Efficacy and Safety of the Use of SGLT2 Inhibitors in Patients on Incremental Hemodialysis: Maximizing Residual Renal Function, Is There a Role for SGLT2 Inhibitors?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stel, V.S.; Awadhpersad, R.; Pippias, M.; Ferrer-Alamar, M.; Finne, P.; Fraser, S.D.; Heaf, J.G.; Hemmelder, M.H.; Martínez-Castelao, A.; De Meester, J.; et al. International comparison of trends in patients commencing renal replacement therapy by primary renal disease. Nephrology 2019, 24, 1064–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansen, K.L.; Chertow, G.M.; Foley, R.N.; Gilbertson, D.T.; Herzog, C.A.; Ishani, A.; Israni, A.K.; Ku, E.; Tamura, M.K.; Li, S.; et al. US Renal Data System 2020 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2021, 77 (Suppl. S1), A7–A8. [Google Scholar] [CrossRef] [PubMed]
- Afkarian, M.; Sachs, M.C.; Kestenbaum, B.; Hirsch, I.B.; Tuttle, K.R.; Himmelfarb, J.; De Boer, I.H. Kidney Disease and Increased Mortality Risk in Type 2 Diabetes. J. Am. Soc. Nephrol. 2013, 24, 302–308. [Google Scholar] [CrossRef] [Green Version]
- Harding, J.L.; Pavkov, M.E.; Magliano, D.J.; Shaw, J.E.; Gregg, E.W. Global trends in diabetes complications: A review of current evi-dence. Diabetologia 2019, 62, 3–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Flor, J.C.; Lorenzo, J.D.; Marschall, A.; Valga, F.; Vázquez, T.M.; Cícero, E.R. Efficacy and Safety of Semaglutide, a Glucagon-Like Peptide-1 Receptor Agonist in Real-Life: A Case Series of Patients in Maintenance Incremental Hemodialysis. Case Rep. Nephrol. Dial. 2022, 12, 238–247. [Google Scholar] [CrossRef]
- De Boer, I.H.; Khunti, K.; Sadusky, T.; Tuttle, K.R.; Neumiller, J.J.; Rhee, C.M.; Bakris, G. Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 2022, 45, 3075–3090. [Google Scholar] [CrossRef]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.M.P.H.; Agarwal, R.; Bakris, G. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- The EMPA-KIDNEY Collaborative Group; Herrington, W.G.; Staplin, N.; Wanner, C.; Green, J.B.; Hauske, S.J. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef]
- Kashiwagi, A.; Maegawa, H. Metabolic and hemodynamic effects of sodium-dependent glucose cotransporter 2 inhibitors on cardio-renal protection in the treatment of patients with type 2 diabetes mellitus. J. Diabetes Investig. 2017, 8, 416–427. [Google Scholar] [CrossRef]
- Yau, K.; Dharia, A.; Alrowiyti, I.; Cherney, D.Z.I. Prescribing SGLT2 Inhibitors in Patients With CKD: Expanding Indications and Practical Considerations. Kidney Int. Rep. 2022, 7, 1463–1476. [Google Scholar] [CrossRef]
- Chertow, G.M.; Vart, P.; Jongs, N.; Toto, R.D.; Gorriz, J.L.; Hou, F.F.; McMurray, J.J.; Correa-Rotter, R.; Rossing, P.; Sjöström, C.D.; et al. Effects of Dapagliflozin in Stage 4 Chronic Kidney Disease. J. Am. Soc. Nephrol. 2021, 32, 2352–2361. [Google Scholar] [CrossRef] [PubMed]
- Borkum, M.; Jamal, A.; Singh, R.S.; Levin, A. The rationale for the need to study sodium-glucose co-transport 2 inhibitor usage in peritoneal dialysis patients. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2023, 43, 139–144. [Google Scholar] [CrossRef] [PubMed]
