DRD2, DRD3, and HTR2A Single-Nucleotide Polymorphisms Involvement in High Treatment Resistance to Atypical Antipsychotic Drugs
Abstract
:1. Introduction
2. Methods
2.1. Genetic Analyses
2.2. Statistical Analyses
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- López-Muñoz, F.; Alamo, C.; Cuenca, E.; Shen, W.; Clervoy, P.; Rubio, G. History of the Discovery and Clinical Introduction of Chlorpromazine. Ann. Clin. Psychiatry 2005, 17, 113–135. [Google Scholar] [CrossRef]
- Howes, O.D.; Kapur, S. The Dopamine Hypothesis of Schizophrenia: Version III—The Final Common Pathway. Schizophr. Bull. 2009, 35, 549–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Psychiatric Association. The American Psychiatric Association Practice Guideline for the Treatment of Patients with Schizophrenia; American Psychiatric Association Publishing: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence (NICE). Psychosis and Schizophrenia in Adults: Prevention and Management Clinical Guideline; National Institute for Health and Care Excellence: London, UK, 2014. [Google Scholar]
- National Institute for Health and Care Excellence (NICE). Bipolar Disorder: Assessment and Management Clinical Guideline; National Institute for Health and Care Excellence: London, UK, 2014. [Google Scholar]
- National Institute for Health and Care Excellence (NICE). Depression in Adults: Treatment and Management NICE Guideline; National Institute for Health and Care Excellence: London, UK, 2022. [Google Scholar]
- Levenberg, K.; Cordner, Z.A. Bipolar Depression: A Review of Treatment Options. Gen. Psychiatr. 2022, 35, 100760. [Google Scholar] [CrossRef] [PubMed]
- del Casale, A.; Sorice, S.; Padovano, A.; Simmaco, M.; Ferracuti, S.; Lamis, D.A.; Rapinesi, C.; Sani, G.; Girardi, P.; Kotzalidis, G.D.; et al. Psychopharmacological Treatment of Obsessive-Compulsive Disorder (OCD). Curr. Neuropharmacol. 2019, 17, 710–736. [Google Scholar] [CrossRef] [PubMed]
- Compean, E.; Hamner, M.; Johnson, R.H. Posttraumatic Stress Disorder with Secondary Psychotic Features (PTSD-SP): Diagnostic and Treatment Challenges HHS Public Access. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 88, 265–275. [Google Scholar] [CrossRef]
- American Psychiatric Association. The American Psychiatric Association Practice Guideline on the Use of Antipsychotics to Treat Agitation or Psychosis in Patients with Dementia; American Psychiatric Association: Washington, DC, USA, 2016; ISBN 0-89042-680-5. [Google Scholar]
- Salazar De Pablo, G.; Vaquerizo-Serrano, J.; Moreno, C.; Cabras, A.; Arango, C.; Hern Andez, P.; Veenstra-Vanderweele, J.; Simonoff, E.; Fusar-Poli, P.; Santosh, P.; et al. Systematic Review and Meta-Analysis: Efficacy of Pharmacological Interventions for Irritability and Emotional Dysregulation in Autism Spectrum Disorder and Predictors of Response. J. Am. Acad. Child. Adolesc. Psychiatry 2022, 62, 151–168. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Chiang, C.H.; Tseng, M.C.M.; Tam, K.W.; Loh, E.W. Effects of Quetiapine on Sleep: A Systematic Review and Meta-Analysis of Clinical Trials. Eur. Neuropsychopharmacol. 2023, 67, 22–36. [Google Scholar] [CrossRef]
- Correll, C.U.; Howes, O.D. Treatment-Resistant Schizophrenia: Definition, Predictors, and Therapy Options. J. Clin. Psychiatry 2021, 82, 36608. [Google Scholar] [CrossRef]
- Howes, O.D.; McCutcheon, R.; Agid, O.; de Bartolomeis, A.; van Beveren, N.J.M.; Birnbaum, M.L.; Bloomfield, M.A.P.; Bressan, R.A.; Buchanan, R.W.; Carpenter, W.T.; et al. Treatment-Resistant Schizophrenia: Treatment Response and Resistance in Psychosis (TRRIP) Working Group Consensus Guidelines on Diagnosis and Terminology. Am. J. Psychiatry 2017, 174, 216–229. [Google Scholar] [CrossRef]
