Carrier-Free Inhalable Dry Microparticles of Celecoxib: Use of the Electrospraying Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of DPI Powders by Electrospraying
2.2. Scanning Electron Microscopy (SEM)
2.3. Fourier-Transform Infrared Spectroscopy (FTIR)
2.4. Differential Scanning Calorimetry (DSC)
2.5. In Vitro Aerosolization Assessment
2.6. In Vitro Dissolution Studies
3. Results
3.1. Preparation of Dry Powder Formulations by Electrospraying
3.2. Particle Size and Morphology
3.3. Solid State Characterizations
3.4. In Vitro Deposition Studies
3.5. In Vitro Dissolution Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hao, J.-Q.; Li, Q.; Xu, S.-P.; Shen, Y.-X.; Sun, G.-Y. Effect of lumiracoxib on proliferation and apoptosis of human nonsmall cell lung cancer cells in vitro. Chin. Med. J. 2008, 121, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.T.; Roth, M.D.; Fishbein, M.C.; Aberle, D.R.; Zhang, Z.-F.; Rao, J.Y.; Tashkin, D.P.; Goodglick, L.; Holmes, E.C.; Cameron, R.B. Lung cancer chemoprevention with celecoxib in former smokers. Cancer Prev. Res. 2011, 4, 984–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaznavi, H.; Mohammadghasemipour, Z.; Shirvaliloo, M.; Momeni, M.K.; Metanat, M.; Gorgani, F.; Abedipour, F.; Mohammadi, M.; Sartipi, M.; Khorashad, A.R.S. Short-term celecoxib (celebrex) adjuvant therapy: A clinical trial study on COVID-19 patients. Inflammopharmacology 2022, 30, 1645–1657. [Google Scholar] [CrossRef] [PubMed]
- Baghaki, S.; Yalcin, C.E.; Baghaki, H.S.; Aydin, S.Y.; Daghan, B.; Yavuz, E. COX2 inhibition in the treatment of COVID-19: Review of literature to propose repositioning of celecoxib for randomized controlled studies. Int. J. Infect. Dis. 2020, 101, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Villa-Hermosilla, M.-C.; Negro, S.; Barcia, E.; Hurtado, C.; Montejo, C.; Alonso, M.; Fernandez-Carballido, A. Celecoxib Microparticles for Inhalation in COVID-19-Related Acute Respiratory Distress Syndrome. Pharmaceutics 2022, 14, 1392. [Google Scholar] [CrossRef] [PubMed]
- Tomera, K.; Malone, R.; Kittah, J. Hospitalized COVID-19 Patients Treated with Celecoxib and High Dose Famotidine Adjuvant Therapy Show Significant Clinical Responses; Social Science Research Network: Rochester, NY, USA, 2020. [Google Scholar]
- Paul, D.; Miller, M.H.; Born, J.; Samaddar, S.; Ni, H.; Avila, H.; Krishnamurthy, V.R.; Thirunavukkarasu, K. The Promising Therapeutic Potential of Oligonucleotides for Pulmonary Fibrotic Diseases. Expert Opin. Drug Discov. 2023, 18, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Chow, A.H.L.; Tong, H.H.Y.; Chattopadhyay, P.; Shekunov, B.Y. Particle Engineering for Pulmonary Drug Delivery. Pharm. Res. 2007, 24, 411–437. [Google Scholar] [CrossRef]
- Shetty, N.; Cipolla, D.; Park, H.; Zhou, Q.T. Physical stability of dry powder inhaler formulations. Expert Opin. Drug Deliv. 2020, 17, 77–96. [Google Scholar] [CrossRef] [Green Version]
- Yaqoubi, S.; Adibkia, K.; Nokhodchi, A.; Emami, S.; Alizadeh, A.A.; Hamishehkar, H.; Barzegar-Jalali, M. Co-electrospraying technology as a novel approach for dry powder inhalation formulation of montelukast and budesonide for pulmonary co-delivery. Int. J. Pharm. 2020, 591, 119970. [Google Scholar] [CrossRef]
- Lin, Y.-W.; Wong, J.; Qu, L.; Chan, H.-K.; Zhou, Q. Powder Production and Particle Engineering for Dry Powder Inhaler Formulations. Curr. Pharm. Des. 2015, 21, 3902–3916. [Google Scholar] [CrossRef] [Green Version]
