Diabetic Neuropathic Pain and Serotonin: What Is New in the Last 15 Years?
Abstract
:1. Introduction
2. Experimental Models of Diabetes in Rodents
3. Chemically-Induced Diabetic Animals
4. Spontaneous Animal Models of T1D
5. Spontaneous Animal Models of T2D
6. Alteration of Serotonergic Neurotransmission in Diabetic Neuropathic Pain Models
6.1. Effect of Compounds Acting on Serotonergic Pathways
6.2. Effect of Compounds Acting on 5-HT1A Receptors
6.3. Effect of Compounds Acting on 5-HT2A/2C Receptors
6.4. Effect of Compounds Acting on 5-HT6 Receptors
6.5. Comparison of Animal Studies Exploring the Serotonergic System in Diabetic Neuropathic Pain Models
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jensen, T.S.; Baron, R.; Haanpää, M.; Kalso, E.; Loeser, J.D.; Rice, A.S.C.; Treede, R.-D. A New Definition of Neuropathic Pain. Pain 2011, 152, 2204–2205. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Fang, C.; Li, X.; Cao, Y.-J.; Zhang, Q.-L.; Huang, Y.; Pan, J.; Zhang, X. Type 1 Diabetes-Associated Cognitive Impairment and Diabetic Peripheral Neuropathy in Chinese Adults: Results from a Prospective Cross-Sectional Study. BMC Endocr. Disord. 2019, 19, 34. [Google Scholar] [CrossRef] [PubMed]
- Damanik, J.; Yunir, E. Type 2 Diabetes Mellitus and Cognitive Impairment. Acta Medica Indones. 2021, 53, 213–220. [Google Scholar]
- Bai, J.-W.; Lovblom, L.E.; Cardinez, M.; Weisman, A.; Farooqi, M.A.; Halpern, E.M.; Boulet, G.; Eldelekli, D.; Lovshin, J.A.; Lytvyn, Y.; et al. Neuropathy and Presence of Emotional Distress and Depression in Longstanding Diabetes: Results from the Canadian Study of Longevity in Type 1 Diabetes. J. Diabetes Its Complicat. 2017, 31, 1318–1324. [Google Scholar] [CrossRef]
- Tesfaye, S.; Boulton, A.J.M.; Dyck, P.J.; Freeman, R.; Horowitz, M.; Kempler, P.; Lauria, G.; Malik, R.A.; Spallone, V.; Vinik, A.; et al. Diabetic Neuropathies: Update on Definitions, Diagnostic Criteria, Estimation of Severity, and Treatments. Diabetes Care 2010, 33, 2285–2293. [Google Scholar] [CrossRef] [Green Version]
- Bouhassira, D.; Letanoux, M.; Hartemann, A. Chronic Pain with Neuropathic Characteristics in Diabetic Patients: A French Cross-Sectional Study. PLoS ONE 2013, 8, e74195. [Google Scholar] [CrossRef]
- IDF. Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Holt, R.; Cockram, C.; Flyvbjerg, A.; Goldstein, B. Textbook of Diabetes, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 45. [Google Scholar]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for Neuropathic Pain in Adults: A Systematic Review and Meta-Analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef] [Green Version]
- Millan, M.J. Descending Control of Pain. Prog. Neurobiol. 2002, 66, 355–474. [Google Scholar] [CrossRef]
- Rosenberger, D.C.; Blechschmidt, V.; Timmerman, H.; Wolff, A.; Treede, R.-D. Challenges of Neuropathic Pain: Focus on Diabetic Neuropathy. J. Neural Transm. 2020, 127, 589–624. [Google Scholar] [CrossRef] [Green Version]
- Kleinert, M.; Clemmensen, C.; Hofmann, S.M.; Moore, M.C.; Renner, S.; Woods, S.C.; Huypens, P.; Beckers, J.; de Angelis, M.H.; Schürmann, A.; et al. Animal Models of Obesity and Diabetes Mellitus. Nat. Rev. Endocrinol. 2018, 14, 140–162. [Google Scholar] [CrossRef] [Green Version]