- AlKindi, F.; Al-Omary, H.L.; Hussain, Q.; Al Hakim, M.; Chaaban, A.; Boobes, Y. Outcomes of SGLT2 Inhibitors Use in Diabetic Renal Transplant Patients. Transplant. Proc. 2020, 52, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Shuster, S.; Al-Hadhrami, Z.; Moore, S.; Awad, S.; Shamseddin, M.K. Use of Sodium-Glucose Cotransporter-2 Inhibitors in Renal Transplant Patients with Diabetes: A Brief Review of the Current Literature. Can. J. Diabetes 2022, 46, 207–212. [Google Scholar] [CrossRef]
- Lim, J.-H.M.; Kwon, S.M.; Jeon, Y.M.; Kim, Y.H.M.; Kwon, H.M.; Kim, Y.S.M.; Lee, H.M.; Kim, Y.-L.M.; Kim, C.-D.M.; Park, S.-H.M.; et al. The Efficacy and Safety of SGLT2 Inhibitor in Diabetic Kidney Transplant Recipients. Transplantation 2022, 106, e404–e412. [Google Scholar] [CrossRef]
- National Kidney Foundation. KDOQI Clinical Practice Guideline for Hemodialysis Adequacy: 2015 update. Am. J. Kidney Dis. 2015, 66, 884–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caton, E.; Sharma, S.; Vilar, E.; Farrington, K. Impact of incremental initiation of haemodialysis on mortality: A systematic review and meta-analysis. Nephrol. Dial. Transplant. 2023, 38, 435–446. [Google Scholar] [CrossRef]
- Mathew, A.T.; Fishbane, S.; Obi, Y.; Kalantar-Zadeh, K. Preservation of residual kidney function in hemodialysis patients: Reviving an old concept. Kidney Int. 2016, 90, 262–271. [Google Scholar] [CrossRef] [Green Version]
- Deira, J.; Suárez, M.A.; López, F.; García-Cabrera, E.; Gascón, A.; Torregrosa, E.; García, G.E.; Huertas, J.; De La Flor, J.C.; Puello, S.; et al. IHDIP: A controlled randomized trial to assess the security and effectiveness of the incremental hemodialysis in incident patients. BMC Nephrol. 2019, 20, 8. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Unruh, M.; Zager, P.G.; Kovesdy, C.P.; Bargman, J.M.; Chen, J.; Sankarasubbaiyan, S.; Shah, G.; Golper, T.; Sherman, R.A.; et al. Twice-Weekly and Incremental Hemodialysis Treatment for Initiation of Kidney Replacement Therapy. Am. J. Kidney Dis. 2014, 64, 181–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakris, G.; Oshima, M.; Mahaffey, K.W.; Agarwal, R.; Cannon, C.P.; Capuano, G.; Charytan, D.M.; De Zeeuw, D.; Edwards, R.; Greene, T.; et al. Effects of Canagliflozin in Patients with Baseline eGFR <30 mL/min per 1.73 m2. Clin. J. Am. Soc. Nephrol. 2020, 15, 1705–1714. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wilcox, C.S.; Lipkowitz, M.S.; Gordon-Cappitelli, J.; Dragoi, S. Rationale and Strategies for Preserving Residual Kidney Function in Dialysis Patients. Am. J. Nephrol. 2019, 50, 411–421. [Google Scholar] [CrossRef]
- Chandna, S.M.; Farrington, K. Reviews: Residual Renal Function: Considerations on Its Importance and Preservation in Dialysis Patients. Semin. Dial. 2004, 17, 196–201. [Google Scholar] [CrossRef]