- Siskind, D.; McCartney, L.; Goldschlager, R.; Kisely, S. Clozapine v. First- and Second-Generation Antipsychotics in Treatment-Refractory Schizophrenia: Systematic Review and Meta-Analysis. Br. J. Psychiatry 2016, 209, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Wagner, E.; Siafis, S.; Fernando, P.; Falkai, P.; Honer, W.G.; Röh, A.; Siskind, D.; Leucht, S.; Hasan, A. Efficacy and Safety of Clozapine in Psychotic Disorders—A Systematic Quantitative Meta-Review. Transl. Psychiatry 2021, 11, 487. [Google Scholar] [CrossRef]
- Lally, J.; Gaughran, F.; Timms, P.; Curran, S. Treatment-Resistant Schizophrenia: Current Insights on the Pharmacogenomics of Antipsychotics. Pharmgenomics Pers. Med. 2016, 9, 117–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizuno, Y.; McCutcheon, R.A.; Brugger, S.P.; Howes, O.D. Heterogeneity and Efficacy of Antipsychotic Treatment for Schizophrenia with or without Treatment Resistance: A Meta-Analysis. Neuropsychopharmacology 2020, 45, 622–631. [Google Scholar] [CrossRef] [Green Version]
- Malhi, G.S.; Byrow, Y. Is Treatment-Resistant Depression a Useful Concept? BMJ Ment Health 2016, 19, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Berlim, M.T.; Turecki, G. What Is the Meaning of Treatment Resistant/Refractory Major Depression (TRD)? A Systematic Review of Current Randomized Trials. Eur. Neuropsychopharmacol. 2007, 17, 696–707. [Google Scholar] [CrossRef] [PubMed]
- Papp, M.; Cubała, W.J.; Swiecicki, L.; Newman-Tancredi, A.; Willner, P. Perspectives for Therapy of Treatment-resistant Depression. Br. J. Pharmacol. 2022, 179, 4181–4200. [Google Scholar] [CrossRef]
- FDA. CDER. Mccrayk Major Depressive Disorder: Developing Drugs for Treatment Guidance for Industry. Draft Guidance. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/major-depressive-disorder-developing-drugs-treatment (accessed on 20 March 2023).
- Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, S.H.; Lam, R.W.; Mcintyre, R.S.; Valé Rie Tourjman, S.; Bhat, V.; Blier, P.; Hasnain, M.; Jollant, F.; Levitt, A.J.; Macqueen, G.M.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder: Section 3. Pharmacological Treatments. Can. J. Psychiatry 2016, 61, 540–560. [Google Scholar] [CrossRef] [Green Version]
- American Psychological Association. Clinical Practice Guideline for the Treatment of Depression across Three Age Cohorts. 2019. Available online: https://www.apa.org/depression-guideline/guideline.pdf (accessed on 20 March 2023).
- Nuñez, N.A.; Joseph, B.; Pahwa, M.; Kumar, R.; Resendez, M.G.; Prokop, L.J.; Veldic, M.; Seshadri, A.; Biernacka, J.M.; Frye, M.A.; et al. Augmentation Strategies for Treatment Resistant Major Depression: A Systematic Review and Network Meta-Analysis. J. Affect. Disord. 2022, 302, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Ruberto, V.L.; Jha, M.K.; Murrough, J.W. Pharmaceuticals Pharmacological Treatments for Patients with Treatment-Resistant Depression. Pharmaceuticals 2020, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, G.H.; Bahji, A.; Undurraga, J.; Tondo, L.; Baldessarini, R.J. Efficacy and Tolerability of Combination Treatments for Major Depression: Antidepressants plus Second-Generation Antipsychotics vs. Esketamine vs. Lithium. J. Psychopharmacol. 2021, 35, 890–900. [Google Scholar] [CrossRef] [PubMed]
- Jukic, M.; Milosavljević, F.; Molden, E.; Ingelman-Sundberg, M. Feature Review Pharmacogenomics in Treatment of Depression and Psychosis: An Update. Trends Pharmacol. Sci. 2022, 43, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Kam, H.; Jeong, H. Pharmacogenomic Biomarkers and Their Applications in Psychiatry. Genes 2020, 11, 1445. [Google Scholar] [CrossRef] [PubMed]