- Biessels, G.J.; Bril, V.; Calcutt, N.A.; Cameron, N.E.; Cotter, M.A.; Dobrowsky, R.; Feldman, E.L.; Fernyhough, P.; Jakobsen, J.; Malik, R.A.; et al. Phenotyping Animal Models of Diabetic Neuropathy: A Consensus Statement of the Diabetic Neuropathy Study Group of the EASD (Neurodiab). J. Peripher. Nerv. Syst. 2014, 19, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.N.; Reddy, N.M.; Patil, K.R.; Nakhate, K.T.; Ojha, S.; Patil, C.R.; Agrawal, Y.O. Challenges and Issues with Streptozotocin-Induced Diabetes—A Clinically Relevant Animal Model to Understand the Diabetes Pathogenesis and Evaluate Therapeutics. Chem. Biol. Interact. 2016, 244, 49–63. [Google Scholar] [CrossRef]
- Courteix, C.; Eschalier, A.; Lavarenne, J. Streptozocin-Induced Diabetic Rats: Behavioural Evidence for a Model of Chronic Pain. Pain 1993, 53, 81–88. [Google Scholar] [CrossRef]
- Al-Awar, A.; Kupai, K.; Veszelka, M.; Szűcs, G.; Attieh, Z.; Murlasits, Z.; Török, S.; Pósa, A.; Varga, C. Experimental Diabetes Mellitus in Different Animal Models. J. Diabetes Res. 2016, 2016, 9051426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewangan, H.; Tiwari, R.K.; Sharma, V.; Shukla, S.S.; Satapathy, T.; Pandey, R. Past and Future of In-Vitro and in-Vivo Animal Models for Diabetes: A Review. Indian J. Pharm. Educ. Res. 2017, 51, s522–s530. [Google Scholar] [CrossRef] [Green Version]
- Calcutt, N.A. Diabetic Neuropathy and Neuropathic Pain: A (Con)Fusion of Pathogenic Mechanisms? Pain 2020, 161, S65–S86. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Dvorakova, M.C. Future Perspective of Diabetic Animal Models. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 25–38. [Google Scholar] [CrossRef]
- Rees, D.A.; Alcolado, J.C. Animal Models of Diabetes Mellitus. Diabet. Med. 2005, 22, 359–370. [Google Scholar] [CrossRef]
- King, A.J.F. The Use of Animal Models in Diabetes Research. Br. J. Pharmacol. 2012, 166, 877–894. [Google Scholar] [CrossRef] [Green Version]
- Olivares, A.M.; Althoff, K.; Chen, G.F.; Wu, S.; Morrisson, M.A.; DeAngelis, M.M.; Haider, N. Animal Models of Diabetic Retinopathy. Curr. Diabetes Rep. 2017, 17, 93. [Google Scholar] [CrossRef] [Green Version]
- Cegielska-Perun, K.; Bujalska-Zadrożny, M.; Tatarkiewicz, J.; Gąsińska, E.; Makulska-Nowak, H.E. Venlafaxine and Neuropathic Pain. Pharmacology 2013, 91, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Cegielska-Perun, K.; Tatarkiewicz, J.; Siwek, A.; Dybała, M.; Bujalska-Zadrożny, M. Mechanisms of Morphine-Venlafaxine Interactions in Diabetic Neuropathic Pain Model. Pharmacol. Rep. 2015, 67, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Cegielska-Perun, K.; Bujalska-Zadrożny, M.; Makulska-Nowak, H.E. Modification of Morphine Analgesia by Venlafaxine in Diabetic Neuropathic Pain Model. Pharmacol. Rep. 2012, 64, 1267–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moisset, X.; Bouhassira, D.; Couturier, J.A.; Alchaar, H.; Conradi, S.; Delmotte, M.-H.; Lantéri-Minet, M.; Lefaucheur, J.-P.; Mick, G.; Piano, V.; et al. Traitements pharmacologiques et non pharmacologiques de la douleur neuropathique: Une synthèse des recommandations françaises. Douleur Analg. 2020, 33, 101–112. [Google Scholar] [CrossRef]
