Interleukin 5 Receptor Subunit Alpha Expression as a Potential Biomarker in Patients with Nasal Polyposis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Variables
2.2. qPCR Expression Assays
2.3. Statistical Analyses
3. Results
3.1. Demographic Data
3.2. IL5RA Expression Analysis
3.3. Correlation between IL5RA Expression, Eosinophil Count, and Total IgE Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Radenne, F.; Lamblin, C.; Vandezande, L.-M.; Tillie-Leblond, I.; Darras, J.; Tonnel, A.-B.; Wallaert, B. Quality of Life in Nasal Polyposis. J. Allergy Clin. Immunol. 1999, 104, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Alobid, I.; Benitez, P.; Bernal-Sprekelsen, M.; Roca, J.; Alonso, J.; Picado, C.; Mullol, J. Nasal Polyposis and Its Impact on Quality of Life: Comparison between the Effects of Medical and Surgical Treatments. Allergy 2005, 60, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Kusano, S.; Kukimoto-Niino, M.; Hino, N.; Ohsawa, N.; Ikutani, M.; Takaki, S.; Sakamoto, K.; Hara-Yokoyama, M.; Shirouzu, M.; Takatsu, K.; et al. Structural Basis of Interleukin-5 Dimer Recognition by Its α Receptor. Protein Sci. 2012, 21, 850–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavernier, J.; Devos, R.; Cornelis, S.; Tuypens, T.; Van der Heyden, J.; Fiers, W.; Plaetinck, G. A Human High Affinity Interleukin-5 Receptor (IL5R) Is Composed of an IL5-Specific α Chain and a β Chain Shared with the Receptor for GM-CSF. Cell 1991, 66, 1175–1184. [Google Scholar] [CrossRef]
- Castro, M.; Mathur, S.; Hargreave, F.; Boulet, L.-P.; Xie, F.; Young, J.; Wilkins, H.J.; Henkel, T.; Nair, P. Reslizumab for Poorly Controlled, Eosinophilic Asthma. Am. J. Respir. Crit. Care Med. 2011, 184, 1125–1132. [Google Scholar] [CrossRef]
- Dávila González, I.; Moreno Benítez, F.; Quirce, S. Benralizumab: A New Approach for the Treatment of Severe Eosinophilic Asthma. J. Investig. Allergol. Clin. Immunol. 2019, 29, 84–93. [Google Scholar] [CrossRef]
- Nakajima, M.; Matsuyama, M.; Arai, N.; Yamada, H.; Hyodo, K.; Nonaka, M.; Kitazawa, H.; Yoshida, K.; Shigemasa, R.; Morishima, Y.; et al. Identification of Whole Blood Gene Expressions Correlated with Responsiveness to Benralizumab. J. Allergy Clin. Immunol. 2021, 147, 772–775. [Google Scholar] [CrossRef]
- FitzGerald, J.M.; Bleecker, E.R.; Nair, P.; Korn, S.; Ohta, K.; Lommatzsch, M.; Ferguson, G.T.; Busse, W.W.; Barker, P.; Sproule, S.; et al. Benralizumab, an Anti-Interleukin-5 Receptor α Monoclonal Antibody, as Add-on Treatment for Patients with Severe, Uncontrolled, Eosinophilic Asthma (CALIMA): A Randomised, Double-Blind, Placebo-Controlled Phase 3 Trial. Lancet 2016, 388, 2128–2141. [Google Scholar] [CrossRef]