- Zubiaur, P.; Soria-Chacartegui, P.; Villapalos-García, G.; Gordillo-Perdomo, J.J.; Abad-Santos, F. The Pharmacogenetics of Treatment with Olanzapine. Pharmacogenomics 2021, 22, 939–958. [Google Scholar] [CrossRef] [PubMed]
- Vaiman, E.E.; Shnayder, N.A.; Novitsky, M.A.; Dobrodeeva, V.S.; Goncharova, P.S.; Bochanova, E.N.; Sapronova, M.R.; Popova, T.E.; Tappakhov, A.A.; Nasyrova, R.F. Biomedicines Candidate Genes Encoding Dopamine Receptors as Predictors of the Risk of Antipsychotic-Induced Parkinsonism and Tardive Dyskinesia in Schizophrenic Patients. Biomedicines 2021, 9, 879. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, X.; Xiang, Q.; Zhou, S.; Zhao, N.; Xie, Q.; Zhao, X.; Zhou, Y.; Cui, Y. Association between Dopamine Receptor Gene Polymorphisms and Effects of Risperidone Treatment: A Systematic Review and Meta-Analysis. Basic. Clin. Pharmacol. Toxicol. 2019, 124, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Gluskin, B.S.; Mickey, B.J. Genetic Variation and Dopamine D2 Receptor Availability: A Systematic Review and Meta-Analysis of Human in Vivo Molecular Imaging Studies. Transl. Psychiatry 2016, 6, e747. [Google Scholar] [CrossRef] [Green Version]
- Lawford, B.R.; Barnes, M.; Swagell, C.D.; Connor, J.P.; Burton, S.C.; Heslop, K.; Voisey, J.; Morris, C.P.; Nyst, P.; Noble, E.P.; et al. DRD2/ANKK1 Taq1A (Rs 1800497 C>T) Genotypes Are Associated with Susceptibility to Second Generation Antipsychotic-Induced Akathisia. J. Psychopharmacol. 2013, 27, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Kibitov, A.A.; Kiryanova, E.M.; Salnikova, L.I.; Bure, I.V.; Shmukler, A.B.; Kibitov, A.O. The ANKK1/DRD2 Gene TaqIA Polymorphism (Rs1800497) Is Associated with the Severity of Extrapyramidal Side Effects of Haloperidol Treatment in CYP2D6 Extensive Metabolizers with Schizophrenia Spectrum Disorders. Drug Metab. Pers. Ther. 2022, 38, 133–142. [Google Scholar] [CrossRef]
- Werner, F.-M.; Coveñas, R. Risk Genes in Schizophrenia and Their Importance in Choosing the Appropriate Antipsychotic Treatment. Curr. Pharm. Des. 2021, 27, 3281–3292. [Google Scholar] [CrossRef]
- Han, J.; Li, Y.; Wang, X. Neuropsychiatric Disease and Treatment Dovepress Potential Link between Genetic Polymorphisms of Catechol-O-Methyltransferase and Dopamine Receptors and Treatment Efficacy of Risperidone on Schizophrenia. Neuropsychiatr. Dis. Treat. 2017, 2017, 2935–2943. [Google Scholar] [CrossRef] [Green Version]
- Gressier, F.; Porcelli, S.; Calati, R.; Serretti, A. Pharmacogenetics of Clozapine Response and Induced Weight Gain: A Comprehensive Review and Meta-Analysis. Eur. Neuropsychopharmacol. 2016, 26, 163–185. [Google Scholar] [CrossRef]
- van der Horst, M.Z.; Papadimitriou, G.; Luykx, J.J. Genetic Determinants Associated with Response to Clozapine in Schizophrenia: An Umbrella Review. Psychiatr. Genet. 2022, 32, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Quednow, B.B.; Hatzimanolis, A.; Riě, I.; Rovný, R.; Besterciová, D.; Riě Canský, I. Genetic Determinants of Gating Functions: Do We Get Closer to Understanding Schizophrenia Etiopathogenesis? Front. Psychiatry 2020, 11, 550225. [Google Scholar] [CrossRef]
- Blasi, G.; de Virgilio, C.; Papazacharias, A.; Taurisano, P.; Gelao, B.; Fazio, L.; Ursini, G.; Sinibaldi, L.; Andriola, I.; Masellis, R.; et al. Converging Evidence for the Association of Functional Genetic Variation in the Serotonin Receptor 2a Gene with Prefrontal Function and Olanzapine Treatment. JAMA Psychiatry 2013, 70, 921–930. [Google Scholar] [CrossRef] [PubMed]
- View of DRD3 Ser9Gly Polymorphism and Its Influence on Risperidone Response in Autistic Children. Available online: https://journals.library.ualberta.ca/jpps/index.php/JPPS/article/view/29529/21388 (accessed on 27 January 2023).