- Tripathi, C.D.; Mehta, A.K.; Yadav, A.M. Drug Combinations in Diabetic Neuropathic Pain: An Experimental Validation. J. Basic Clin. Physiol. Pharmacol. 2016, 27, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, J.; Takahashi, Y.; Watabe, A.M.; Utsunomiya, K.; Kato, F. Impaired Noradrenaline Homeostasis in Rats with Painful Diabetic Neuropathy as a Target of Duloxetine Analgesia. Mol. Pain 2013, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Mixcoatl-Zecuatl, T.; Jolivalt, C.G. A Spinal Mechanism of Action for Duloxetine in a Rat Model of Painful Diabetic Neuropathy. Br. J. Pharmacol. 2011, 164, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Kuhad, A.; Bishnoi, M.; Chopra, K. Anti-Nociceptive Effect of Duloxetine in Mouse Model of Diabetic Neuropathic Pain. Indian J. Exp. Biol. 2009, 47, 193–197. [Google Scholar] [PubMed]
- Tawfik, M.K.; Helmy, S.A.; Badran, D.I.; Zaitone, S.A. Neuroprotective Effect of Duloxetine in a Mouse Model of Diabetic Neuropathy: Role of Glia Suppressing Mechanisms. Life Sci. 2018, 205, 113–124. [Google Scholar] [CrossRef]
- Murai, N.; Aoki, T.; Tamura, S.; Yamamoto, H.; Hamakawa, N.; Matsuoka, N. AS1069562, the (+)-Isomer of Indeloxazine, but Not Duloxetine Has a Curative-like Analgesic Effect in a Rat Model of Streptozotocin-Induced Diabetic Neuropathy. Neuropharmacology 2014, 79, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Morgado, C.; Silva, L.; Pereira-Terra, P.; Tavares, I. Changes in Serotoninergic and Noradrenergic Descending Pain Pathways during Painful Diabetic Neuropathy: The Preventive Action of IGF1. Neurobiol. Dis. 2011, 43, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Ishida, Y.; Naono, R.; Takeda, R.; Abe, H.; Nakamura, T.; Nishimori, T. Effects of Intrathecal Administration of Newer Antidepressants on Mechanical Allodynia in Rat Models of Neuropathic Pain. Neurosci. Res. 2009, 63, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.-T.; Xue, R.; Fan, S.-Y.; Fan, Q.-Y.; An, L.; Li, J.; Zhu, L.; Ran, Y.-H.; Zhang, L.-M.; Zhong, B.-H.; et al. Ammoxetine Attenuates Diabetic Neuropathic Pain through Inhibiting Microglial Activation and Neuroinflammation in the Spinal Cord. J. Neuroinflamm. 2018, 15, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Üçel, U.İ.; Can, Ö.D.; Demir Özkay, Ü.; Öztürk, Y. Antihyperalgesic and Antiallodynic Effects of Mianserin on Diabetic Neuropathic Pain: A Study on Mechanism of Action. Eur. J. Pharmacol. 2015, 756, 92–106. [Google Scholar] [CrossRef]
- Tokhi, A.; Ahmed, Z.; Arif, M.; Rehman, N.U.; Sheibani, V.; Sewell, R.D.E.; Rauf, K. Effects of 1-Methyl-1, 2, 3, 4-Tetrahydroisoquinoline on a Diabetic Neuropathic Pain Model. Front. Pharmacol. 2023, 14, 1128496. [Google Scholar] [CrossRef] [PubMed]
- De Deurwaerdère, P.; Bharatiya, R.; Chagraoui, A.; Di Giovanni, G. Constitutive Activity of 5-HT Receptors: Factual Analysis. Neuropharmacology 2020, 168, 107967. [Google Scholar] [CrossRef] [PubMed]