- Gevaert, P.; Van Bruaene, N.; Cattaert, T.; Van Steen, K.; Van Zele, T.; Acke, F.; De Ruyck, N.; Blomme, K.; Sousa, A.R.; Marshall, R.P.; et al. Mepolizumab, a Humanized Anti–IL-5 MAb, as a Treatment Option for Severe Nasal Polyposis. J. Allergy Clin. Immunol. 2011, 128, 989–995.e8. [Google Scholar] [CrossRef] [Green Version]
- Tversky, J.; Lane, A.P.; Azar, A. Benralizumab Effect on Severe Chronic Rhinosinusitis with Nasal Polyps (CRSwNP): A Randomized Double-blind Placebo-controlled Trial. Clin. Exp. Allergy 2021, 51, 836–844. [Google Scholar] [CrossRef]
- Matsuno, O.; Minamoto, S. Rapid Effect of Benralizumab for Severe Asthma with Chronic Rhinosinusitis with Nasal Polyps. Pulm. Pharm. 2020, 64, 101965. [Google Scholar] [CrossRef]
- Agache, I.; Beltran, J.; Akdis, C.; Akdis, M.; Canelo-Aybar, C.; Canonica, G.W.; Casale, T.; Chivato, T.; Corren, J.; Del Giacco, S.; et al. Efficacy and Safety of Treatment with Biologicals (Benralizumab, Dupilumab, Mepolizumab, Omalizumab and Reslizumab) for Severe Eosinophilic Asthma. A Systematic Review for the EAACI Guidelines—Recommendations on the Use of Biologicals in Severe Asthma. Allergy 2020, 75, 1023–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachert, C.; Han, J.K.; Desrosiers, M.Y.; Gevaert, P.; Heffler, E.; Hopkins, C.; Tversky, J.R.; Barker, P.; Cohen, D.; Emson, C.; et al. Efficacy and Safety of Benralizumab in Chronic Rhinosinusitis with Nasal Polyps: A Randomized, Placebo-Controlled Trial. J. Allergy Clin. Immunol. 2022, 149, 1309–1317.e12. [Google Scholar] [CrossRef] [PubMed]
- Hoy, S.M. Dupilumab: A Review in Chronic Rhinosinusitis with Nasal Polyps. Drugs 2020, 80, 711–717. [Google Scholar] [CrossRef]
- Gevaert, P.; Saenz, R.; Corren, J.; Han, J.K.; Mullol, J.; Lee, S.E.; Ow, R.A.; Zhao, R.; Howard, M.; Wong, K.; et al. Long-Term Efficacy and Safety of Omalizumab for Nasal Polyposis in an Open-Label Extension Study. J. Allergy Clin. Immunol. 2022, 149, 957–965.e3. [Google Scholar] [CrossRef]
- Bachert, C.; Sousa, A.R.; Han, J.K.; Schlosser, R.J.; Sowerby, L.J.; Hopkins, C.; Maspero, J.F.; Smith, S.G.; Kante, O.; Karidi-Andrioti, D.E.; et al. Mepolizumab for Chronic Rhinosinusitis with Nasal Polyps: Treatment Efficacy by Comorbidity and Blood Eosinophil Count. J. Allergy Clin. Immunol. 2022, 149, 1711–1721.e6. [Google Scholar] [CrossRef]
- Cahill, K.N. Fevipiprant in CRSwNP and Comorbid Asthma: Wrong Target Population or Wrong PGD2 Receptor? J. Allergy Clin. Immunol. 2022, 149, 1587–1589. [Google Scholar] [CrossRef]
- Fokkens, W.J.; Lund, V.J.; Hopkins, C.; Hellings, P.W.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernal-Sprekelsen, M.; Mullol, J.; Alobid, I.; et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinol. J. 2020, 58, 1–464. [Google Scholar] [CrossRef] [PubMed]
- GEMA 5.1. Spanish Guide for the Management of Asthma. Available online: https://www.gemasma.com (accessed on 25 April 2023).
