Nicotinamide Deteriorates Post-Stroke Immunodepression Following Cerebral Ischemia–Reperfusion Injury in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Grouping
2.2. Transient Middle Cerebral Artery Occlusion (MCAo) Model
2.3. Quantitative Measurement of Brain Infarction Volume and Swelling
2.4. Neurobehavioral Testing and Body Weight Measurements
2.5. Lipopolysaccharide (LPS) Injection
2.6. Isolation of Cells from the Brain, Spleen, Thymus, and Blood
2.7. Flow Cytometry
2.8. Measurement of Evans Blue Leakage
2.9. Statistical Analysis
3. Results
3.1. Nicotinamide Reduces Brain Infarction and Improves Neurobehavior Outcomes Following Ischemia–Reperfusion Injury
3.2. Nicotinamide Decreases Brain Inflammation Following Ischemia–Reperfusion Injury
3.3. Nicotinamide Suppresses Microglial Activation Induced by Lipopolysaccharide (LPS)
3.4. Nicotinamide Ameliorates BBB Leakage Following MCAo
3.5. Nicotinamide Reduces Circulating B Cells in the Thymus and Blood Following MCAo
3.6. Nicotinamide Retards B Cell Maturation in the Spleen Following MCAo
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdullahi, W.; Tripathi, D.; Ronaldson, P.T. Blood-brain barrier dysfunction in ischemic stroke: Targeting tight junctions and transporters for vascular protection. Am. J. Physiol. Cell. Physiol. 2018, 315, C343–C356. [Google Scholar] [CrossRef] [PubMed]
- Malone, K.; Amu, S.; Moore, A.C.; Waeber, C. The immune system and stroke: From current targets to future therapy. Immunol. Cell Biol. 2019, 97, 5–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prass, K.; Meisel, C.; Hoflich, C.; Braun, J.; Halle, E.; Wolf, T.; Ruscher, K.; Victorov, I.V.; Priller, J.; Dirnagl, U.; et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J. Exp. Med. 2003, 198, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Faura, J.; Bustamante, A.; Miró-Mur, F.; Montaner, J. Stroke-induced immunosuppression: Implications for the prevention and prediction of post-stroke infections. J. Neuroinflamm. 2021, 18, 127. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Ding, J.; Zhao, Z.; Qian, C.; Luan, Y.; Teng, G.J. Nicotinamide Administration Improves Remyelination after Stroke. Neural Plast. 2017, 2017, 7019803. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.C.; Holden, R.C.; Rasmussen, S.M.; Hoane, M.R.; Hylin, M.J. Effects of nicotinamide on spatial memory and inflammation after juvenile traumatic brain injury. Behav. Brain Res. 2019, 364, 123–132. [Google Scholar] [CrossRef]
- Alam, S.I.; Ur Rehman, S.; Ok Kim, M. Nicotinamide Improves Functional Recovery via Regulation of the RAGE/JNK/NF-κB Signaling Pathway after Brain Injury. J. Clin. Med. 2019, 8, 271. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Cheng, J.; Yu, J.; Liu, R.; Ma, H.; Zhao, Y. Nicotinamide mononucleotides alleviated neurological impairment via anti-neuroinflammation in traumatic brain injury. Int. J. Med. Sci. 2023, 20, 307–317. [Google Scholar] [CrossRef]
- Huang, N.K.; Wan, F.J.; Tseng, C.J.; Tung, C.S. Nicotinamide attenuates methamphetamine-induced striatal dopamine depletion in rats. Neuroreport 1997, 8, 1883–1885. [Google Scholar] [CrossRef]