- Jesus, C.H.A.; Redivo, D.D.B.; Gasparin, A.T.; Sotomaior, B.B.; de Carvalho, M.C.; Genaro, K.; Zuardi, A.W.; Hallak, J.E.C.; Crippa, J.A.; Zanoveli, J.M.; et al. Cannabidiol Attenuates Mechanical Allodynia in Streptozotocin-Induced Diabetic Rats via Serotonergic System Activation through 5-HT1A Receptors. Brain Res. 2019, 1715, 156–164. [Google Scholar] [CrossRef]
- Quiñonez-Bastidas, G.N.; Cervantes-Durán, C.; Rocha-González, H.I.; Murbartián, J.; Granados-Soto, V. Analysis of the Mechanisms Underlying the Antinociceptive Effect of Epicatechin in Diabetic Rats. Life Sci. 2013, 93, 637–645. [Google Scholar] [CrossRef]
- Li, S.; Sun, C.; Rong, P.; Zhai, X.; Zhang, J.; Baker, M.; Wang, S. Auricular Vagus Nerve Stimulation Enhances Central Serotonergic Function and Inhibits Diabetic Neuropathy Development in Zucker Fatty Rats. Mol. Pain 2018, 14, 1744806918787368. [Google Scholar] [CrossRef]
- Sałat, K.; Kołaczkowski, M.; Furgała, A.; Rojek, A.; Śniecikowska, J.; Varney, M.A.; Newman-Tancredi, A. Antinociceptive, Antiallodynic and Antihyperalgesic Effects of the 5-HT1A Receptor Selective Agonist, NLX-112 in Mouse Models of Pain. Neuropharmacology 2017, 125, 181–188. [Google Scholar] [CrossRef]
- Bockaert, J.; Bécamel, C.; Chaumont-Dubel, S.; Claeysen, S.; Vandermoere, F.; Marin, P. Novel and Atypical Pathways for Serotonin Signaling. Fac. Rev. 2021, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Guiard, B.P.; Di Giovanni, G. 5-Ht2a Receptors in the Central Nervous System; Springer Science + Business Media: New York, NY, USA, 2018; ISBN 978-3-319-70472-2. [Google Scholar]
- Pichon, X.; Wattiez, A.S.; Becamel, C.; Ehrlich, I.; Bockaert, J.; Eschalier, A.; Marin, P.; Courteix, C. Disrupting 5-HT(2A) Receptor/PDZ Protein Interactions Reduces Hyperalgesia and Enhances SSRI Efficacy in Neuropathic Pain. Mol. Ther. 2010, 18, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Wattiez, A.-S.; Pichon, X.; Dupuis, A.; Hernández, A.; Privat, A.-M.; Aissouni, Y.; Chalus, M.; Pelissier, T.; Eschalier, A.; Marin, P.; et al. Disruption of 5-HT2A Receptor-PDZ Protein Interactions Alleviates Mechanical Hypersensitivity in Carrageenan-Induced Inflammation in Rats. PLoS ONE 2013, 8, e74661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wattiez, A.-S.; Dupuis, A.; Privat, A.-M.; Chalus, M.; Chapuy, E.; Aissouni, Y.; Eschalier, A.; Courteix, C. Disruption of 5-HT2A-PDZ Protein Interaction Differently Affects the Analgesic Efficacy of SSRI, SNRI and TCA in the Treatment of Traumatic Neuropathic Pain in Rats. Neuropharmacology 2017, 125, 308–318. [Google Scholar] [CrossRef]
- Bektas, N.; Arslan, R.; Ozturk, Y. Zonisamide: Antihyperalgesic Efficacy, the Role of Serotonergic Receptors on Efficacy in a Rat Model for Painful Diabetic Neuropathy. Life Sci. 2014, 95, 9–13. [Google Scholar] [CrossRef]
- Chenaf, C.; Chapuy, E.; Libert, F.; Marchand, F.; Courteix, C.; Bertrand, M.; Gabriel, C.; Mocaër, E.; Eschalier, A.; Authier, N. Agomelatine: A New Opportunity to Reduce Neuropathic Pain-Preclinical Evidence. Pain 2017, 158, 149–160. [Google Scholar] [CrossRef]