- Klimek, L.; Bachert, C.; Pfaar, O.; Becker, S.; Bieber, T.; Brehler, R.; Buhl, R.; Casper, I.; Chaker, A.; Czech, W.; et al. ARIA Guideline 2019: Treatment of Allergic Rhinitis in the German Health System. Allergol Sel. 2019, 3, 22–50. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Applied Biosystems. Guide to Performing Relative Quantification of Gene Expression Using Real-Time Quatitative PCR; Applied Biosystems: Waltham, MA, USA, 2008. [Google Scholar]
- Wickham, H.; Navarro, D.; Pedersen, T.L. Wickham H Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef] [Green Version]
- FastDummies. Fast Creation of Dummy (Binary) Columns ansd Rows from Categorical Variables. Available online: https://Cran.r-Project.Org/Web/Packages/FastDummies/Index.Html (accessed on 25 April 2023).
- Galili, T.; O’Callaghan, A.; Sidi, J.; Sievert, C. Heatmaply: An R Package for Creating Interactive Cluster Heatmaps for Online Publishing. Bioinformatics 2018, 34, 1600–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickham, H.; François, R.; Henry, L.; Müller, K. Dplyr: A Grammar of Data Manipulation. 2022. Available online: https://Github.Com/Tidyverse/Dplyr (accessed on 25 April 2023).
- Waring, E.; Quinn, M.; McNamara, A.; de La Rubia, E.A.; Zhu, H.; Ellis, S. Skimr: Compact and Flexible Summaries of Data. 2022. Available online: Https://Github.Com/Ropensci/Skimr/ (accessed on 25 April 2023).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. PROC: An Open-Source Package for R and S+ to Analyze and Compare ROC Curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Buchheit, K.M.; Dwyer, D.F.; Ordovas-Montanes, J.; Katz, H.R.; Lewis, E.; Vukovic, M.; Lai, J.; Bankova, L.G.; Bhattacharyya, N.; Shalek, A.K.; et al. IL-5Rα Marks Nasal Polyp IgG4- and IgE-Expressing Cells in Aspirin-Exacerbated Respiratory Disease. J. Allergy Clin. Immunol. 2020, 145, 1574–1584. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T.; Matsunaga, K. Late-onset asthma: Current perspectives. J. Asthma. Allergy 2018, 11, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Gevaert, P.; Hellman, C.; Lundblad, L.; Lundahl, J.; Holtappels, G.; van Cauwenberge, P.; Tavernier, J.; Bachert, C. Differential expression of the interleukin 5 receptor alpha isoforms in blood and tissue eosinophils of nasal polyp patients. Allergy 2009, 64, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Elena-Pérez, S.; Heredero-Jung, D.H.; García-Sánchez, A.; Estravís, M.; Martin, M.J.; Ramos-González, J.; Triviño, J.C.; Isidoro-García, M.; Sanz, C.; Dávila, I. Molecular Analysis of IL-5 Receptor Subunit Alpha as a Possible Pharmacogenetic Biomarker in Asthma. Front. Med. 2021, 7, 624576. [Google Scholar] [CrossRef]