- Vilar, E.; Farrington, K. Emerging Importance of Residual Renal Function in End-Stage Renal Failure. Semin. Dial. 2011, 24, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Xydakis, D.; Papadogiannakis, A.; Sfakianaki, M.; Kostakis, K.; Stylianou, K.; Petrakis, I.; Ergini, A.; Voskarides, K.; Dafnis, E. Residual Renal Function in Hemodialysis Patients: The Role of Angiotensin-Converting Enzyme Inhibitor in Its Preservation. ISRN Nephrol. 2013, 2013, 184527. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, S.; Mehta, S.; Khwaja, A.; Cleland, J.G.; Ives, N.; Brettell, E.; Chadburn, M.; Cockwell, P. Renin–Angiotensin System Inhibition in Advanced Chronic Kidney Disease. N. Engl. J. Med. 2022, 387, 2021–2032. [Google Scholar] [CrossRef]
- Dasgupta, I.; Thomas, G.N.; Clarke, J.; Sitch, A.; Martin, J.; Bieber, B.; Hecking, M.; Karaboyas, A.; Pisoni, R.; Port, F.; et al. Associations between Hemodialysis Facility Practices to Manage Fluid Volume and Intradialytic Hypotension and Patient Outcomes. Clin. J. Am. Soc. Nephrol. 2019, 14, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Xu, J.; Zhou, S.; Xue, C.; Chen, Z.; Mao, Z. Influence of SGLT2i and RAASi and Their Combination on Risk of Hyperkalemia in DKD: A Network Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2023. [Google Scholar] [CrossRef]
- Edwards, A.; Bonny, O. A model of calcium transport and regulation in the proximal tubule. Am. J. Physiol. Physiol. 2018, 315, F942–F953. [Google Scholar] [CrossRef]
- Alhwiesh, A.K.; Sarah Al-Wa, I.; Abdul-Rahman, S.; Ahmad Nasreldin, M.; Moaz Mohammed, A.; Al-Oudah, S.; Al Awal, A.; Alsenpisi, Z.; Abdulrahman, A.; Al-Warthan, S. The Use of SGLT2 Inhibitors in Peritoneal Dialysis Patients: A Shade of Light on Dapagliflozin. Arch. Nephrol. Urol. 2022, 5, 1–8. Available online: https://www.fortunejournals.com/articles/the-use-of-sglt2-inhibitors-in-peritoneal-dialysis-patients-a-shade-of-light-on-dapagliflozin.html (accessed on 13 May 2023). [CrossRef]
- Herat, L.Y.; Magno, A.L.; Rudnicka, C.; Hricova, J.; Carnagarin, R.; Ward, N.C.; Arcambal, A.; Kiuchi, M.G.; Head, G.A.; Schlaich, M.P. SGLT2 Inhibitor-Induced Sympathoinhibition: A Novel Mechanism for Cardiorenal Protection. JACC Basic Transl. Sci. 2020, 5, 169–179. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef] [Green Version]
- Kjaergaard, K.D.; Peters, C.D.; Jespersen, B.; Tietze, I.N.; Madsen, J.K.; Pedersen, B.B.; Novosel, M.K.; Laursen, K.S.; Bibby, B.M.; Strandhave, C.; et al. Angiotensin Blockade and Progressive Loss of Kidney Function in Hemodialysis Patients: A Randomized Controlled Trial. Am. J. Kidney Dis. 2014, 64, 892–901. [Google Scholar] [CrossRef] [PubMed]
- De La Flor Merino, J.C.; Apaza Chávez, J.; Valga Amado, F.; Díaz Crespo, F.; Justo Avila, P.; Marschall, A. Remission of Pro-teinuria in a Patient Affected by Crescentic IgA Nephropathy with Rapidly Progressive Glomerulonephritis Treated by So-dium-Glucose Cotransporter-2 Inhibitors: Casual or Causal Relationship? Kidney Dial. 2022, 2, 545–552. [Google Scholar] [CrossRef]
- Fox, C.S.; Matsushita, K.; Woodward, M.; Bilo, H.J.; Chalmers, J.; Heerspink, H.J.L.; Lee, B.J.; Perkins, R.M.; Rossing, P.; Sairenchi, T.; et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: A meta-analysis. Lancet 2012, 380, 1662–1673. [Google Scholar] [CrossRef] [Green Version]