- Vehring, R. Pharmaceutical Particle Engineering via Spray Drying. Pharm. Res. 2008, 25, 999–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.-Y.; Zhang, X.-C.; Zhou, F.-Z.; Zhang, X.-Z.; Cheng, S.-X.; Zhuo, R.-X. Sustained release of antineoplastic drugs from chitosan-reinforced alginate microparticle drug delivery systems. Int. J. Pharm. 2008, 357, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, D.T.; Brannon-Peppas, L. Microparticle Drug Delivery Systems. In Drug Delivery Systems in Cancer Therapy; Brown, D.M., Ed.; Humana Press: Totowa, NJ, USA, 2004; pp. 117–135. [Google Scholar]
- Dogan Ergin, A.; Bayindir, Z.S.; Ozcelikay, A.T.; Yuksel, N. A novel delivery system for enhancing bioavailability of S-adenosyl-l-methionine: Pectin nanoparticles-in-microparticles and their in vitro—In vivo evaluation. Int. J. Drug Deliv. Sci. Technol. 2021, 61, 102096. [Google Scholar] [CrossRef]
- Patil, S.; Mahadik, A.; Nalawade, P.; More, P. Crystal engineering of lactose using electrospray technology: Carrier for pulmonary drug delivery. Drug Dev. Ind. Pharm. 2017, 43, 2085–2091. [Google Scholar] [CrossRef]
- Brunaugh, A.; Smyth, H.D.C. Process optimization and particle engineering of micronized drug powders via milling. Drug Deliv. Transl. Res. 2018, 8, 1740–1750. [Google Scholar] [CrossRef]
- Tabernero, A.; Martín del Valle, E.M.; Galán, M.A. Supercritical fluids for pharmaceutical particle engineering: Methods, basic fundamentals and modelling. Chem. Eng. Process. Process Intensif. 2012, 60, 9–25. [Google Scholar] [CrossRef]
- Kaialy, W.; Larhrib, H.; Martin, G.P.; Nokhodchi, A. The Effect of Engineered Mannitol-Lactose Mixture on Dry Powder Inhaler Performance. Pharm. Res. 2012, 29, 2139–2156. [Google Scholar] [CrossRef]
- Zamani, M.; Prabhakaran, M.P.; Ramakrishna, S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int. J. Nanomed. 2013, 2997–3017. [Google Scholar]
- Jaworek, A.; Sobczyk, A.T. Electrospraying route to nanotechnology: An overview. Int. J. Electrost. 2008, 66, 197–219. [Google Scholar] [CrossRef]
- Jayaprakash, P.; Maudhuit, A.; Gaiani, C.; Desobry, S. Encapsulation of bioactive compounds using competitive emerging techniques: Electrospraying, nano spray drying, and electrostatic spray drying. Int. J. Food Eng. 2023, 339, 111260. [Google Scholar] [CrossRef]
- Niu, B.; Shao, P.; Luo, Y.; Sun, P. Recent advances of electrosprayed particles as encapsulation systems of bioactives for food application. Food Hydrocoll. 2020, 99, 105376. [Google Scholar] [CrossRef]
- Wang, P.; Ding, M.; Zhang, T.; Wu, T.; Qiao, R.; Zhang, F.; Wang, X.; Zhong, J. Electrospraying technique and its recent application advances for biological macromolecule encapsulation of food bioactive substances. Food Rev. Int. 2022, 38, 566–588. [Google Scholar] [CrossRef]
- Liu, H.; Du, K.; Li, D.; Du, Y.; Xi, J.; Xu, Y.; Shen, Y.; Jiang, T.; Webster, T.J. A high bioavailability and sustained-release nano-delivery system for nintedanib based on electrospray technology. Int. J. Nanomed. 2018, 13, 8379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laube, B.L.; Jashnani, R.; Dalby, R.N.; Zeitlin, P.L. Targeting aerosol deposition in patients with cystic fibrosis: Effects of alterations in particle size and inspiratory flow rate. Chest 2000, 118, 1069–1076. [Google Scholar] [CrossRef]
- Usmani, O.S.; Biddiscombe, M.F.; Barnes, P.J. Regional lung deposition and bronchodilator response as a function of β2-agonist particle size. Am. Int. J. Respir. Crit. Care Med. 2005, 172, 1497–1504. [Google Scholar] [CrossRef]
- Nikolaou, M.; Krasia-Christoforou, T. Electrohydrodynamic methods for the development of pulmonary drug delivery systems. Eur. Int. J. Pharm. Sci. 2018, 113, 29–40. [Google Scholar] [CrossRef]