- Kupczyk, M.; Kuna, P. Benralizumab: An Anti-IL-5 Receptor α Monoclonal Antibody in the Treatment of Asthma. Immunotherapy 2018, 10, 349–359. [Google Scholar] [CrossRef]
- Numata, T.; Miyagawa, H.; Nishioka, S.; Okuda, K.; Utsumi, H.; Hashimoto, M.; Minagawa, S.; Ishikawa, T.; Hara, H.; Araya, J.; et al. Efficacy of Benralizumab for Patients with Severe Eosinophilic Asthma: A Retrospective, Real-Life Study. BMC Pulm. Med. 2020, 20, 207. [Google Scholar] [CrossRef]
- Harrison, T.W.; Chanez, P.; Menzella, F.; Canonica, G.W.; Louis, R.; Cosio, B.G.; Lugogo, N.L.; Mohan, A.; Burden, A.; McDermott, L.; et al. Onset of Effect and Impact on Health-Related Quality of Life, Exacerbation Rate, Lung Function, and Nasal Polyposis Symptoms for Patients with Severe Eosinophilic Asthma Treated with Benralizumab (ANDHI): A Randomised, Controlled, Phase 3b Trial. Lancet Respir. Med. 2021, 9, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Takabayashi, T.; Asaka, D.; Okamoto, Y.; Himi, T.; Haruna, S.; Yoshida, N.; Kondo, K.; Yoshikawa, M.; Sakuma, Y.; Shibata, K.; et al. A Phase II, Multicenter, Randomized, Placebo-Controlled Study of Benralizumab, a Humanized Anti-IL-5R Alpha Monoclonal Antibody, in Patients with Eosinophilic Chronic Rhinosinusitis. Am. J. Rhinol. Allergy 2021, 35, 861–870. [Google Scholar] [CrossRef] [PubMed]
Gene | Sense | Sequence |
---|---|---|
IL5RA | Forward | 5′-TGAAAGAGTGAAGAACCGCC-3′ |
Reverse | 5′-CCTGGCCTGAGAAATGCG-3′ | |
GAPDH | Forward | 5′-CTCTGCTCCTCCTGTTCGAC-3′ |
Reverse | 5′-ACGACCAAATCCGTTGACTC-3′ | |
TBP | Forward | 5′-GAACATCATGGATCAGAACAACA-3′ |
Reverse | 5′-ATAGGGATTCCGGGAGTCAT-3′ |
n | Sex † | Age 1 | IgE 1 | Eosinophils 1 | |
---|---|---|---|---|---|
Controls | 102 | 0.67 | 56.97 ± 17.43 | 68.41 ± 113.96 | 132.43 ± 90.4 |
Patients | 154 | 0.47 | 54.25 ± 16.13 | 289.71 ± 556.85 | 444.23 ± 366.45 |
CRSwNP | 121 | 0.40 | 53.86 ± 16.16 | 329.71 ± 602.5 | 510.02 ± 382.9 |
CRSwNP with Atopy | 49 | 0.31 | 46.6 ± 15.26 | 526.72 ± 836.79 | 524.81 ± 307.57 |
CRSwNP without Atopy | 72 | 0.46 | 58.69 ± 14.98 | 191.2 ± 293.34 | 499.76 ± 429.61 |
CRSwNP with Asthma | 87 | 0.45 | 54.17 ± 15.61 | 400.05 ± 684.57 | 547.69 ± 403.02 |
CRSwNP with AA | 38 | 0.37 | 46.57 ± 15.53 | 609.35 ± 924.31 | 561.68 ± 323.65 |
CRSwNP with NAA | 49 | 0.51 | 59.92 ± 13.13 | 233.56 ± 332.45 | 536.1 ± 426.36 |
CRSwNP without Asthma | 34 | 0.27 | 53.06 ± 17.7 | 144.5 ± 206.1 | 415.83 ± 313.77 |
NAA without NP | 33 | 0.73 | 55.7 ± 16.19 | 149.04 ± 321.92 | 221.39 ± 171.93 |
N-ERD | 26 | 0.50 | 57.31 ± 12.57 | 304.81 ± 347.67 | 503.18 ± 386.98 |
IL5R/GAPDH | IL5R/TBP | ||||||
---|---|---|---|---|---|---|---|
n | Median | IQR | p | Median | IQR | p | |
Controls | 102 | 5.42 | 5.33 | - | 1.68 | 2.22 | - |
Patients | 154 | 9.9 | 14.4 | <0.001 | 3.48 | 4.81 | <0.001 |
CRSwNP | 121 | 10.3 | 16.2 | <0.001 | 4.12 | 6.55 | <0.001 |