- Szeto, C.-C.; Kwan, B.C.-H.; Chow, K.-M.; Chung, S.; Yu, V.; Cheng, P.M.-S.; Leung, C.-B.; Law, M.-C.; Li, P.K.-T. Predictors of Residual Renal Function Decline in Patients Undergoing Continuous Ambulatory Peritoneal Dialysis. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2015, 35, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Bragg-Gresham, J.L.; Fissell, R.B.; Mason, N.A.; Bailie, G.R.; Gillespie, B.W.; Wizemann, V.; Cruz, J.M.; Akiba, T.; Kurokawa, K.; Ramirez, S.; et al. Diuretic Use, Residual Renal Function, and Mortality Among Hemodialysis Patients in the Dialysis Outcomes and Practice Pattern Study (DOPPS). Am. J. Kidney Dis. 2007, 49, 426–431. [Google Scholar] [CrossRef]
- Jansen, M.A.M.; Hart, A.A.M.; Korevaar, J.C.; Dekker, F.W.; Boeschoten, E.W.; Krediet, R.T. Predictors of the rate of decline of residual renal function in incident dialysis patients. Kidney Int. 2022, 62, 1046–1053. [Google Scholar] [CrossRef] [Green Version]
- Navarrete, J.E.; Rajabalan, A.; Cobb, J.; Lea, J.P. Proportion of Hemodialysis Treatments with High Ultrafiltration Rate and the Association with Mortality. Kidney360 2022, 3, 1359–1366. [Google Scholar] [CrossRef]
- Seko, Y.; Sumida, Y.; Tanaka, S.; Mori, K.; Taketani, H.; Ishiba, H.; Hara, T.; Okajima, A.; Umemura, A.; Nishikawa, T.; et al. Effect of sodium glucose cotransporter 2 inhibitor on liver function tests in Japanese patients with non-alcoholic fatty liver disease and type 2 diabetes mellitus. Hepatol. Res. 2017, 47, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Goto, Y.; Otsuka, Y.; Ashida, K.; Nagayama, A.; Hasuzawa, N.; Iwata, S.; Hara, K.; Tsuruta, M.; Wada, N.; Motomura, S.; et al. Improvement of skeletal muscle insulin sensitivity by 1 week of SGLT2 inhibitor use. Endocr. Connect. 2020, 9, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, C.; Miyoshi, H.; Ono, K.; Sugawara, H.; Kameda, R.; Ichiyama, M.; Yamamoto, K.; Nomoto, H.; Nakamura, A.; Atsumi, T. Ipragliflozin effectively reduced visceral fat in Japanese patients with type 2 diabetes under adequate diet therapy. Endocr. J. 2016, 63, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Bouchi, R.; Terashima, M.; Sasahara, Y.; Asakawa, M.; Fukuda, T.; Takeuchi, T.; Nakano, Y.; Murakami, M.; Minami, I.; Izumiyama, H. Luseogliflozin reduces epicardial fat accumu-lation in patients with type 2 diabetes: A pilot study. Cardiovasc. Diabetol. 2017, 16, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, T.; Sugawara, M.; Fukuda, M. Sodium-glucose cotransporter 2 inhibitor-induced changes in body composition and sim-ultaneous changes in metabolic profile: 52-week prospective LIGHT (Luseogliflozin: The Components of Weight Loss in Japa-nese Patients with Type 2 Diabetes Mellitus) Study. J. Diabetes Investig. 2019, 10, 108–117. [Google Scholar] [CrossRef]
- Tobita, H.; Sato, S.; Miyake, T.; Ishihara, S.; Kinoshita, Y. Effects of Dapagliflozin on Body Composition and Liver Tests in Patients with Nonalcoholic Steatohepatitis Associated with Type 2 Diabetes Mellitus: A Prospective, Open-label, Uncontrolled Study. Curr. Ther. Res. 2017, 87, 13–19. [Google Scholar] [CrossRef]