- Remington, G.; Addington, D.; Honer, W.; Ismail, Z.; Raedler, T.; Teehan, M. Canadian Schizophrenia Guidelines Guidelines for the Pharmacotherapy of Schizophrenia in Adults. Can. J. Psychiatry 2017, 62, 604–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2013. [Google Scholar]
- World Health Organization. International Classification of Diseases and Related Health Problems, 10th ed.; World Health Organization: Geneva, Switzerland, 1994.
- Rodriguez, S.; Gaunt, T.R.; Day, I.N.M. Hardy-Weinberg Equilibrium Testing of Biological Ascertainment for Mendelian Randomization Studies. Am. J. Epidemiol. 2009, 169, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Niitsu, T.; Fabbri, C.; Bentini, F.; Serretti, A. Pharmacogenetics in Major Depression: A Comprehensive Meta-Analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 45, 183–194. [Google Scholar] [CrossRef]
- Yao, J.; Pan, Y.; Ding, M.; Pang, H.; Wang, B. Association between DRD2 (Rs1799732 and Rs1801028) and ANKK1 (Rs1800497) Polymorphisms and Schizophrenia: A Meta-Analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168B, 1–13. [Google Scholar] [CrossRef]
- Yan, P.; Song, M.; Gao, B.; Wang, S.; Wang, S.; Li, J.; Fang, H.; Wang, C.; Shi, J. Association of the Genetic Polymorphisms of Metabolizing Enzymes, Transporters, Target Receptors and Their Interactions with Treatment Response to Olanzapine in Chinese Han Schizophrenia Patients. Psychiatry Res. 2020, 293, 113470. [Google Scholar] [CrossRef]
- Oishi, K.; Kanahara, N.; Takase, M.; Oda, Y.; Nakata, Y.; Niitsu, T.; Ishikawa, M.; Sato, Y.; Iyo, M. Vulnerable Combinations of Functional Dopaminergic Polymorphisms to Late-Onset Treatment Resistant Schizophrenia. PLoS ONE 2018, 13, e0207133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terzić, T.; Kastelic, M.; Dolžan, V.; Plesničar, B.K. Genetic Polymorphisms in Dopaminergic System and Treatment-Resistant Schizophrenia. Psychiatr. Danub. 2016, 28, 127–131. [Google Scholar]
- Habibzadeh, P.; Nemati, A.; Dastsooz, H.; Taghipour-Sheshdeh, A.; Mariam Paul, P.; Sahraian, A.; Ali Faghihi, M. Investigating the Association between Common DRD2/ANKK1 Genetic Polymorphisms and Schizophrenia: A Meta-Analysis. J. Genet. 2021, 100, 59. [Google Scholar] [CrossRef] [PubMed]
- Palmer, D.S.; Howrigan, D.P.; Chapman, S.B.; Adolfsson, R.; Bass, N.; Blackwood, D.; Boks, M.P.M.; Chen, C.-Y.; Churchhouse, C.; Corvin, A.P.; et al. Exome Sequencing in Bipolar Disorder Identifies AKAP11 as a Risk Gene Shared with Schizophrenia. Nat. Genet. 2022, 54, 541–547. [Google Scholar] [CrossRef]