- Meffre, J.; Chaumont-Dubel, S.; Mannoury la Cour, C.; Loiseau, F.; Watson, D.J.G.; Dekeyne, A.; Séveno, M.; Rivet, J.-M.; Gaven, F.; Déléris, P.; et al. 5-HT6 Receptor Recruitment of MTOR as a Mechanism for Perturbed Cognition in Schizophrenia. EMBO Mol. Med. 2012, 4, 1043–1056. [Google Scholar] [CrossRef]
- Duhr, F.; Déléris, P.; Raynaud, F.; Séveno, M.; Morisset-Lopez, S.; Mannoury la Cour, C.; Millan, M.J.; Bockaert, J.; Marin, P.; Chaumont-Dubel, S. Cdk5 Induces Constitutive Activation of 5-HT6 Receptors to Promote Neurite Growth. Nat. Chem. Biol. 2014, 10, 590–597. [Google Scholar] [CrossRef] [Green Version]
- Martin, P.-Y.; Doly, S.; Hamieh, A.M.; Chapuy, E.; Canale, V.; Drop, M.; Chaumont-Dubel, S.; Bantreil, X.; Lamaty, F.; Bojarski, A.J.; et al. MTOR Activation by Constitutively Active Serotonin6 Receptors as New Paradigm in Neuropathic Pain and Its Treatment. Prog. Neurobiol. 2020, 193, 101846. [Google Scholar] [CrossRef]
- Drop, M.; Jacquot, F.; Canale, V.; Chaumont-Dubel, S.; Walczak, M.; Satała, G.; Nosalska, K.; Mahoro, G.U.; Słoczyńska, K.; Piska, K.; et al. Neuropathic Pain-Alleviating Activity of Novel 5-HT6 Receptor Inverse Agonists Derived from 2-Aryl-1H-Pyrrole-3-Carboxamide. Bioorg. Chem. 2021, 115, 105218. [Google Scholar] [CrossRef]
- Drop, M.; Canale, V.; Chaumont-Dubel, S.; Kurczab, R.; Satała, G.; Bantreil, X.; Walczak, M.; Koczurkiewicz-Adamczyk, P.; Latacz, G.; Gwizdak, A.; et al. 2-Phenyl-1H-Pyrrole-3-Carboxamide as a New Scaffold for Developing 5-HT6 Receptor Inverse Agonists with Cognition-Enhancing Activity. ACS Chem. Neurosci. 2021, 12, 1228–1240. [Google Scholar] [CrossRef] [PubMed]
- Hirst, W.D.; Minton, J.A.L.; Bromidge, S.M.; Moss, S.F.; Latter, A.J.; Riley, G.; Routledge, C.; Middlemiss, D.N.; Price, G.W. Characterization of [125I]-SB-258585 Binding to Human Recombinant and Native 5-HT6 Receptors in Rat, Pig and Human Brain Tissue. Br. J. Pharmacol. 2000, 130, 1597–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokhtar, N.; Drop, M.; Jacquot, F.; Lamoine, S.; Chapuy, E.; Prival, L.; Aissouni, Y.; Canale, V.; Lamaty, F.; Zajdel, P.; et al. The Constitutive Activity of Spinal 5-HT6 Receptors Contributes to Diabetic Neuropathic Pain in Rats. Biomolecules 2023, 13, 364. [Google Scholar] [CrossRef] [PubMed]
- Sari, C.C.; Gunduz, O.; Ulugol, A. Spinal Serotonin and 5HT6 Receptor Levels During Development of Neuropathy and Influence of Blockade of These Receptors on Thermal Hyperalgesia in Diabetic Mice. Drug Res. 2019, 69, 428–433. [Google Scholar] [CrossRef] [Green Version]
- Saxton, R.A.; Sabatini, D.M. MTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Jiang, Z.; Chen, Y.; Wang, F.; Wang, Z. Inflammatory Cytokines in Midbrain Periaqueductal Gray Contribute to Diabetic Induced Pain Hypersensitivity through Phosphoinositide 3-Kinase/Protein Kinase B/Mammalian Target of Rapamycin Signaling Pathway. Korean J. Pain 2021, 34, 176–184. [Google Scholar] [CrossRef]
- He, W.-Y.; Zhang, B.; Zhao, W.-C.; He, J.; Wang, Y.; Zhang, L.; Xiong, Q.-M.; Wang, H.-B. MTOR Activation Due to APPL1 Deficiency Exacerbates Hyperalgesia via Rab5/Akt and AMPK Signaling Pathway in Streptozocin-Induced Diabetic Rats. Mol. Pain 2019, 15, 1744806919880643. [Google Scholar] [CrossRef] [Green Version]