- Klaidman, L.K.; Mukherjee, S.K.; Hutchin, T.P.; Adams, J.D. Nicotinamide as a precursor for NAD+ prevents apoptosis in the mouse brain induced by tertiary-butylhydroperoxide. Neurosci. Lett. 1996, 206, 5–8. [Google Scholar] [CrossRef]
- Ungerstedt, J.S.; Blomback, M.; Soderstrom, T. Nicotinamide is a potent inhibitor of proinflammatory cytokines. Clin. Exp. Immunol. 2003, 131, 48–52. [Google Scholar] [CrossRef]
- Fujimura, M.; Tominaga, T.; Yoshimoto, T. Nicotinamide inhibits inducible nitric oxide synthase mRNA in primary rat glial cells. Neurosci. Lett. 1997, 228, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Sikora, A.; Szajerski, P.; Piotrowski, Ł.; Zielonka, J.; Adamus, J.; Marcinek, A.; Gębicki, J. Radical scavenging properties of nicotinamide and its metabolites. Radiat. Phys. Chem. 2008, 77, 259–266. [Google Scholar] [CrossRef]
- Liu, J.; Zong, Z.; Zhang, W.; Chen, Y.; Wang, X.; Shen, J.; Yang, C.; Liu, X.; Deng, H. Nicotinamide Mononucleotide Alleviates LPS-Induced Inflammation and Oxidative Stress via Decreasing COX-2 Expression in Macrophages. Front. Mol. Biosci. 2021, 8, 702107. [Google Scholar] [CrossRef]
- Pellat-Deceunynck, C.; Wietzerbin, J.; Drapier, J.C. Nicotinamide inhibits nitric oxide synthase mRNA induction in activated macrophages. Biochem. J. 1994, 297 Pt 1, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Hiromatsu, Y.; Sato, M.; Tanaka, K.; Ishisaka, N.; Kamachi, J.; Nonaka, K. Inhibitory effects of nicotinamide on intercellular adhesion molecule-1 expression on cultured human thyroid cells. Immunology 1993, 80, 330–332. [Google Scholar]
- Yang, J.; Klaidman, L.K.; Nalbandian, A.; Oliver, J.; Chang, M.L.; Chan, P.H.; Adams, J.D., Jr. The effects of nicotinamide on energy metabolism following transient focal cerebral ischemia in Wistar rats. Neurosci. Lett. 2002, 333, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Wu, T.S.; Chang, G.L.; Li, C.Y.; Chen, T.Y.; Lee, M.Y.; Chen, H.Y.; Maynard, K.I. Delayed treatment with nicotinamide inhibits brain energy depletion, improves cerebral microperfusion, reduces brain infarct volume, but does not alter neurobehavioral outcome following permanent focal cerebral ischemia in Sprague Dawley rats. Curr. Neurovasc. Res. 2006, 3, 203–213. [Google Scholar] [CrossRef]
- Chong, Z.Z.; Maiese, K. Enhanced tolerance against early and late apoptotic oxidative stress in mammalian neurons through nicotinamidase and sirtuin mediated pathways. Curr. Neurovasc. Res. 2008, 5, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.Y.; Lin, M.H.; Lee, W.T.; Huang, S.Y.; Chen, Y.H.; Lee, A.C.; Lin, H.W.; Lee, E.J. Nicotinamide inhibits nuclear factor-kappa B translocation after transient focal cerebral ischemia. Crit. Care Med. 2012, 40, 532–537. [Google Scholar] [CrossRef]