- Wang, S.; Che, T.; Levit, A.; Shoichet, B.K.; Wacker, D.; Roth, B.L. Structure of the D2 Dopamine Receptor Bound to the Atypical Antipsychotic Drug Risperidone. Nature 2018, 555, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Voisey, J.; Swagell, C.D.; Hughes, I.P.; van Daal, A.; Noble, E.P.; Lawford, B.R.; Young, R.M.; Morris, C.P. A DRD2 and ANKK1 Haplotype Is Associated with Nicotine Dependence. Psychiatry Res. 2012, 196, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Prasad, P.; Ambekar, A.; Vaswani, M. Dopamine D2 Receptor Polymorphisms and Susceptibility to Alcohol Dependence in Indian Males: A Preliminary Study. BMC Med. Genet. 2010, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Murphy, G.; Cross, A.J.; Sansbury, L.S.; Bergen, A.; Laiyemo, A.O.; Albert, P.S.; Wang, Z.; Yu, B.; Lehman, T.; Kalidindi, A.; et al. Dopamine D2 Receptor Polymorphisms and Adenoma Recurrence in the Polyp Prevention Trial. Int. J. Cancer 2009, 124, 2148–2151. [Google Scholar] [CrossRef] [Green Version]
- Lencz, T.; Robinson, D.G.; Napolitano, B.; Sevy, S.; Kane, J.M.; Goldman, D.; Malhotra, A.K. DRD2 Promoter Region Variation Predicts Antipsychotic-Induced Weight Gain in First Episode Schizophrenia. Pharmacogenet Genom. 2010, 20, 569–572. [Google Scholar] [CrossRef] [Green Version]
- Niewczas, M.; Grzywacz, A.; Leźnicka, K.; Chmielowiec, K.; Chmielowiec, J.; Maciejewska-Skrendo, A.; Ruzbarsky, P.; Masiak, J.; Czarny, W.; Cięszczyk, P. Association between Polymorphism Rs1799732 of DRD2 Dopamine Receptor Gene and Personality Traits among MMA Athletes. Genes 2021, 12, 1217. [Google Scholar] [CrossRef]
- Ivanov, H.Y.; Velinov, B.; Kyosovksa, G.; Grigorova, D.; Shopov, P. Exploring Pharmacogenetic Variation in a Bulgarian Psychiatric Cohort. Folia Med. 2021, 63, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Maitra, S.; Sarkar, K.; Ghosh, P.; Karmakar, A.; Bhattacharjee, A.; Sinha, S.; Mukhopadhyay, K. Potential Contribution of Dopaminergic Gene Variants in ADHD Core Traits and Co-Morbidity: A Study on Eastern Indian Probands. Cell. Mol. Neurobiol. 2014, 34, 549–564. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Fan, H.; Xu, Y.; Zhang, K.; Huang, X.; Zhu, Y.; Sui, M.; Sun, G.; Feng, K.; Xu, B.; et al. Converging Evidence Implicates the Dopamine D3 Receptor Gene in Vulnerability to Schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011, 156B, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.H.; Close, S.; Farmen, M.; Downing, A.M.; Breier, A.; Houston, J.P. Dopamine Receptor D3 Genotype Association with Greater Acute Positive Symptom Remission with Olanzapine Therapy in Predominately Caucasian Patients with Chronic Schizophrenia or Schizoaffective Disorder. Hum. Psychopharmacol. 2008, 23, 267–274. [Google Scholar] [CrossRef]
- Kuipers, E.; Yesufu-Udechuku, A.; Taylor, C.; Kendall, T. Management of Psychosis and Schizophrenia in Adults: Summary of Updated NICE Guidance. BMJ 2014, 348, g1173. [Google Scholar] [CrossRef] [Green Version]
- Lundstrom, K.; Turpin, M.P. Proposed Schizophrenia-Related Gene Polymorphism: Expression of the Ser9Gly Mutant Human Dopamine D3 Receptor with the Semliki Forest Virus System. Biochem. Biophys. Res. Commun. 1996, 225, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Zhang, W.; Lv, Y.; Cai, S.; Xu, H.; Wang, J.; Huang, L. Effects of the 5-HT2A and DRD3 Genotypes on Cortical Morphology and Functional Connectivity Density in Drug-Naïve First Episode Schizophrenia. Schizophr. Res. 2020, 216, 213–221. [Google Scholar] [CrossRef]
