 2023. "Transcriptomic Context of RUNX3 Expression in Monocytes: A Cross-Sectional Analysis" Biomedicines 11, no. 6: 1698. https://doi.org/10.3390/biomedicines11061698
APA StyleDybska, E., Nowak, J. K., & Walkowiak, J. (2023). Transcriptomic Context of RUNX3 Expression in Monocytes: A Cross-Sectional Analysis. Biomedicines, 11(6), 1698. https://doi.org/10.3390/biomedicines11061698