- Huang, S.Y.; Chang, C.H.; Hung, H.Y.; Lin, Y.W.; Lee, E.J. Neuroanatomical and electrophysiological recovery in the contralateral intact cortex following transient focal cerebral ischemia in rats. Neurol. Res. 2018, 40, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Tai, S.H.; Huang, S.Y.; Chao, L.C.; Lin, Y.W.; Huang, C.C.; Wu, T.S.; Shan, Y.S.; Lee, A.H.; Lee, E.J. Lithium upregulates growth-associated protein-43 (GAP-43) and postsynaptic density-95 (PSD-95) in cultured neurons exposed to oxygen-glucose deprivation and improves electrophysiological outcomes in rats subjected to transient focal cerebral ischemia following a long-term recovery period. Neurol. Res. 2022, 44, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Swanson, R.A.; Morton, M.T.; Tsao-Wu, G.; Savalos, R.A.; Davidson, C.; Sharp, F.R. A semiautomated method for measuring brain infarct volume. J. Cereb. Blood Flow Metab. 1990, 10, 290–293. [Google Scholar] [CrossRef]
- Huang, S.Y.; Tai, S.H.; Chang, C.C.; Tu, Y.F.; Chang, C.H.; Lee, E.J. Magnolol protects against ischemic-reperfusion brain damage following oxygen-glucose deprivation and transient focal cerebral ischemia. Int. J. Mol. Med. 2018, 41, 2252–2262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, W.M.; Rinker, L.G.; Lessov, N.S.; Hazel, K.; Hill, J.K.; Stenzel-Poore, M.; Eckenstein, F. Lack of interleukin-6 expression is not protective against focal central nervous system ischemia. Stroke 2000, 31, 1715–1720. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Y.; Hung, Y.C.; Chen, T.Y.; Huang, S.Y.; Wang, Y.H.; Lee, W.T.; Wu, T.S.; Lee, E.J. Melatonin improves presynaptic protein, SNAP-25, expression and dendritic spine density and enhances functional and electrophysiological recovery following transient focal cerebral ischemia in rats. J. Pineal Res. 2009, 47, 260–270. [Google Scholar] [CrossRef]
- Jones, B.J.; Roberts, D.J. A rotarod suitable for quantitative measurements of motor incoordination in naive mice. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 1968, 259, 211. [Google Scholar] [CrossRef]
- Campanella, M.; Sciorati, C.; Tarozzo, G.; Beltramo, M. Flow cytometric analysis of inflammatory cells in ischemic rat brain. Stroke 2002, 33, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Brandenburg, S.; Blank, A.; Bungert, A.D.; Vajkoczy, P. Distinction of Microglia and Macrophages in Glioblastoma: Close Relatives, Different Tasks? Int. J. Mol. Sci. 2021, 22, 194. [Google Scholar] [CrossRef]
- Lee, W.T.; Tai, S.H.; Lin, Y.W.; Wu, T.S.; Lee, E.J. YC-1 reduces inflammatory responses by inhibiting nuclear factor-κB translocation in mice subjected to transient focal cerebral ischemia. Mol. Med. Rep. 2018, 18, 2043–2051. [Google Scholar] [CrossRef] [Green Version]
- Stevens, S.L.; Bao, J.; Hollis, J.; Lessov, N.S.; Clark, W.M.; Stenzel-Poore, M.P. The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice. Brain Res. 2002, 932, 110–119. [Google Scholar] [CrossRef]
- Alvarez, J.I.; Teale, J.M. Breakdown of the blood brain barrier and blood-cerebrospinal fluid barrier is associated with differential leukocyte migration in distinct compartments of the CNS during the course of murine NCC. J. Neuroimmunol. 2006, 173, 45–55. [Google Scholar] [CrossRef]
- Eugenin, E.A.; Branes, M.C.; Berman, J.W.; Saez, J.C. TNF-alpha plus IFN-gamma induce connexin43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. J. Immunol. 2003, 170, 1320–1328. [Google Scholar] [CrossRef] [PubMed]