- Lucae, S.; Ising, M.; Horstmann, S.; Baune, B.T.; Arolt, V.; Müller-Myhsok, B.; Holsboer, F.; Domschke, K. HTR2A Gene Variation Is Involved in Antidepressant Treatment Response. Eur. Neuropsychopharmacol. 2010, 20, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Horstmann, S.; Lucae, S.; Menke, A.; Hennings, J.M.; Ising, M.; Roeske, D.; Müller-Myhsok, B.; Holsboer, F.; Binder, E.B. Polymorphisms in GRIK4, HTR2A, and FKBP5 Show Interactive Effects in Predicting Remission to Antidepressant Treatment. Neuropsychopharmacology 2010, 35, 727–740. [Google Scholar] [CrossRef] [Green Version]
- McMahon, F.J.; Buervenich, S.; Charney, D.; Lipsky, R.; Rush, A.J.; Wilson, A.F.; Sorant, A.J.M.; Papanicolaou, G.J.; Laje, G.; Fava, M.; et al. Variation in the Gene Encoding the Serotonin 2A Receptor Is Associated with Outcome of Antidepressant Treatment. Am. J. Hum. Genet. 2006, 78, 804–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, L.C.; Clarke, W.P.; Berg, K.A. Atypical Antipsychotics and Inverse Agonism at 5-HT2 Receptors. Curr. Pharm. Des. 2015, 21, 3732–3738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laje, G.; Cannon, D.M.; Allen, A.S.; Klaver, J.M.; Peck, S.A.; Liu, X.; Manji, H.K.; Drevets, W.C.; McMahon, F.J. Genetic Variation in HTR2A Influences Serotonin Transporter Binding Potential as Measured Using PET and [11C]DASB. Int. J. Neuropsychopharmacol. 2010, 13, 715–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.; Xu, W.; Yuan, J.; Wang, G.; Cheng, Z. Meta-Analysis of Association between the -1438A/G (Rs6311) Polymorphism of the Serotonin 2A Receptor Gene and Major Depressive Disorder. Neurol. Res. 2013, 35, 7–14. [Google Scholar] [CrossRef] [PubMed]
N | χ2 | N | χ2 | |||||
---|---|---|---|---|---|---|---|---|
Gender (f/m) | LTR | 42/44 | χ2 = 0.004 p = 0.95 FDR p = 0.95 | Diagnosis (SCZ/MD/OD) | LTR | 14/48/24 | χ2 = 19.464 p < 0.001 * FDR p < 0.001 * | |
HTR | 20/23 | HTR | 23/14/6 | |||||
Total | 62/67 | Total | 37/62/30 | |||||
CN (no/yes) | LTR | 83/3 | χ2 = 47.218 p < 0.001 * FDR p < 0.001 * | SGAs (no/yes) | LTR | 0/86 | χ2 = 12.585 p = 0.002 * FDR p = 0.007 * | |
HTR | 18/25 | HTR | 6/37 | |||||
Total | 101/28 | Total | 6/123 | |||||
Mean | Std. Deviation | Std. Error | U | Z | p | p (FDR) | ||
Age, years | LTR | 40.10 | 16.78 | 1.80 | 1683.5 | −0.828 | 0.408 | 0.476 |
HTR | 37.47 | 16.05 | 2.44 | |||||
Total | 39.22 | 16.52 | 1.45 | |||||
Chlorpromazine equivalents, mg | LTR | 220.08 | 225.29 | 27.94 | 561 | −4.334 | < 0.001 * | < 0.001 * |
HTR | 492.28 | 340.44 | 56.74 | |||||
Total | 317.10 | 300.36 | 29.90 | |||||
Illness Duration, years | LTR | 13.25 | 9.12 | 1.27 | 401 | −2.622 | 0.009 * | 0.025 * |
HTR | 19.64 | 10.18 | 2.03 | |||||
