Effect of 10-Day Treatment with 50 mg Prednisolone Once-Daily on Haemostasis in Healthy Men—A Randomised Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design
2.2. Participants
2.3. Sample Size
2.4. Randomisation and Treatment
2.5. Procedures and Analyses
2.6. Outcomes
2.7. Statistical Analyses
3. Results
3.1. Primary Outcome
3.2. Secondary Outcomes
3.3. Ancillary Curcumin Analysis
3.4. Post-Hoc Power Calculation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hodgens, A.; Sharman, T. Corticosteroids. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Li, J.X.; Cummins, C.L. Fresh insights into glucocorticoid-induced diabetes mellitus and new therapeutic directions. Nat. Rev. Endocrinol. 2022, 18, 540–557. [Google Scholar] [CrossRef] [PubMed]
- Isidori, A.M.; Minnetti, M.; Sbardella, E.; Graziadio, C.; Grossman, A.B. Mechanisms in endocrinology: The spectrum of haemostatic abnormalities in glucocorticoid excess and defect. Eur. J. Endocrinol. 2015, 173, R101–R113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fardet, L.; Feve, B. Systemic glucocorticoid therapy: A review of its metabolic and cardiovascular adverse events. Drugs 2014, 74, 1731–1745. [Google Scholar] [CrossRef]
- Johannesdottir, S.A.; Horvath-Puho, E.; Dekkers, O.M.; Cannegieter, S.C.; Jorgensen, J.O.; Ehrenstein, V.; Vandenbroucke, J.P.; Pedersen, L.; Sorensen, H.T. Use of glucocorticoids and risk of venous thromboembolism: A nationwide population-based case-control study. JAMA Intern. Med. 2013, 173, 743–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuijver, D.J.F.; Majoor, C.J.; van Zaane, B.; Souverein, P.C.; de Boer, A.; Dekkers, O.M.; Buller, H.R.; Gerdes, V.E.A. Use of oral glucocorticoids and the risk of pulmonary embolism: A population-based case-control study. Chest 2013, 143, 1337–1342. [Google Scholar] [CrossRef]
- Wei, L.; MacDonald, T.M.; Walker, B.R. Taking glucocorticoids by prescription is associated with subsequent cardiovascular disease. Ann. Intern. Med. 2004, 141, 764–770. [Google Scholar] [CrossRef]
- Souverein, P.C.; Berard, A.; Van Staa, T.P.; Cooper, C.; Egberts, A.C.; Leufkens, H.G.; Walker, B.R. Use of oral glucocorticoids and risk of cardiovascular and cerebrovascular disease in a population based case-control study. Heart 2004, 90, 859–865. [Google Scholar] [CrossRef] [Green Version]
- Majoor, C.J.; Sneeboer, M.M.; de Kievit, A.; Meijers, J.C.; van der Poll, T.; Lutter, R.; Bel, E.H.; Kamphuisen, P.W. The influence of corticosteroids on hemostasis in healthy subjects. J. Thromb. Haemost. 2016, 14, 716–723. [Google Scholar] [CrossRef] [Green Version]
- Brotman, D.J.; Girod, J.P.; Posch, A.; Jani, J.T.; Patel, J.V.; Gupta, M.; Lip, G.Y.; Reddy, S.; Kickler, T.S. Effects of short-term glucocorticoids on hemostatic factors in healthy volunteers. Thromb. Res. 2006, 118, 247–252. [Google Scholar] [CrossRef]
- Jilma, B.; Cvitko, T.; Winter-Fabry, A.; Petroczi, K.; Quehenberger, P.; Blann, A.D. High dose dexamethasone increases circulating P-selectin and von Willebrand factor levels in healthy men. Thromb. Haemost. 2005, 94, 797–801. [Google Scholar] [CrossRef]
- Perry, C.G.; Spiers, A.; Cleland, S.J.; Lowe, G.D.; Petrie, J.R.; Connell, J.M. Glucocorticoids and insulin sensitivity: Dissociation of insulin’s metabolic and vascular actions. J. Clin. Endocrinol. Metab. 2003, 88, 6008–6014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, J.; Hermelin, D.; Levy, J.H. Viscoelastic testing: An illustrated review of technology and clinical applications. Res. Pract. Thromb. Haemost. 2023, 7, 100031. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.C.; Vieira Neto, L.; Kasuki, L.; Wildemberg, L.E.; Santos, C.V.; Castro, G.; Gouvea, G.; Veloso, O.C.; Gadelha, T.; Gadelha, M.R. Rotation thromboelastometry and the hypercoagulable state in Cushing’s syndrome. Clin. Endocrinol. 2014, 81, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Swiatkowska-Stodulska, R.; Skibowska-Bielinska, A.; Wisniewski, P.; Sworczak, K. Activity of selected coagulation factors in overt and subclinical hypercortisolism. Endocr. J. 2015, 62, 687–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kastelan, D.; Dusek, T.; Kraljevic, I.; Aganovic, I. Hypercoagulable state in Cushing’s syndrome is reversible following remission. Clin. Endocrinol. 2013, 78, 102–106. [Google Scholar] [CrossRef]
- van der Pas, R.; de Bruin, C.; Leebeek, F.W.; de Maat, M.P.; Rijken, D.C.; Pereira, A.M.; Romijn, J.A.; Netea-Maier, R.T.; Hermus, A.R.; Zelissen, P.M.; et al. The hypercoagulable state in Cushing’s disease is associated with increased levels of procoagulant factors and impaired fibrinolysis, but is not reversible after short-term biochemical remission induced by medical therapy. J. Clin. Endocrinol. Metab. 2012, 97, 1303–1310. [Google Scholar] [CrossRef] [Green Version]
- Van Zaane, B.; Nur, E.; Squizzato, A.; Dekkers, O.M.; Twickler, M.T.; Fliers, E.; Gerdes, V.E.; Buller, H.R.; Brandjes, D.P. Hypercoagulable state in Cushing’s syndrome: A systematic review. J. Clin. Endocrinol. Metab. 2009, 94, 2743–2750. [Google Scholar] [CrossRef] [Green Version]
- Fatti, L.M.; Bottasso, B.; Invitti, C.; Coppola, R.; Cavagnini, F.; Mannucci, P.M. Markers of activation of coagulation and fibrinolysis in patients with Cushing’s syndrome. J. Endocrinol. Invest. 2000, 23, 145–150. [Google Scholar] [CrossRef]
- Patrassi, G.M.; Dal Bo Zanon, R.; Boscaro, M.; Martinelli, S.; Girolami, A. Further studies on the hypercoagulable state of patients with Cushing’s syndrome. Thromb. Haemost. 1985, 54, 518–520. [Google Scholar] [CrossRef]
- Dal Bo Zanon, R.; Fornasiero, L.; Boscaro, M.; Cappellato, G.; Fabris, F.; Girolami, A. Increased factor VIII associated activities in Cushing’s syndrome: A probable hypercoagulable state. Thromb. Haemost. 1982, 47, 116–117. [Google Scholar]
- Klosowski, P.; Swiatkowska-Stodulska, R.; Stodulski, D.; Kaszubowski, M.; Karaszewski, B.; Sworczak, K. Effect of Glucocorticoid Administration in Intravenous Pulses on Selected Parameters of the Coagulation System. Int. J. Clin. Pract. 2022, 2022, 3144685. [Google Scholar] [CrossRef]
- van Zaane, B.; Nur, E.; Squizzato, A.; Gerdes, V.E.; Buller, H.R.; Dekkers, O.M.; Brandjes, D.P. Systematic review on the effect of glucocorticoid use on procoagulant, anti-coagulant and fibrinolytic factors. J. Thromb. Haemost. 2010, 8, 2483–2493. [Google Scholar] [CrossRef]
- Costallat, L.T.; Ribeiro, C.C.; Annichino-Bizzacchi, J.M. Antithrombin, protein S and protein C and antiphospholipid antibodies in systemic lupus erythematosus. Sangre 1998, 43, 345–348. [Google Scholar] [PubMed]
- Uddhammar, A.; Rantapaa-Dahlqvist, S.; Nilsson, T.K. Plasminogen activator inhibitor and von Willebrand factor in polymyalgia rheumatica. Clin. Rheumatol. 1992, 11, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Poredos, P.; Poredos, P. Involvement of Inflammation in Venous Thromboembolic Disease: An Update in the Age of COVID-19. Semin. Thromb. Hemost. 2022, 48, 93–99. [Google Scholar] [CrossRef]
- Ericson-Neilsen, W.; Kaye, A.D. Steroids: Pharmacology, complications, and practice delivery issues. Ochsner. J. 2014, 14, 203–207. [Google Scholar]
- Hellmann, P.H.; Bagger, J.I.; Carlander, K.R.; Hansen, K.B.; Forman, J.L.; Storling, J.; Chabanova, E.; Holst, J.; Vilsboll, T.; Knop, F.K. No effect of the turmeric root phenol curcumin on prednisolone-induced glucometabolic perturbations in men with overweight or obesity. Endocr. Connect. 2023, 12, e220334. [Google Scholar] [CrossRef] [PubMed]
- Dahlback, B. Advances in understanding pathogenic mechanisms of thrombophilic disorders. Blood 2008, 112, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Mahmoodi, B.K.; Brouwer, J.L.; Ten Kate, M.K.; Lijfering, W.M.; Veeger, N.J.; Mulder, A.B.; Kluin-Nelemans, H.C.; Van Der Meer, J. A prospective cohort study on the absolute risks of venous thromboembolism and predictive value of screening asymptomatic relatives of patients with hereditary deficiencies of protein S, protein C or antithrombin. J. Thromb. Haemost. 2010, 8, 1193–1200. [Google Scholar] [CrossRef]
- Emmerich, J.; Rosendaal, F.R.; Cattaneo, M.; Margaglione, M.; De Stefano, V.; Cumming, T.; Arruda, V.; Hillarp, A.; Reny, J.L. Combined effect of factor V Leiden and prothrombin 20210A on the risk of venous thromboembolism--pooled analysis of 8 case-control studies including 2310 cases and 3204 controls. Study Group for Pooled-Analysis in Venous Thromboembolism. Thromb. Haemost. 2001, 86, 809–816. [Google Scholar]
- Kerachian, M.A.; Cournoyer, D.; Harvey, E.J.; Chow, T.Y.; Neagoe, P.E.; Sirois, M.G.; Seguin, C. Effect of high-dose dexamethasone on endothelial haemostatic gene expression and neutrophil adhesion. J. Steroid. Biochem. Mol. Biol. 2009, 116, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.Q.; Whitworth, J.A.; Chesterman, C.N. Effects of cyclosporin A and dexamethasone on haemostatic and vasoactive functions of vascular endothelial cells. Blood. Coagul. Fibrinolysis 1995, 6, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Fish, R.J.; Neerman-Arbez, M. Fibrinogen gene regulation. Thromb. Haemost. 2012, 108, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Barettino, D.; Masia, S.; Monto, F.; Perez, P.; D’Ocon, P.; Moreno, L.; Muedra, V. Glucocorticoids as modulators of expression and activity of Antithrombin (At): Potential clinical relevance. Thromb. Res. 2015, 135, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Molander, V.; Bower, H.; Frisell, T.; Askling, J. Risk of venous thromboembolism in rheumatoid arthritis, and its association with disease activity: A nationwide cohort study from Sweden. Ann. Rheum. Dis. 2021, 80, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Colling, M.E.; Tourdot, B.E.; Kanthi, Y. Inflammation, Infection and Venous Thromboembolism. Circ. Res. 2021, 128, 2017–2036. [Google Scholar] [CrossRef] [PubMed]
- Wolberg, A.S.; Aleman, M.M.; Leiderman, K.; Machlus, K.R. Procoagulant activity in hemostasis and thrombosis: Virchow’s triad revisited. Anesth. Analg. 2012, 114, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Quarterman, C.; Shaw, M.; Johnson, I.; Agarwal, S. Intra- and inter-centre standardisation of thromboelastography (TEG(R)). Anaesthesia 2014, 69, 883–890. [Google Scholar] [CrossRef]
- Woodhams, B.; Girardot, O.; Blanco, M.J.; Colesse, G.; Gourmelin, Y. Stability of coagulation proteins in frozen plasma. Blood Coagul. Fibrinolysis 2001, 12, 229–236. [Google Scholar] [CrossRef]
Placebo (n = 17) | Prednisolone (n = 17) | |
---|---|---|
Sex, male, n (%) | 17 (100.0) | 17 (100.0) |
Age, years, mean (SD) | 29.2 (8.3) | 33.6 (11.5) |
BMI, kg/m2, mean (SD) | 25.7 (2.4) | 26.6 (2.7) |
Ethnicity | ||
Caucasian, n (%) | 17 (100.0) | 14 (82.4) |
Asian, n (%) | 0 (0.0) | 3 (17.7) |
Former smoker, n (%) | 1 (5.9) | 3 (17.7) |
Diabetes, n (%) | 1 (5.9) | 0 (0) |
Asthma, n (%) | 0 (0.0) | 1 (5.9) |
Atrial fibrillation, n (%) | 0 (0.0) | 1 (5.9) |
Thyroid disease, n (%) | 0 (0.0) | 0 (0.0) |
Inflammatory disease, n (%) | 0 (0.0) | 1 (5.9) |
Any bowel disease, n (%) | 2 (11.9) | 0 (0.0) |
Anticoagulant or antiplatelet treatment, n (%) | 0 (0.0) | 0 (0.0) |
HbA1c, mmol/mol, mean (SD) | 31.3 (3.1) | 31.4 (2.4) |
Measurement | Baseline (95% CI) | Δ Placebo (95% CI) | Δ Prednisolone (95% CI) | Missing Placebo/Prednisolone, n (%) |
---|---|---|---|---|
TEG:MA (mm) | 61.72 (60.64, 62.80, p < 0.0001) | 0.73 (−0.47, 1.92, p = 0.22) | −0.77 (−2.48, 0.94, p = 0.37) | 0 (0.00)/2 (11.76) |
TEG:R (min) | 5.36 (4.82, 5.89, p < 0.0001) | 0.14 (−0.51, 0.79, p = 0.66) | −0.39 (−1.25, 0.48, p = 0.37) | 0 (0.00)/2 (11.76) |
TEG:Angle (degrees) | 64.43 (62.06, 66.82, p < 0.0001) | 2.46 (0.38, 4.53, p = 0.02) | −1.53 (−4.10, 1.04, p = 0.23) | 0 (0.00)/2 (11.76) |
TEG:K (min) | 1.78 (1.61, 1.95, p < 0.0001) | −0.08 (−0.25, 0.09, p = 0.33) | 0.02 (−0.22, 0.25, p = 0.89) | 0 (0.00)/2 (11.76) |
TEG:LY30 (%) | 0.60 (0.29, 0.90, p = 0.0003) | 0.11 (−0.44, 0.66, p = 0.68) | 0.25 (−0.56, 1.06, p = 0.54) | 0 (0.00)/2 (11.76) |
Platelet count (×109/L) | 231.58 (213.80, 249.35, p < 0.0001) | 8.11 (−7.64, 23.86, p = 0.30) | 8.65 (−14.08, 31.38, p = 0.44) | 0 (0.00)/1 (5.88) |
VWF:Ag (kIU/L) | 1.10 (0.97, 1.24, p < 0.0001) | −0.05 (−0.16, 0.06, p = 0.38) | 0.31 (0.15, 0.46, p = 0.0004) | 0 (0.00)/(0.00) |
VWF:RCo (kIU/L) | 0.80 (0.71, 0.89, p < 0.0001) | −0.03 (−0.09, 0.03, p = 0.31) | 0.15 (0.07, 0.23, p = 0.0006) | 0 (0.00)/0 (0.00) |
INR | 1.07 (1.02, 1.11, p < 0.0001) | −0.02 (−0.05, 0.02, p = 0.42) | 0.02 (−0.27, 0.07, p = 0.34) | 1 (5.88)/1 (5.88) |
APTT (seconds) | 27.99 (26.79, 29.19, p < 0.0001) | 0.09 (−2.11, 2.28, p = 0.94) | −0.47 (−3.82, 2.87, p = 0.78) | 0 (0.00)/3 (17.65) |
Prothrombin (kIU/L) | 0.98 (0.93, 1.02, p < 0.0001) | 0.009 (−0.03, 0.05, p = 0.63) | 0.05 (−0.001, 0.11, p = 0.05) | 0 (0.00)/1 (5.88) |
Fibrinogen (µmol/L) | 6.94 (6.42, 7.46, p < 0.0001) | 0.13 (−0.36, 0.62, p = 0.59) | −1.02 (−1.69, −0.36, p = 0.004) | 2 (11.76)/3 (17.65) |
D-dimer (mg FEU/L) | 0.26 (0.21, 0.32, p < 0.0001) | 0.06 (0.01, 0.11, p = 0.01) | −0.05 (−0.12, 0.01, p = 0.11) | 1 (5.88)/1 (5.88) |
Antithrombin (kIU/L) | 0.94 (0.92, 0.97, p < 0.0001) | 0.01 (−0.02, 0.04, p = 0.38) | 0.05 (0.01, 0.09, p = 0.013) | 1 (5.88)/2 (11.76) |
Protein C (kIU/L) | 0.97 (0.89, 1.05, p < 0.0001) | −0.02 (−0.10, 0.07, p = 0.67) | 0.30 (0.19, 0.41, p < 0.0001) | 0 (0.00)/2 (11.76) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamstrup, P.; Rastoder, E.; Hellmann, P.H.; Sivapalan, P.; Larsen, E.L.; Vestbo, J.; Ulrik, C.S.; Goetze, J.P.; Knop, F.K.; Jensen, J.U.S. Effect of 10-Day Treatment with 50 mg Prednisolone Once-Daily on Haemostasis in Healthy Men—A Randomised Placebo-Controlled Trial. Biomedicines 2023, 11, 2052. https://doi.org/10.3390/biomedicines11072052
Kamstrup P, Rastoder E, Hellmann PH, Sivapalan P, Larsen EL, Vestbo J, Ulrik CS, Goetze JP, Knop FK, Jensen JUS. Effect of 10-Day Treatment with 50 mg Prednisolone Once-Daily on Haemostasis in Healthy Men—A Randomised Placebo-Controlled Trial. Biomedicines. 2023; 11(7):2052. https://doi.org/10.3390/biomedicines11072052
Chicago/Turabian StyleKamstrup, Peter, Ema Rastoder, Pernille Høgh Hellmann, Pradeesh Sivapalan, Emil List Larsen, Jørgen Vestbo, Charlotte Suppli Ulrik, Jens P. Goetze, Filip Krag Knop, and Jens Ulrik Stæhr Jensen. 2023. "Effect of 10-Day Treatment with 50 mg Prednisolone Once-Daily on Haemostasis in Healthy Men—A Randomised Placebo-Controlled Trial" Biomedicines 11, no. 7: 2052. https://doi.org/10.3390/biomedicines11072052
APA StyleKamstrup, P., Rastoder, E., Hellmann, P. H., Sivapalan, P., Larsen, E. L., Vestbo, J., Ulrik, C. S., Goetze, J. P., Knop, F. K., & Jensen, J. U. S. (2023). Effect of 10-Day Treatment with 50 mg Prednisolone Once-Daily on Haemostasis in Healthy Men—A Randomised Placebo-Controlled Trial. Biomedicines, 11(7), 2052. https://doi.org/10.3390/biomedicines11072052