- Dirnagl, U.; Klehmet, J.; Braun, J.S.; Harms, H.; Meisel, C.; Ziemssen, T.; Prass, K.; Meisel, A. Stroke-induced immunodepression: Experimental evidence and clinical relevance. Stroke 2007, 38, 770–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loder, F.; Mutschler, B.; Ray, R.J.; Paige, C.J.; Sideras, P.; Torres, R.; Lamers, M.C.; Carsetti, R. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med. 1999, 190, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Yanez, M.; Jhanji, M.; Murphy, K.; Gower, R.M.; Sajish, M.; Jabbarzadeh, E. Nicotinamide Augments the Anti-Inflammatory Properties of Resveratrol through PARP1 Activation. Sci. Rep. 2019, 9, 10219. [Google Scholar] [CrossRef] [Green Version]
- Daniel, J.; Marechal, Y.; Van Gool, F.; Andris, F.; Leo, O. Nicotinamide inhibits B lymphocyte activation by disrupting MAPK signal transduction. Biochem. Pharmacol. 2007, 73, 831–842. [Google Scholar] [CrossRef]
- Chiles, T.C. Regulation and function of cyclin D2 in B lymphocyte subsets. J. Immunol. 2004, 173, 2901–2907. [Google Scholar] [CrossRef]
- Hurn, P.D.; Subramanian, S.; Parker, S.M.; Afentoulis, M.E.; Kaler, L.J.; Vandenbark, A.A.; Offner, H. T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J. Cereb. Blood Flow Metab. 2007, 27, 1798–1805. [Google Scholar]
- Yilmaz, G.; Arumugam, T.V.; Stokes, K.Y.; Granger, D.N. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 2006, 113, 2105–2112. [Google Scholar] [CrossRef] [Green Version]
- Tai, S.H.; Hung, Y.C.; Lee, E.J.; Lee, A.C.; Chen, T.Y.; Shen, C.C.; Chen, H.Y.; Lee, M.Y.; Huang, S.Y.; Wu, T.S. Melatonin protects against transient focal cerebral ischemia in both reproductively active and estrogen-deficient female rats: The impact of circulating estrogen on its hormetic dose-response. J. Pineal Res. 2011, 50, 292–303. [Google Scholar] [CrossRef] [PubMed]
Neurological Behavioral Score | ||||
---|---|---|---|---|
Weight Loss (g) | 28-Point Clinical Scale | Rota-Rod (s) | ||
Fixed Speed | Accelerated Speed | |||
Vehicle (n = 9) | 6.7 ± 0.8 | 17.1 (10.47~23.73) | 107.6 ± 52.8 | 78.2 ± 37.6 |
Nicotinamide (n = 9) | 6.0 ± 1.0 * | 11.9 (5.21~18.59) * | 192.7 ± 78.9 * | 187.8 ± 87.4 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, S.-H.; Chao, L.-C.; Huang, S.-Y.; Lin, H.-W.; Lee, A.-H.; Chen, Y.-Y.; Lee, E.-J. Nicotinamide Deteriorates Post-Stroke Immunodepression Following Cerebral Ischemia–Reperfusion Injury in Mice. Biomedicines 2023, 11, 2145. https://doi.org/10.3390/biomedicines11082145
Tai S-H, Chao L-C, Huang S-Y, Lin H-W, Lee A-H, Chen Y-Y, Lee E-J. Nicotinamide Deteriorates Post-Stroke Immunodepression Following Cerebral Ischemia–Reperfusion Injury in Mice. Biomedicines. 2023; 11(8):2145. https://doi.org/10.3390/biomedicines11082145
Chicago/Turabian StyleTai, Shih-Huang, Liang-Chun Chao, Sheng-Yang Huang, Hsiao-Wen Lin, Ai-Hua Lee, Yi-Yun Chen, and E-Jian Lee. 2023. "Nicotinamide Deteriorates Post-Stroke Immunodepression Following Cerebral Ischemia–Reperfusion Injury in Mice" Biomedicines 11, no. 8: 2145. https://doi.org/10.3390/biomedicines11082145
APA StyleTai, S. -H., Chao, L. -C., Huang, S. -Y., Lin, H. -W., Lee, A. -H., Chen, Y. -Y., & Lee, E. -J. (2023). Nicotinamide Deteriorates Post-Stroke Immunodepression Following Cerebral Ischemia–Reperfusion Injury in Mice. Biomedicines, 11(8), 2145. https://doi.org/10.3390/biomedicines11082145