Total | 15.36 | 9.88 | 1.13 |
DRD2 rs1800497 | A|A | A|G | G|G | χ2 | Uncorrected p | p (FDR) |
LTR (%) | 3 (3.5) | 17 (19.8) | 66 (76.7) | |||
HTR (%) | 3 (7) | 9 (20.9) | 31 (72.1) | |||
TOT (%) | 6 (4.7) | 26 (20.2) | 97 (75.2) | 0.852 | 0.653 | 0.703 |
DRD2 rs1799732 | D|D | D|I | I|I | χ2 | Uncorrected p | p (FDR) |
LTR (%) | - | 14 (16.3) | 72 (83.7) | |||
HTR (%) | - | 1 (2.3) | 42 (97.7) | |||
TOT (%) | - | 15 (11.6) | 114 (88.4) | 4.159 | 0.041 * | 0.096 |
DRD2 rs1801028 | C|C | C|G | G|G | χ2 | Uncorrected p | p (FDR) |
LTR (%) | - | 6 (7) | 80 (93) | |||
HTR (%) | 1 (2.3) | 6 (14) | 36 (83.7) | |||
TOT (%) | 1 (0.8) | 12 (9.3) | 116 (89.9) | 3.776 | 0.151 | 0.302 |
DRD3 rs6280 | C|C | C|T | T|T | χ2 | Uncorrected p | p (FDR) |
LTR (%) | 14 (16.3) | 37 (43) | 35 (40.7) | |||
HTR (%) | 3 (7) | 19 (44.2) | 21 (48.8) | |||
TOT (%) | 17 (13.2) | 56 (43.4) | 56 (43.4) | 2.329 | 0.312 | 0.437 |
HTR2A rs6314 | A|A | A|G | G|G | χ2 | Uncorrected p | p (FDR) |
LTR (%) | - | 19 (22.1) | 67 (77.9) | |||
HTR (%) | 1 (2.3) | 10 (23.3) | 32 (74.4) | |||
TOT (%) | 1 (0.8) | 29 (22.5) | 99 (76.7) | 2.063 | 0.357 | 0.437 |
HTR2A rs7997012 | A|A | A|G | G|G | χ2 | Uncorrected p | p (FDR) |
LTR (%) | 12 (14) | 28 (32.6) | 46 (53.5) | |||
HTR (%) | 3 (7) | 19 (44.2) | 21 (48.8) | |||
TOT (%) | 15 (11.6) | 47 (36.4) | 67 (51.9) | 2.383 | 0.304 | 0.437 |
HTR2A rs6311 | C|C | C|T | T|T | χ2 | Uncorrected p | p (FDR) |
LTR (%) | 19 (22.1) | 48 (55.8) | 19 (22.1) | |||
HTR (%) | 15 (34.9) | 17 (39.5) | 11 (25.6) | |||
TOT (%) | 34 (26.4) | 65 (50.4) | 30 (23.3) | 3.437 | 0.179 | 0.313 |
χ2 | df | p | Model Summary | −2 Log Likelihood | Nagelkerke R2 | ||||
---|---|---|---|---|---|---|---|---|---|
Omnibus Tests of Model Coefficients | 45.772 | 11 | <0.001 * | 118.449 | 0.415 | ||||
Hosmer and Lemeshow Test | 9.240 | 8 | 0.322 | ||||||
B | S.E. | Wald | df | p | OR | 95% CI for OR | |||
Lower | Upper | ||||||||
a | Age | −0.004 | 0.015 | 0.053 | 1 | 0.818 | 0.996 | 0.967 | 1.027 |
Sex (female) | 0.578 | 0.490 | 1.390 | 1 | 0.238 | 1.783 | 0.682 | 4.661 | |
Diagnosis | 20.965 | 2 | <0.001 * | ||||||
Schizophrenia | 2.528 | 0.734 | 11.846 | 1 | 0.001 * | 12.526 | 2.969 | 52.845 | |
Mood disorders | −0.587 | 0.685 | 0.733 | 1 | 0.392 | 0.556 | 0.145 | 2.131 | |
HTR2A rs6311 | 3.648 | 2 | 0.161 | ||||||
HTR2A rs6311 C|C | 0.823 | 0.659 | 1.559 | 1 | 0.212 | 2.277 | 0.626 | 8.287 | |
HTR2A rs6311 C|T | −0.277 | 0.597 | 0.215 | 1 | 0.643 | 0.758 | 0.235 | 2.443 | |
DRD3 rs6280 | 10.274 | 2 | 0.006 * | ||||||
DRD3 rs6280 C|C | −2.916 | 0.965 | 9.137 | 1 | 0.003 * | 0.054 | 0.008 | 0.359 | |
DRD3 rs6280 C|T | 0.184 | 0.509 | 0.130 | 1 | 0.718 | 1.202 | 0.443 | 3.258 | |
HTR2A rs7997012 | 6.082 | 2 | 0.048 * | ||||||
HTR2A rs7997012 A|A | −0.868 | 0.927 | 0.878 | 1 | 0.349 | 0.420 | 0.068 | 2.580 | |
HTR2A rs7997012 A|G | 1.057 | 0.517 | 4.188 | 1 | 0.041 * | 2.879 | 1.046 | 7.927 | |
DRD2 rs1799732 D|I | −2.491 | 1.195 | 4.347 | 1 | 0.037 * | 0.083 | 0.008 | 0.861 | |
Constant | −1.427 | 0.985 | 2.097 | 1 | 0.148 | 0.240 | |||
B | S.E. | Wald | df | p | OR | 95% CI for OR | |||
Lower | Upper | ||||||||
b | Age | −0.004 | 0.015 | 0.053 | 1 | 0.818 | 0.996 | 0.967 | 1.027 |
Sex (male) | −0.578 | 0.490 | 1.390 | 1 | 0.238 | 0.561 | 0.215 | 1.467 | |
Diagnosis | 20.965 | 2 | <0.001 * | ||||||
Mood disorders | −3.115 | 0.706 | 19.463 | 1 | <0.001 * | 0.044 | 0.011 | 0.177 | |
Other mental disorders | −2.528 | 0.734 | 11.846 | 1 | 0.001 * | 0.080 | 0.019 | 0.337 | |
HTR2A rs6311 | 3.648 | 2 | 0.161 | ||||||
HTR2A rs6311 C|T | −1.100 | 0.581 | 3.578 | 1 | 0.059 | 0.333 | 0.107 | 1.041 | |
HTR2A rs6311 T|T | −0.823 | 0.659 | 1.559 | 1 | 0.212 | 0.439 | 0.121 | 1.598 | |
DRD3 rs6280 | 10.274 | 2 | 0.006 * | ||||||
DRD3 rs6280 C|T | 3.100 | 0.985 | 9.912 | 1 | 0.002 * | 22.195 | 3.222 | 152.873 | |
DRD3 rs6280 T|T | 2.916 | 0.965 | 9.137 | 1 | 0.003 * | 18.470 | 2.788 | 122.362 | |
HTR2A rs7997012 | 6.082 | 2 | 0.048 * | ||||||
HTR2A rs7997012 A|G | 1.926 | 0.966 | 3.974 | 1 | 0.046 * | 6.859 | 1.033 | 45.550 | |
HTR2A rs7997012 G|G | 0.868 | 0.927 | 0.878 | 1 | 0.349 | 2.383 | 0.388 | 14.645 | |
DRD2 rs1799732 I|I | 2.491 | 1.195 | 4.347 | 1 | 0.037 * | 12.079 | 1.161 | 125.663 | |
Constant | −3.774 | 1.860 | 4.116 | 1 | 0.042 * | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Casale, A.; Simmaco, M.; Modesti, M.N.; Zocchi, C.; Arena, J.F.; Bilotta, I.; Alcibiade, A.; Sarli, G.; Cutillo, L.; Antonelli, G.; et al. DRD2, DRD3, and HTR2A Single-Nucleotide Polymorphisms Involvement in High Treatment Resistance to Atypical Antipsychotic Drugs. Biomedicines 2023, 11, 2088. https://doi.org/10.3390/biomedicines11072088
Del Casale A, Simmaco M, Modesti MN, Zocchi C, Arena JF, Bilotta I, Alcibiade A, Sarli G, Cutillo L, Antonelli G, et al. DRD2, DRD3, and HTR2A Single-Nucleotide Polymorphisms Involvement in High Treatment Resistance to Atypical Antipsychotic Drugs. Biomedicines. 2023; 11(7):2088. https://doi.org/10.3390/biomedicines11072088
Chicago/Turabian StyleDel Casale, Antonio, Maurizio Simmaco, Martina Nicole Modesti, Clarissa Zocchi, Jan Francesco Arena, Irene Bilotta, Alessandro Alcibiade, Giuseppe Sarli, Lorenzo Cutillo, Giulia Antonelli, and et al. 2023. "DRD2, DRD3, and HTR2A Single-Nucleotide Polymorphisms Involvement in High Treatment Resistance to Atypical Antipsychotic Drugs" Biomedicines 11, no. 7: 2088. https://doi.org/10.3390/biomedicines11072088
APA StyleDel Casale, A., Simmaco, M., Modesti, M. N., Zocchi, C., Arena, J. F., Bilotta, I., Alcibiade, A., Sarli, G., Cutillo, L., Antonelli, G., La Spina, E., De Luca, O., Preissner, R., Borro, M., Gentile, G., Girardi, P., & Pompili, M. (2023). DRD2, DRD3, and HTR2A Single-Nucleotide Polymorphisms Involvement in High Treatment Resistance to Atypical Antipsychotic Drugs. Biomedicines, 11(7), 2088. https://doi.org/10.3390/biomedicines11072088