- He, W.-Y.; Zhang, B.; Xiong, Q.-M.; Yang, C.-X.; Zhao, W.-C.; He, J.; Zhou, J.; Wang, H.-B. Intrathecal Administration of Rapamycin Inhibits the Phosphorylation of DRG Nav1.8 and Attenuates STZ-Induced Painful Diabetic Neuropathy in Rats. Neurosci. Lett. 2016, 619, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Liu, S.; Liu, D.; Wang, Q.; Li, H.; Zhao, Z. Exercise Intervention Attenuates Neuropathic Pain in Diabetes via Mechanisms of Mammalian Target of Rapamycin (MTOR). Arch. Physiol. Biochem. 2020, 126, 41–48. [Google Scholar] [CrossRef]
- Ghazisaeidi, S.; Muley, M.M.; Salter, M.W. Neuropathic Pain: Mechanisms, Sex Differences, and Potential Therapies for a Global Problem. Annu Rev Pharmacol Toxicol 2023, 63, 565–583. [Google Scholar] [CrossRef]
- Handwerker, H.O.; Arendt-Nielsen, L. Pain Models: Translational Relevance and Applications; IASP Press: Washington, DC, USA, 2013; ISBN 978-0-931092-94-7. [Google Scholar]
- Baron, R.; Binder, A.; Wasner, G. Neuropathic Pain: Diagnosis, Pathophysiological Mechanisms, and Treatment. Lancet Neurol. 2010, 9, 807–819. [Google Scholar] [CrossRef] [PubMed]
Model | Diabetes Duration | Sex | Sensory-Discriminative Aspects | Associated Co-Morbidities (Test) | Treatment Used to Improve Pain and Associated Comorbidity | ||
---|---|---|---|---|---|---|---|
Tactile Allodynia/Mechanical Hyperalgesia (Test) | Thermal Allodynia/Hyperalgesia (Test) or Chemical Hyperalgesia | ||||||
Tawfik et al. 2018 [31] | Alloxan mice (180 mg/kg, i.p.) | 10 weeks | M | +(von Frey hair) | +(Hot plate) | n.e. | Duloxetine (SNRI) |
Li et al. 2018 [41] | Zucker diabetic fatty | 8 weeks | M | +(von Frey hair) | +(Hot, Hargreaves) | n.e. | Repeated auricular electric stimulation |
Sari et al. 2019 [57] | STZ Mice (150 mg/kg, i.p.) | 5, 9–15 days | M | +(Hot plate) | n.e. | SB258585 (5-HT6 receptor inverse agonist) | |
Tokhi et al. 2023 [37] | STZ Mice (200 mg/kg, i.p.) | 4 weeks | M | +(von Frey hair) | +(Hot tail immersion) +(Tail flick) | n.e. | 1-Methyl-1,2,3,4-Tetrahydroisoquinoline (endogenous amine) |
Sałat et al. 2017 [42] | STZ Mice (200 mg/kg, i.p.) | 3 weeks | M | +(von Frey hair) | +(Hot plate) | n.e. | NLX-112 (selective 5-HT1A receptor agonist) |
Kuhad et al. 2009 [30] | STZ Mice (200 mg/kg, i.p.) | 4 weeks | M | +(Hot tail immersion) +(Hot plate) | n.e. | Duloxetine (SNRI) | |
Cegielska-Perun et al. 2012 [25] | STZ Rats (40 mg/kg, i.m.) | 19–39 days | M | +(Paw pressure) +(von Frey hair) | n.e. | Venlafaxine (SNRI) | |
Cegielska-Perun et al. 2013 [23] | STZ Rats (40 mg/kg, i.m.) | 19–39 days | M | +(Paw pressure) +(von Frey hair) | n.e. | Venlafaxine (SNRI) | |
Cegielska -Perun et al. 2015 [24] | STZ Rats (40 mg/kg, i.m.) | 19–39 days | M | +(Paw pressure) +(von Frey hair) | n.e. | Venlafaxine (SNRI) | |
Murai et al. 2014 [32] | STZ Rats (45 mg/kg, i.v.) | 3–7 weeks | M | +(Electronic von Frey) | n.e. | Isomer of Indeloxazine (Antidepressant) | |
Ikeda et al. 2009 [34] | STZ Rats (50 mg/kg, i.v.) | 2–4 weeks | M | +(von Frey hair) | n.e. | Milnacipran (SNRI) Paroxetine, Fluvoxamine (SSRI) | |
Bektas et al. 2014 [48] | STZ Rats (50 mg/kg, i.v.) | 3–8 weeks | M F | +(Paw pressure) | +(Hot plate) +(Hot tail immersion) | n.e. | Zonisamide (Antiepileptic) |