- Arauzo, B.; Lobera, M.P.; Monzon, A.; Santamaria, J. Dry powder formulation for pulmonary infections: Ciprofloxacin loaded in chitosan sub-micron particles generated by electrospray. Carbohydr. Polym. 2021, 273, 118543. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, C.; Yue, X.; Li, X.; Zhou, P.; Wu, A.; Chen, C.; Qu, Y.; Zhang, C. Application advance of electrosprayed micro/nanoparticles based on natural or synthetic polymers for drug delivery system. Mater. Des. 2022, 220, 110850. [Google Scholar] [CrossRef]
- Boda, S.K.; Li, X.; Xie, J. Electrospraying an enabling technology for pharmaceutical and biomedical applications: A review. Int. J. Aerosol Sci. 2018, 125, 164–181. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Zhang, D.; Wu, X.; Zhao, Y.; Shang, L.; Ren, J.; Zhao, Y. Natural polysaccharide based complex drug delivery system from microfluidic electrospray for wound healing. Appl. Mater. Today 2021, 23, 101000. [Google Scholar] [CrossRef]
- Ghafari, R.; Jahangiri, A.; Shayanfar, A.; Emami, S. Solid-state characterization of ibuprofen-isonicotinamide cocrystals prepared by electrospraying and solvent evaporation. Ther. Deliv. 2023, 14, 121–138. [Google Scholar] [CrossRef] [PubMed]
- Rasenack, N.; Steckel, H.; Müller, B.W. Micronization of Anti-Inflammatory Drugs for Pulmonary Delivery by a Controlled Crystallization Process. Int. J. Pharm. Sci. 2003, 92, 35–44. [Google Scholar] [CrossRef]
- Sverdlov Arzi, R.; Sosnik, A. Electrohydrodynamic atomization and spray-drying for the production of pure drug nanocrystals and co-crystals. Adv. Drug Deliv. Rev. 2018, 131, 79–100. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Clasen, C.; Van den Mooter, G. Pharmaceutical applications of electrospraying. Int. J. Pharm. Sci. 2016, 105, 2601–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radacsi, N.; Stankiewicz, A.I.; Creyghton, Y.L.M.; van der Heijden, A.E.D.M.; ter Horst, J.H. Electrospray Crystallization for High-Quality Submicron-Sized Crystals. Chem. Eng. Technol. 2011, 34, 624–630. [Google Scholar] [CrossRef]
- Ijsebaert, J.C.; Geerse, K.B.; Marijnissen, J.C.M.; Lammers, J.-W.J.; Zanen, P. Electro-hydrodynamic atomization of drug solutions for inhalation purposes. Int. J. Appl. Physiol. 2001, 91, 2735–2741. [Google Scholar] [CrossRef]
- Hassan, M.S.; Lau, R.W.M. Effect of Particle Shape on Dry Particle Inhalation: Study of Flowability, Aerosolization, and Deposition Properties. AAPS PharmSciTech 2009, 10, 1252. [Google Scholar] [CrossRef] [Green Version]
- Nagarsenker, M.S.; Joshi, M.S. Celecoxib-cyclodextrin systems: Characterization and evaluation of in vitro and in vivo advantage. Drug Dev. Ind. Pharm. 2005, 31, 169–178. [Google Scholar] [CrossRef]
- Chawla, G.; Gupta, P.; Thilagavathi, R.; Chakraborti, A.K.; Bansal, A.K. Characterization of solid-state forms of celecoxib. Eur. Int. J. Pharm. Sci. 2003, 20, 305–317. [Google Scholar] [CrossRef]
- Primo, F.T.; Fröhlich, P.E. Celecoxib identification methods. Acta Farm. Bonaer. 2005, 24, 421. [Google Scholar]
- Nokhodchi, A.; Chavan, S.; Ghafourian, T. In Vitro Dissolution and Permeability Testing of Inhalation Products: Challenges and Advances. Pharmaceutics 2023, 15, 983. [Google Scholar] [CrossRef] [PubMed]
- Franek, F.; Fransson, R.; Thörn, H.; Bäckman, P.; Andersson, P.U.; Tehler, U. Ranking in Vitro Dissolution of Inhaled Micronized Drug Powders including a Candidate Drug with Two Different Particle Sizes. Mol. Pharm. 2018, 15, 5319–5326. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, M.; Laskowski, J.S.; Melo, F. Effect of Coal Surface Wettability on Aggregation of Fine Coal Particles. Coal Prep. 2004, 24, 233–248. [Google Scholar] [CrossRef]