- Sugiyama, S.; Jinnouchi, H.; Kurinami, N.; Hieshima, K.; Yoshida, A.; Jinnouchi, K.; Nishimura, H.; Suzuki, T.; Miyamoto, F.; Kajiwara, K.; et al. Dapagliflozin Reduces Fat Mass without Affecting Muscle Mass in Type 2 Diabetes. J. Atheroscler. Thromb. 2018, 25, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Miyake, T.; Yoshida, S.; Furukawa, S.; Sakai, T.; Tada, F.; Senba, H.; Yamamoto, S.; Koizumi, Y.; Yoshida, O.; Hirooka, M.; et al. Ipragliflozin ameliorates liver damage in non-alcoholic fatty liver disease. Open Med. 2018, 13, 402–409. [Google Scholar] [CrossRef]
- Pan, R.; Zhang, Y.; Wang, R.; Xu, Y.; Ji, H.; Zhao, Y. Effect of SGLT-2 inhibitors on body composition in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. PLoS ONE 2022, 17, e0279889. [Google Scholar] [CrossRef]
- Vallon, V.; Thomson, S.C. Targeting renal glucose reabsorption to treat hyperglycaemia: The pleiotropic effects of SGLT2 inhibition. Diabetologia 2017, 60, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Post, A.; Groothof, D.; Eisenga, M.F.; Bakker, S.J.L. Sodium-Glucose Cotransporter 2 Inhibitors and Kidney Outcomes: True Reno-protection, Loss of Muscle Mass or Both? J. Clin. Med. 2020, 9, 1603. [Google Scholar] [CrossRef] [PubMed]
- Quiroga, B.; Díez, J. Estimation of glomerular filtration rate in cardiorenal patients: A step forward. Clin. Kidney J. 2023, 16, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Ferrannini, E.; Veltkamp, S.A.; Smulders, R.A.; Kadokura, T. Renal glucose handling: Impact of chronic kidney disease and sodi-um-glucose cotransporter 2 inhibition in patients with type 2 diabetes. Diabetes Care. 2013, 36, 1260–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheen, A.J.; Delanaye, P. SGLT2 inhibitors in patients with chronic kidney disease: From clinical trials to guidelines and new prospects for clinical practice. Rev. Med. Liege 2021, 76, 186–194. [Google Scholar]
- Zhao, Y.; Xu, L.; Tian, D.; Xia, P.; Zheng, H.; Wang, L.; Chen, L. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 2018, 20, 458–462. [Google Scholar] [CrossRef]
Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | Patient 6 | Patient 7 | |
---|---|---|---|---|---|---|---|
Age | 82 | 64 | 62 | 80 | 64 | 79 | 57 |
Sex | Male | Male | Female | Male | Male | Male | Male |
BMI | 20.3 | 26.8 | 28.7 | 36.3 | 27.7 | 27.3 | 31.75 |
Hypertension | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
RAS blockade | ACEi | ARB | ACEi | ACEi | ACEi | ACEi | ARB |
Mean Basal BP (mmHg) | 150/70 | 166/85 | 140/78 | 135/84 | 128/79 | 168/78 | 156/94 |
Furosemide (mg/day) | 120 mg/day | 80 mg/day | 120 mg/day | 60 mg/day | 120 mg/day | 80 mg/day | 120 mg/day |
Cardiovascular Disease | No | No | Yes | Yes NVAF on DOACs | Yes NVAF on DOACs | No | Yes NVAF on LMWH |
Type 2 Diabetes mellitus | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
History T2DM (years) | 15 | 15 | 20 | 20 | 20 | 10 | 15 |
HbA1C | 6.3% | 6.2% | 6.2% | 6.5% | 7.3% | 7% | 8% |
