Clot Retraction and Its Correlation with the Function of Platelet Integrin αIIbβ3 †
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Collection
2.2. Clot Retraction
2.3. Quantification of Platelet αIIbβ3 on Platelets
2.4. Mean Platelet Volume
2.5. Plasma Fibrinogen
2.6. L33P Gene Polymorphism of β3
2.7. Statistical Analysis
3. Results
3.1. Clot Retraction
3.2. Effects of Anticoagulants on Clot Retraction
3.3. Effects of Platelet Counts and Mean Platelet Volume on Clot Retraction
3.4. Effects of Fibrinogen on Clot Retraction
3.5. Effect of Platelet αIIbβ3 on Clot Retraction
3.6. PLA Genotypes and Clot Retraction
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tutwiler, V.; Litvinov, R.I.; Lozhkin, A.P.; Peshkova, A.D.; Lebedeva, T.; Ataullakhanov, F.I.; Spiller, K.L.; Cines, D.B.; Weisel, J.W. Kinetics and mechanics of clot contraction are governed by the molecular and cellular composition of the blood. Blood 2016, 127, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.V.; Litvinov, R.I.; Alber, M.S.; Weisel, J.W. Quantitative structural mechanobiology of platelet-driven blood clot contraction. Nat. Commun. 2017, 8, 1274. [Google Scholar] [CrossRef] [PubMed]
- Tucker, K.L.; Sage, T.; Gibbins, J.M. Clot retraction. Methods Mol. Biol. 2012, 788, 101–107. [Google Scholar]
- Zaninetti, C.; Sachs, L.; Palankar, R. Role of Platelet Cytoskeleton in Platelet Biomechanics: Current and Emerging Methodologies and Their Potential Relevance for the Investigation of Inherited Platelet Disorders. Hamostaseologie 2020, 40, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Valiyaveettil, M.; Dudiki, T.; Mahabeleshwar, G.H.; Andre, P.; Podrez, E.A.; Byzova, T.V. β3 phosphorylation of platelet αIIbβ3 is crucial for stability of arterial thrombus and microparticle formation in vivo. Thromb. J. 2017, 15, 22. [Google Scholar] [CrossRef]
- Liu, K.; Hao, Z.; Zheng, H.; Wang, H.; Zhang, L.; Yan, M.; Tuerhong, R.; Zhou, Y.; Wang, Y.; Pang, T.; et al. Repurposing of rilpivirine for preventing platelet β3 integrin-dependent thrombosis by targeting c-Src active autophosphorylation. Thromb. Res. 2023, 229, 53–68. [Google Scholar] [CrossRef]
- Kaiser, R.; Anjum, A.; Kammerer, L.; Loew, Q.; Akhalkatsi, A.; Rossaro, D.; Escaig, R.; Droste Zu Senden, A.; Raude, B.; Lorenz, M.; et al. Mechanosensing via a GpIIb/Src/14-3-3ζ axis critically regulates platelet migration in vascular inflammation. Blood 2023, 141, 2973–2992. [Google Scholar] [CrossRef]
- Brunclikova, M.; Simurda, T.; Zolkova, J.; Sterankova, M.; Skornova, I.; Dobrotova, M.; Kolkova, Z.; Loderer, D.; Grendar, M.; Hudecek, J.; et al. Heterogeneity of Genotype-Phenotype in Congenital Hypofibrinogenemia-A Review of Case Reports Associated with Bleeding and Thrombosis. J. Clin. Med. 2022, 11, 1083. [Google Scholar] [CrossRef]
- Huang, J.; Li, X.; Shi, X.; Zhu, M.; Wang, J.; Huang, S.; Huang, X.; Wang, H.; Li, L.; Deng, H.; et al. Platelet integrin αIIbβ3: Signal transduction, regulation, and its therapeutic targeting. J. Hematol. Oncol. 2019, 12, 26. [Google Scholar]
- Nurden, A.T. Molecular basis of clot retraction and its role in wound healing. Thromb. Res. 2022, 19. [Google Scholar] [CrossRef]
- Mondoro, T.H.; White, M.M.; Jennings, L.K. Active GPIIb-IIIa conformations that link ligand interaction with cytoskeletal reorganization. Blood 2000, 96, 2487–2495. [Google Scholar] [PubMed]
- Gartner, T.K.; Ogilvie, M.L. Peptides and monoclonal antibodies which bind to platelet glycoproteins IIb and/or IIIa inhibit clot retraction. Thromb. Res. 1988, 49, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Litvinov, R.I.; Farrell, D.H.; Weisel, J.W.; Bennett, J.S. The Platelet Integrin αIIbβ3 Differentially Interacts with Fibrin Versus Fibrinogen. J. Biol. Chem. 2016, 291, 7858–78567. [Google Scholar] [CrossRef] [PubMed]
- Yatomi, Y.; Higashihara, M.; Tanabe, A.; Ohashi, T.; