Paramacular Choriocapillaris Atrophy
Abstract
:1. Introduction
2. Case Report
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Genead, M.A.; Fishman, G.A.; Grover, S. Hereditary Choroidal Dystrophy. In Retina, 5th ed.; Ryan, S.J., Sadda, S.R., Hinton, D.R., Wilkinson, C.P., Wiedemann, P., Schachat, A.P., Eds.; Saunders: Philadephia, PA, USA, 2013; Volume 2, pp. 891–898. [Google Scholar]
- Bax, B.M.; Valkenburg, D.; Lambertus, S.; Klevering, B.J.; Boon, C.J.F.; Holz, F.G.; Cremers, F.P.M.; Fleckenstein, M.; Hoyng, C.B.; Lindner, M. Foveal sparing in central retinal dystrophies. Investig. Ophthalmol. Vis. Sci. 2019, 60, 3456–3467. [Google Scholar] [CrossRef] [Green Version]
- Westeneng-van Haaften, S.C.; Boon, C.J.; Cremers, F.P.; Hoefsloot, L.H.; den Hollander, A.I.; Hoyng, C.B. Clinical and genetic characteristics of late-onset Stargardt’s disease. Ophthalmology 2012, 119, 1199–1210. [Google Scholar] [CrossRef] [PubMed]
- Krill, A.E.; Archer, D. Classification if the choroidal atrophies. Am. J. Opthal. 1971, 72, 562–585. [Google Scholar] [CrossRef]
- Noble, K.G.; Carr, R.E.; Siegel, I.M. Fluorescein angiography of the heriditary choroidal dystrophies. Br. J. Opthalmol. 1977, 61, 43–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, T.A.; Mullins, R.F.; Wagner, A.H.; Andorf, J.L.; Johnston, R.M.; Bakall, B.B.; Deluca, A.P.; Fishman, G.A.; Lam, B.L.; Weleber, R.G.; et al. Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease. Hum. Mol. Genet. 2013, 22, 5136–5145. [Google Scholar] [CrossRef] [PubMed]
- Boon, C.J.; van Schooneveld, M.J.; den Hollander, A.I.; van Lith-Verhoeven, J.J.; Zonneveld-Vrieling, M.N.; Theelen, T.; Cremers, F.P.M.; Hoyng, C.B.; Klevering, B.J. Mutations in the peripherin/RDS gene are an important cause of multifocal pattern dystrophy simulating STGD1/fundus flavimaculatus. Br. J. Ophthalmol. 2007, 91, 1504–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puech, B.; De Laey, J.J. Paramacular Choriocapillaris Atrophy. In Inherited Chorioretinal Dystrophies; Puech, B., De Laey, J.J., Holder, G.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 392–397. [Google Scholar]
- van Huet, R.A.C.; Bax, N.M.; Haaften, S.C.W.-V.; Muhamad, M.; Zonneveld-Vrieling, M.N.; Hoefsloot, L.H.; Cremers, F.P.M.; Boon, C.J.F.; Klevering, B.J.; Hoyng, C.B. Foveal sparing in Stargardt disease. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7467–7478. [Google Scholar] [CrossRef] [Green Version]
- Lindner, M.; Böker, A.; Mauschitz, M.M.; Göbel, A.P.; Fimmers, R.; Brinkmann, C.K.; Schmitz-Valckenberg, S.; Schmid, M.; Holz, F.G.; Fleckenstein, M. Directional kinetics of geographic atrophy progression in age-related macular degeneration with foveal sparing. Ophthalmology 2015, 122, 1356–1365. [Google Scholar] [CrossRef]
- Thompson, D.A.; Ali, R.R.; Banin, E.; Branham, K.E.; Flannery, J.G.; Gamm, D.M.; Hauswirth, W.W.; Heckenlively, J.R.; Iannaccone, A.; Jayasundera, K.T.; et al. Advancing Therapeutic Strategies for Inherited Retinal Degeneration: Recommendations from the Monaciano Symposium. Investig. Ophthalmol. Vis. Sci. 2015, 56, 918–931. [Google Scholar] [CrossRef] [Green Version]
- Yanoff, M.; Sassani, J.W. Uvea. In Ocular Pathology, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 357–379. [Google Scholar]
- Narayanan, R. Posterior polar annular and hemispheric choroidal and retinal dystrophy: Optical coherence tomographic angiography description of a rare case. Indian J. Ophthalmol. 2018, 66, 1874–1876. [Google Scholar] [CrossRef]
- Broadgate, S.; Yu, J.; Downes, S.M.; Halford, S. Unravelling the Genetics of Inherited Retinal Dystrophies: Past, Present and Future. Prog. Retin. Eye Res. 2017, 59, 53–96. [Google Scholar] [CrossRef]
- Bird, A.C.; Bok, D. Why the macula? Eye 2018, 32, 858–862. [Google Scholar] [CrossRef] [Green Version]
- Léveillard, T.; Mohand-Saïd, S.; Lorentz, O.; Hicks, D.; Fintz, A.-C.; Clérin, E.; Simonutti, M.; Forster, V.; Cavusoglu, N.; Chalmel, F.; et al. Identification and characterization of rod-derived cone viability factor. Nat. Genet. 2004, 36, 755–759. [Google Scholar] [CrossRef] [PubMed]
- Curcio, C.A.; Millican, C.L.; Allen, K.A.; Kalina, R.E. Aging of the human photoreceptor mosaic: Evidence for selective vulnerability of rods in central retina. Investig. Ophthalmol. Vis. Sci. 1993, 34, 3278–3296. [Google Scholar]
- Snodderly, D.M.; Sandstrom, M.M.; Leung, I.Y.; Zucker, C.L.; Neuringer, M. Retinal pigment epithelial cell distribution in central retina of rhesus monkeys. Investig. Ophthalmol. Vis. Sci. 2002, 43, 2815–2818. [Google Scholar]
- Greenstein, V.C.; Hood, D.C.; Ritch, R.; Steinberger, D.; Carr, R.E. S (blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma. Investig. Ophthalmol. Vis. Sci. 1989, 30, 1732–1737. [Google Scholar]
- Aleman, T.S.; Cideciyan, A.V.; Windsor, E.A.M.; Schwartz, S.B.; Swider, M.; Chico, J.D.; Sumaroka, A.; Pantelyat, A.Y.; Duncan, K.G.; Gardner, L.M.; et al. Macular pigment and lutein supplementation in ABCA4-associated retinal degenerations. Invest Ophthalmol Vis Sci. 2007, 48, 1319–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Li, W.; Dai, X.; Kong, F.; Zheng, Q.; Zhou, X.; Lü, F.; Chang, B.; Rohrer, B.; Hauswirth, W.W.; et al. Gene therapy rescues cone structure and function in the 3-month-old rd12 mouse: A model for midcourse RPE65 leber congenital amaurosis. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.R.; Sarra, G.M.; Stephens, C.; Alwis, M.D.; Bainbridge, J.W.; Munro, P.M.; Fauser, S.; Reichel, M.B.; Kinnon, C.; Hunt, D.M.; et al. Restoration of Photoreceptor Ultrastructure and Function in Retinal Degeneration Slow Mice by Gene Therapy. Nat. Genet. 2000, 25, 306–310. [Google Scholar] [CrossRef]
- Allocca, M.; Doria, M.; Petrillo, M.; Colella, P.; Garcia-Hoyos, M.; Gibbs, D.; Kim, S.R.; Maguire, A.; Rex, T.S.; Di Vicino, U.; et al. Serotype-Dependent Packaging of Large Genes in Adeno-Associated Viral Vectors Results in Effective Gene Delivery in Mice. J. Clin. Investig. 2008, 118, 1955–1964. [Google Scholar] [CrossRef]
- Ach, T.; Huisingh, C.; McGwin, G., Jr.; Messinger, J.D.; Zhang, T.; Bentley, M.J.; Gutierrez, D.B.; Ablonczy, Z.; Smith, R.T.; Sloan, K.R.; et al. Quantitative autofluorescence and cell density maps of the human retinal pigment epithelium. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4832–4841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ach, T.; Tolstik, E.; Messinger, J.D.; Zarubina, A.V.; Heintzmann, R.; Curcio, C.A. Lipofuscin redistribution and loss accompanied by cytoskeletal stress in retinal pigment epithelium of eyes with age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3242–3252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Right Eye | Left Eye | |
---|---|---|
Best-corrected visual acuity | 0.7 | 0.6 |
Intraocular pressure (mmHg) | 15 | 14 |
Anterior segment | no signs of inflammation; | no signs of inflammation; |
pupils | round, correctly positioned, | round, correctly positioned, |
normal pupil response; | normal pupil response; | |
lens (LOCS II) | NI, CII, and PI | NI, CII, and PI |
Fundus | ||
optic disc | clear margins; | clear margins; |
no signs of pallor (Figure 1A) | no signs of pallor (Figure 1B) | |
macula | fovea with spared structure | fovea with spared structure; |
symmetrical, concentric zone | symmetrical, concentric zone | |
of grayish atrophy within the | of grayish atrophy within the | |
temporal arcades with | temporal arcades with | |
visible choroidal vessels | visible choroidal vessels | |
(Figure 1A) | (Figure 1B) | |
vessels | no signs of attenuation | no signs of attenuation |
(Figure 1B) | ||
paravascular accumulation of | ||
pigment close to the boundary | ||
of the appearance preserved | ||
and atrophic chorioretina | ||
(Figure 1A) | ||
periphery | normal; no signs of bone cells | normal; no signs of bone cells |
or retinal degeneration | or retinal degeneration |
Right Eye | Left Eye | |
---|---|---|
Fundus autofluorescence | ||
(Canon CX-1) | hyperautofluorescence of the fovea; | symmetrical findings (Figure 2B) |
zone of the outer hypoautofluorescence | ||
corresponding to the atrophic macular area; | ||
numerous hyper/hypoautofluorescences | ||
at the boundary of the appearance preserved | ||
and atrophic chorioretina, with the optic disc | ||
and upper temporal arcade showing the | ||
greatest intensity (Figure 2A) | ||
Fluorescein angiography | ||
(Canon CX-1) | hypofluorescent zone due to the lack of filing of | symmetrical findings |
early phase | the retinal microvasculature and choriocapillaris; | (Figure 3C,D) |
hyperfluorescence surrounding the fovea and the | ||
margins of the atrophic area; | ||
“window defect” in peripapillary area and in the | ||
upper temporal arcade (Figure 3A) | ||
late phase | ||
leakage from the preserved choriocapillaris | ||
(Figure 3B) | ||
SD-OCT | ||
(CZM Cirrus HD-OCT) | ||
| average RNFL thickness—normal (Figure 4) | average RNFL thickness—normal |
(Figure 4) | ||
| the ELM, ellipsoid zone, and RPE are still | symmetrical findings (Figure 5B) |
present in the fovea; visible disruption | ||
of the outer layers with circular intraretinal | ||
edema at the boundary of the fovea and | ||
parafovea; atrophy of the outer layers in | ||
parafoveal area; rosette-like structures; | ||
visible Sattler’s and Haller’s layer | ||
(Figure 5A) | ||
SD-OCTA | ||
reduced retinal capillary plexus and | symmetrical findings (Figure 6D–F) | |
choriocapillaris (Figure 6A–C) | ||
Computerized | ||
perimetry | relative and absolute central and paracentral | more affected; |
(Octopus) | scotomas; MD 12.7 dB (Figure 7A) | MD 18.0 dB (Figure 7B) |
Electroretinogram | ||
diffuse photoreceptor reduction as well as | more pronounced | |
reduced oscillatory potentials with delayed | ||
implicit time |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bućan, I.; Bućan, K. Paramacular Choriocapillaris Atrophy. Biomedicines 2023, 11, 2074. https://doi.org/10.3390/biomedicines11072074
Bućan I, Bućan K. Paramacular Choriocapillaris Atrophy. Biomedicines. 2023; 11(7):2074. https://doi.org/10.3390/biomedicines11072074
Chicago/Turabian StyleBućan, Ivona, and Kajo Bućan. 2023. "Paramacular Choriocapillaris Atrophy" Biomedicines 11, no. 7: 2074. https://doi.org/10.3390/biomedicines11072074
APA StyleBućan, I., & Bućan, K. (2023). Paramacular Choriocapillaris Atrophy. Biomedicines, 11(7), 2074. https://doi.org/10.3390/biomedicines11072074