Üçel et al. 2015 [36] | STZ Rats (50 mg/kg, i.v.) | 4 weeks | M | +(Tail clip) +(Paw pressure) +(Dynamic plantar) | +(Hot plate) +(Hot, Hargreaves) +(Cold plate) | n.e. | Mianserin (Tetracyclic antidepressant) |
Kinoshita et al. 2013 [28] | STZ Rats (50 mg/kg, i.v.) | 6 weeks | M | +(von Frey hair) | +(Hot, Hargreaves) | n.e. | Duloxetine (SNRI) |
Mixcoatl-Zecuatl et al. 2011 [29] | STZ Rats (50 mg/kg, i.p.) | 6–10 weeks | F | +(von Frey hair) | n.e. | Duloxetine (SNRI) | |
Quinonez-Bastidas et al. 2013 [40] | STZ Rats (50 mg/kg, i.p.) | 2 weeks | F | +(Formalin test) | n.e. | Epicatechin (Flavonoid) | |
Guo et al. 2021 [59] | STZ Rats (45–60 mg/kg, i.p.) | 3–5 weeks | M | +(von Frey hair) | n.e. | Cytokine receptor blockade (reducing p-PI3K and p-mTOR) | |
Zhang et al. 2018 [35] | STZ Rats (60 mg/kg, i.p.) | 4 weeks | M | +(von Frey hair) | +(Open Field) | Ammoxetine (SNRI) | |
Jesus et al. 2019 [39] | STZ Rats (60 mg/kg, i.p.) | 4 weeks | M | +(von Frey hair) | n.e. | Cannabidiol | |
He et al. 2019 [60] | STZ Rats (60 mg/kg, i.p.) | 1–4 weeks | M | +(von Frey hair) | +(Cold tail immersion) | n.e. | APPL1 overexpression (Inhibiting mTOR) |
He et al. 2016 [61] | STZ Rats (60 mg/kg, i.p.) | 3 weeks | M | +(von Frey hair) | n.e. | Rapamycin (Inhibiting mTOR) | |
Ma et al. 2020 [62] | STZ Rats (60 mg/kg, i.p.) | 1–5 weeks | M | +(von Frey hair) | n.e. | Exercise intervention (Inhibiting mTOR) | |
Morgado et al. 2011 [33] | STZ Rats (60 mg/kg, i.p.) | 1–4 weeks | M | +(Paw pressure) | n.e. | Insulin-like growth factor 1 | |
Chenaf et al. 2017 [49] | STZ Rats (72 mg/kg, i.p.) | 3 weeks | M | +(Paw pressure) | n.e. | Agomelatine (Antidepressant) | |
Pichon et al. 2010 [45] | STZ Rats (72 mg/kg, i.p.) | 3 weeks | M | +(Paw pressure) | +(Plate preference) | n.e. | TAT-2ASCV (Uncoupling of 5-HT2A receptor/ PDZ protein) |
Mokhtar et al. 2023 [56] | STZ Rats (75 mg/kg, i.p.) | 3 weeks | M | +(Paw pressure) | +(NOR) | PZ1388, 1Z1386, PZ1179, SB258585 (5-HT6 receptor inverse agonists) TAT-VEPE (Uncoupling of 5-HT6 receptor/ mTOR) Rapamycin (Inhibiting mTOR) | |
Tripathi et al. 2016 [27] | STZ Rats (75 mg/kg, i.p.) | 2–6 weeks | M | +(Tail flick) | n.e. | Duloxetine (SNRI) + Amitripyline (Tetracyclic antidepressant) or + Pregabalin (Gabapentinoid) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokhtar, N.; Doly, S.; Courteix, C. Diabetic Neuropathic Pain and Serotonin: What Is New in the Last 15 Years? Biomedicines 2023, 11, 1924. https://doi.org/10.3390/biomedicines11071924
Mokhtar N, Doly S, Courteix C. Diabetic Neuropathic Pain and Serotonin: What Is New in the Last 15 Years? Biomedicines. 2023; 11(7):1924. https://doi.org/10.3390/biomedicines11071924
Chicago/Turabian StyleMokhtar, Nazarine, Stephane Doly, and Christine Courteix. 2023. "Diabetic Neuropathic Pain and Serotonin: What Is New in the Last 15 Years?" Biomedicines 11, no. 7: 1924. https://doi.org/10.3390/biomedicines11071924
APA StyleMokhtar, N., Doly, S., & Courteix, C. (2023). Diabetic Neuropathic Pain and Serotonin: What Is New in the Last 15 Years? Biomedicines, 11(7), 1924. https://doi.org/10.3390/biomedicines11071924