- Patlolla, R.R.; Chougule, M.; Patel, A.R.; Jackson, T.; Tata, P.N.V.; Singh, M. Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. Int. J. Control. Release 2010, 144, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Dhanda, D.S.; Tyagi, P.; Mirvish, S.S.; Kompella, U.B. Supercritical fluid technology based large porous celecoxib–PLGA microparticles do not induce pulmonary fibrosis and sustain drug delivery and efficacy for several weeks following a single dose. Int. J. Control. Release 2013, 168, 239–250. [Google Scholar] [CrossRef]
- Said-Elbahr, R.; Nasr, M.; Alhnan, M.A.; Taha, I.; Sammour, O. Simultaneous pulmonary administration of celecoxib and naringin using a nebulization-friendly nanoemulsion: A device-targeted delivery for treatment of lung cancer. Expert Opin. Drug Deliv. 2022, 19, 611–622. [Google Scholar] [CrossRef]
- Pifferi, G.; Restani, P. The safety of pharmaceutical excipients. Il Farm. 2003, 58, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Lechanteur, A.; Evrard, B. Influence of Composition and Spray-Drying Process Parameters on Carrier-Free DPI Properties and Behaviors in the Lung: A review. Pharmaceutics 2020, 12, 55. [Google Scholar] [CrossRef] [Green Version]
- La Zara, D.; Sun, F.; Zhang, F.; Franek, F.; Balogh Sivars, K.; Horndahl, J.; Bates, S.; Brännström, M.; Ewing, P.; Quayle, M.J.; et al. Controlled Pulmonary Delivery of Carrier-Free Budesonide Dry Powder by Atomic Layer Deposition. ACS Nano 2021, 15, 6684–6698. [Google Scholar] [CrossRef]
- Vishali, D.A.; Monisha, J.; Sivakamasundari, S.K.; Moses, J.A.; Anandharamakrishnan, C. Spray freeze drying: Emerging applications in drug delivery. Int. J. Control. Release 2019, 300, 93–101. [Google Scholar] [CrossRef]
- Okamoto, H.; Nishida, S.; Todo, H.; Sakakura, Y.; Iida, K.; Danjo, K. Pulmonary gene delivery by chitosan–pDNA complex powder prepared by a supercritical carbon dioxide process. Int. J. Pharm. Sci. 2003, 92, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Chan, A.Y.L.; Chow, M.Y.T.; Lo, F.F.K.; Qiu, Y.; Kwok, P.C.L.; Lam, J.K.W. Spray freeze drying of small nucleic acids as inhaled powder for pulmonary delivery. Asian Int. J. Pharm. Sci. 2018, 13, 163–172. [Google Scholar] [CrossRef]
- Brunaugh, A.D.; Jan, S.U.; Ferrati, S.; Smyth, H.D.C. Excipient-Free Pulmonary Delivery and Macrophage Targeting of Clofazimine via Air Jet Micronization. Mol. Pharm. 2017, 14, 4019–4031. [Google Scholar] [CrossRef] [PubMed]
- Filková, I.; Mujumdar, A.S. Industrial spray drying systems. In Handbook of Industrial Drying; CRC Press: Boca Raton, FL, USA, 2020; pp. 263–307. [Google Scholar]
- De Jesus, S.; Maciel Filho, R. Drying of α-amylase by spray drying and freeze-drying-a comparative study. Braz. Int. J. Chem. Eng. 2014, 31, 625–631. [Google Scholar] [CrossRef]
- Broadhead, J.; Edmond Rouan, S.; Rhodes, C. The spray drying of pharmaceuticals. Drug Dev. Ind. Pharm. 1992, 18, 1169–1206. [Google Scholar] [CrossRef]
- Tanhaei, A.; Mohammadi, M.; Hamishehkar, H.; Hamblin, M.R. Electrospraying as a novel method of particle engineering for drug delivery vehicles. Int. J. Control. Release 2021, 330, 851–865. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Li, M.; Liu, X.; Jin, Y. Drug-loaded PLGA electrospraying porous microspheres for the local therapy of primary lung cancer via pulmonary delivery. ACS Omega 2017, 2, 2273–2279. [Google Scholar] [CrossRef] [Green Version]