CRSwNP with Atopy | 49 | 10.1 | 11.3 | <0.001 | 4.73 | 5.9 | <0.001 |
CRSwNP without Atopy | 72 | 11.4 | 17.5 | <0.001 | 3.88 | 4.97 | <0.001 |
CRSwNP with Asthma | 87 | 10.3 | 18.5 | <0.001 | 4.12 | 6.55 | <0.001 |
CRSwNP with AA | 38 | 10.2 | 20.1 | <0.001 | 4.92 | 7.49 | <0.001 |
CRSwNP with NAA | 49 | 10.7 | 18.1 | <0.001 | 3.49 | 5.59 | <0.001 |
CRSwNP without Asthma | 34 | 10.6 | 8.26 | <0.001 | 4.15 | 3.34 | <0.001 |
NAA without NP | 33 | 5.86 | 6.14 | 0.088 | 2.15 | 2.04 | 0.36 |
N-ERD | 26 | 11.4 | 13.1 | <0.001 | 4.04 | 5.42 | <0.001 |
n | IL5RA and IgE | IL5RA and EOS | |
---|---|---|---|
Controls | 102 | −0.1 (p = 0.339) | 0.46 (p < 0.001) |
Patients | 154 | 0.28 (p < 0.001) | 0.49 (p < 0.001) |
CRSwNP | 121 | 0.26 (p = 0.007) | 0.47 (p < 0.001) |
CRSwNP with Atopy | 49 | 0.38 (p = 0.011) | 0.54 (p < 0.001) |
CRSwNP without Atopy | 72 | 0.21 (p = 0.092) | 0.44 (p < 0.001) |
CRSwNP with Asthma | 87 | 0.27 (p = 0.017) | 0.49 (p < 0.001) |
CRSwNP with AA | 38 | 0.36 (p = 0.036) | 0.52 (p = 0.002) |
CRSwNP with NAA | 49 | 0.21 (p = 0.182) | 0.48 (p = 0.002) |
CRSwNP without Asthma | 34 | −0.01 (p = 0.952) | 0.18 (p = 0.333) |
NAA without NP | 33 | 0.31 (p = 0.085) | 0.48 (p = 0.007) |
N-ERD | 26 | 0.67 (p < 0.001) | 0.31 (p = 0.165) |
Neutrophils | Lymphocytes | Monocytes | Eosinophils | Basophils | Eos + Bas | ||
---|---|---|---|---|---|---|---|
IL5RA (vs. GAPDH) | r | −0.115 | 0.096 | 0.008 | 0.55 | 0.343 | 0.557 |
p | 0.082 | 0.147 | 0.903 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heredero-Jung, D.H.; Elena-Pérez, S.; García-Sánchez, A.; Estravís, M.; Isidoro-García, M.; Sanz, C.; Dávila, I. Interleukin 5 Receptor Subunit Alpha Expression as a Potential Biomarker in Patients with Nasal Polyposis. Biomedicines 2023, 11, 1966. https://doi.org/10.3390/biomedicines11071966
Heredero-Jung DH, Elena-Pérez S, García-Sánchez A, Estravís M, Isidoro-García M, Sanz C, Dávila I. Interleukin 5 Receptor Subunit Alpha Expression as a Potential Biomarker in Patients with Nasal Polyposis. Biomedicines. 2023; 11(7):1966. https://doi.org/10.3390/biomedicines11071966
Chicago/Turabian StyleHeredero-Jung, David Hansoe, Sandra Elena-Pérez, Asunción García-Sánchez, Miguel Estravís, María Isidoro-García, Catalina Sanz, and Ignacio Dávila. 2023. "Interleukin 5 Receptor Subunit Alpha Expression as a Potential Biomarker in Patients with Nasal Polyposis" Biomedicines 11, no. 7: 1966. https://doi.org/10.3390/biomedicines11071966
APA StyleHeredero-Jung, D. H., Elena-Pérez, S., García-Sánchez, A., Estravís, M., Isidoro-García, M., Sanz, C., & Dávila, I. (2023). Interleukin 5 Receptor Subunit Alpha Expression as a Potential Biomarker in Patients with Nasal Polyposis. Biomedicines, 11(7), 1966. https://doi.org/10.3390/biomedicines11071966