Treatment | DPP4i | DPP4i Repaglinide | DPP4i Repaglinide | GLP-1-ra Degludec 8 IU | DPP4i | DPP4i | GLP-1-ra Determir 32 IU |
SGLT-2i started | Dapagliflozin 10 mg | Empagliflozin 10 mg | Dapagliflozin 10 mg | Dapagliflozin 10 mg | Dapagliflozin 10 mg | Empagliflozin 10 mg | Dapagliflozin 10 mg |
ESKD etiology: Diabetic kidney disease | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Other | Secondary FSGS after nephrectomy | None | None | Right nephron-ureterectomy for high-grade urothelial carcinoma | Crescentic IgA Nephropathy | None | Advanced IgA Nephropathy |
Dialysis vintage before starting SGLT2i | 3 months | 3 months | 3 months | 3 months | 3 months | 3 months | 3 months |
Vascular access type | aAVF | aAVF | aAVF | aAVF | Tunneled catheter | aAVF | aAVF |
KuR | 4.63 | 5.3 | 4.01 | 4.37 | 4.55 | 2.98 | 6.1 |
24 h CrCl (mL/min) | 15 | 14.7 | 16 | 10 | 10 | 7.6 | 15.3 |
Residual diuresis (mL/24 h) | 1400 | 1900 | 1900 | 1750 | 1900 | 1300 | 1900 |
Albumin/Cr (mg/g) | 638 | 1696 | 5300 | 3750 | 3200 | 3440 | 4000 |
Proteinuria (g/24 h) | 1.2 | 2.3 | 5.8 | 4.15 | 10 | 3.5 | 4.0 |
Variable | Baseline | 3-Month Follow-Up | 6-Month Follow-Up | 9-Month Follow-Up | 12-Month Follow-Up | p-Value * | p-Value ** |
---|---|---|---|---|---|---|---|
Weight (kg)-mean (SD) | 79.7 (13.7) | 78.1 (12.4) | 77.8 (11.8) | 77.0 (11.4) | 76.9 (10.4) | 0.034 | 0.128 |
BMI (kg/m2)-mean (SD) | 28.3 (4.99) | 27.7 (4.62) | 27.4 (4.40) | 26.9 (4.34) | 27.1 (3.96) | 0.051 | 0.075 |
ECW/TBW | 0.396 (0.01) | - | 0.396 (0.009) | - | 0.387 (0.005) | 0.021 | 0.028 |
Fat mass (Kg)-mean (SD) | 27.9 (12.8) | - | 25.5 (11.3) | - | 24.9 (10.6) | - | 0.085 |
Lean mass (kg)-mean (SD) | 47.6 (2.8) | - | 48.9 (3.29) | - | 49.6 (2.7) | - | 0.049 |
LUS (N° B lines)-mean (SD) | 8.43 (3.45) | - | 7.71 (2.42) | - | 5.28 (1.70) | - | 0.031 |
PV PF (%)-mean (SD) | 32.5 (7.5) | - | 27.6 (4.4) | - | 26.4 (4.7) | - | 0.044 |
Hepatic vein | |||||||
S > D at HVF-N (%) | 5 (71.4) | - | 6 (85.7) | - | 7 (100) | - | - |
S < D at HVF-N (%) | 2 (28.5) | - | 1 (14.2) | - | 0 (0) | - | - |
S Reversal at HVF-N (%) | 0 (0) | - | 0 (0) | - | 0 (0) | - | - |
IDWG (kg)-mean (SD) | 0.97 (0.44) | - | 0.7 (0.26) | - | 0.58 (0.21) | - | 0.009 |
KT (L)-mean (SD) | 58.3 (4.3) | - | - | - | 62.1 (4.8) | - | 0.034 |
Inf.Vol. OL-HDF (L)-mean (SD) | 27.1 (2.1) | - | - | - | 28.1 (2.8) | - | 0.102 |
QB (mL/min)-mean (SD) | 342.4 (15.3) | - | - | - | 347.0 (13.8) | - | 0.667 |
APF (mL/min)-mean (SD) | −129.8 (−47.6) | - | - | - | −118.3 (39.2) | - | 0.248 |
VPF (mL/min)-mean (SD) | 171.4 (21.6) | - | - | - | 173.1 (24.5) | - | 0.999 |
SBP (mmHg)-mean (SD) | 147.86 (13.95) | 139.86 (16.54) | 139.71 (9.52) | 135 (8) | 133 (12.41) | - | 0.015 |
DBP (mmHg)-mean (SD) | 78.29 (5.25) | 72.86 (8) | 72.29 (5.52) | 69.71 (6.65) | 69.71 (6.65) | - | 0.041 |
Cr serum (mg/dL)-mean (SD) | 4.80 (1.75) | 4.43 (1.79) | 4.75 (1.79) | 4.90 (1.86) | 5.01 (2.51) | 0.517 | 0.735 |
U serum (mg/dL)-mean (SD) | 142 (26.29) | 118 (16.27) | 130 (32.90) | 127 (33.10) | 128 (34.51) | 0.360 | 0.128 |
Albumine (g/dL)-mean (SD) | 3.23 (0.42) | 3.27 (0.65) | 3.42 (0.41) | 3.18 (1.04) | 3.51 (0.48) | 0.211 | 0.063 |