- Chan, H.-K. What is the role of particle morphology in pharmaceutical powder aerosols? Expert Opin. Drug Deliv. 2008, 5, 909–914. [Google Scholar] [CrossRef]
- Adi, H.; Traini, D.; Chan, H.-K.; Young, P.M. The Influence of Drug Morphology on Aerosolisation Efficiency of Dry Powder Inhaler Formulations. Int. J. Pharm. Sci. 2008, 97, 2780–2788. [Google Scholar] [CrossRef]
- Banga, S.; Chawla, G.; Varandani, D.; Mehta, B.R.; Bansal, A.K. Modification of the crystal habit of celecoxib for improved processability. Int. J. Pharm. Pharmacol. 2007, 59, 29–39. [Google Scholar] [CrossRef]
- Shukla, S.K.; Sarode, A.; Kanabar, D.D.; Muth, A.; Kunda, N.K.; Mitragotri, S.; Gupta, V. Bioinspired particle engineering for non-invasive inhaled drug delivery to the lungs. Mater. Sci. Eng. C 2021, 128, 112324. [Google Scholar] [CrossRef] [PubMed]
- Valo, H.; Peltonen, L.; Vehviläinen, S.; Karjalainen, M.; Kostiainen, R.; Laaksonen, T.; Hirvonen, J. Electrospray Encapsulation of Hydrophilic and Hydrophobic Drugs in Poly(L-lactic acid) Nanoparticles. Small 2009, 5, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Peng, Q.; Venkataraman, M.; Novotna, J.; Karpiskova, J.; Mullerova, J.; Wiener, J.; Vikova, M.; Zhu, G.; Yao, J.; et al. Hydrophobicity, water moisture transfer and breathability of PTFE-coated viscose fabrics prepared by electrospraying technology and sintering process. Prog. Org. Coat. 2022, 165, 106775. [Google Scholar] [CrossRef]
- Colombo, P.; Traini, D.; Buttini, F. Inhalation Drug Delivery: Techniques and Products; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Yaqoubi, S.; Chan, H.-K.; Nokhodchi, A.; Dastmalchi, S.; Alizadeh, A.A.; Barzegar-Jalali, M.; Adibkia, K.; Hamishehkar, H. A quantitative approach to predicting lung deposition profiles of pharmaceutical powder aerosols. Int. J. Pharm. 2021, 602, 120568. [Google Scholar] [CrossRef]
- Kaialy, W.; Momin, M.N.; Ticehurst, M.D.; Murphy, J.; Nokhodchi, A. Engineered mannitol as an alternative carrier to enhance deep lung penetration of salbutamol sulphate from dry powder inhaler. Colloids Surf. B Biointerfaces 2010, 79, 345–356. [Google Scholar] [CrossRef]
In Vitro Aerosolization Parameters | Untreated CLX | Electrosprayed CLX (3 w/v) | Electrosprayed CLX (5 w/v) |
---|---|---|---|
FPD (µg) | 236.21 ± 21.6 | 1323.76 ± 98.2 | 762.57 ± 53.1 |
FPF (%) | 4.18 ± 1.3 | 49.83 ± 12.1 | 24.43 ± 6.2 |
MMAD (µm) | 4.73 ± 1.3 | 2.83 ± 0.09 | 3.25 ± 0.2 |
GSD | NA | 1.97 ± 0.05 | 2.41 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahangiri, A.; Nokhodchi, A.; Asare-Addo, K.; Salehzadeh, E.; Emami, S.; Yaqoubi, S.; Hamishehkar, H. Carrier-Free Inhalable Dry Microparticles of Celecoxib: Use of the Electrospraying Technique. Biomedicines 2023, 11, 1747. https://doi.org/10.3390/biomedicines11061747
Jahangiri A, Nokhodchi A, Asare-Addo K, Salehzadeh E, Emami S, Yaqoubi S, Hamishehkar H. Carrier-Free Inhalable Dry Microparticles of Celecoxib: Use of the Electrospraying Technique. Biomedicines. 2023; 11(6):1747. https://doi.org/10.3390/biomedicines11061747
Chicago/Turabian StyleJahangiri, Azin, Ali Nokhodchi, Kofi Asare-Addo, Erfan Salehzadeh, Shahram Emami, Shadi Yaqoubi, and Hamed Hamishehkar. 2023. "Carrier-Free Inhalable Dry Microparticles of Celecoxib: Use of the Electrospraying Technique" Biomedicines 11, no. 6: 1747. https://doi.org/10.3390/biomedicines11061747
APA StyleJahangiri, A., Nokhodchi, A., Asare-Addo, K., Salehzadeh, E., Emami, S., Yaqoubi, S., & Hamishehkar, H. (2023). Carrier-Free Inhalable Dry Microparticles of Celecoxib: Use of the Electrospraying Technique. Biomedicines, 11(6), 1747. https://doi.org/10.3390/biomedicines11061747