Potassium serum (mmol/l)-mean (SD) | 5.45 (0.43) | 5.07 (0.43) | 4.82 (0.30) | 4.61 (0.33) | 4.62 (0.29) | - | 0.006 |
Ca serum (mg/dL)-mean (SD) | 9.0 (0.30) | 8.98 (0.29) | 8.80 (0.10) | 8.93 (0.19) | 8.90 (0.19) | - | 0.42 |
P serum (mg/dL)-mena (SD) | 5.70 (0.39) | 5.31 (0.29) | 4.81 (0.37) | 4.71 (0.56) | 4.68 (0.39) | - | 0.001 |
25OHD serum (ng/mL)-mean (SD) | 18.94 (4.85) | 20.77 (3.39) | 24.24 (4.06) | 24.71 (3.45) | 27.08 (2.02) | - | 0.007 |
PTH serum (pg/mL)-mean (SD) | 197.98 (121) | 228.1 (70.33) | 280 (106.7) | 253 (97.16) | 241.1 (82.63) | - | 0.122 |
U.A. serum (mg/dL)-mean (SD) | 7.67 (1.95) | 6.69 (0.54) | 6.20 (0.70) | 5.80 (0.52) | 5.96 (0.52) | <0.001 | 0.018 |
HbA1c (g/dL)-mean (SD) | 6.79 (0.68) | 6.47 (0.63) | 6.47 (0.59) | 6.39 (0.54) | 6.36 (0.59) | 0.004 | 0.018 |
UACR (mg/g)-mean (SD) | 4040 (2729) | 2229 (1430) | 1977 (1413) | 1718 (1037) | 1568 (746) | 0.128 | 0.016 |
Glucosuria (mg/dL)-mean (SD) | 13.71 (26.52) | 229.14 (92.26) | 277.57 (89.31) | 292.85 (112.16) | 286.14 (79.32) | - | 0.001 |
KrU (mL/min)-mean (SD) | 4.91 (1.14) | 5.46 (1.71) | 7.53 (1.76) | 6.97 (1.50) | 7.28 (1.68) | 0.002 | 0.028 |
24 h CrCl (mL/min)-mean (SD) | 12.7 (3.53) | 16.43 (6.58) | 17.94 (6.04) | 16.29 (6.34) | 16.35 (6.85) | 0.180 | 0.236 |
Residual diuresis (mL/24 h)-mean (SD) | 1742 (288) | 2114 (533) | 2135 (655) | 1921 (410) | 2021 (532) | 0.305 | 0.546 |
Proteinuria (g/24 h)-mean (SD) | 4.10 (1.95) | 2.83 (1.68) | 2.60 (1.86) | 2.08 (1.17) | 1.88 (0.71) | 0.019 | 0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De La Flor, J.C.; Villa, D.; Cruzado, L.; Apaza, J.; Valga, F.; Zamora, R.; Marschall, A.; Cieza, M.; Deira, J.; Rodeles, M. Efficacy and Safety of the Use of SGLT2 Inhibitors in Patients on Incremental Hemodialysis: Maximizing Residual Renal Function, Is There a Role for SGLT2 Inhibitors? Biomedicines 2023, 11, 1908. https://doi.org/10.3390/biomedicines11071908
De La Flor JC, Villa D, Cruzado L, Apaza J, Valga F, Zamora R, Marschall A, Cieza M, Deira J, Rodeles M. Efficacy and Safety of the Use of SGLT2 Inhibitors in Patients on Incremental Hemodialysis: Maximizing Residual Renal Function, Is There a Role for SGLT2 Inhibitors? Biomedicines. 2023; 11(7):1908. https://doi.org/10.3390/biomedicines11071908
Chicago/Turabian StyleDe La Flor, José C., Daniel Villa, Leónidas Cruzado, Jacqueline Apaza, Francisco Valga, Rocío Zamora, Alexander Marschall, Michael Cieza, Javier Deira, and Miguel Rodeles. 2023. "Efficacy and Safety of the Use of SGLT2 Inhibitors in Patients on Incremental Hemodialysis: Maximizing Residual Renal Function, Is There a Role for SGLT2 Inhibitors?" Biomedicines 11, no. 7: 1908. https://doi.org/10.3390/biomedicines11071908
APA StyleDe La Flor, J. C., Villa, D., Cruzado, L., Apaza, J., Valga, F., Zamora, R., Marschall, A., Cieza, M., Deira, J., & Rodeles, M. (2023). Efficacy and Safety of the Use of SGLT2 Inhibitors in Patients on Incremental Hemodialysis: Maximizing Residual Renal Function, Is There a Role for SGLT2 Inhibitors? Biomedicines, 11(7), 1908. https://doi.org/10.3390/biomedicines11071908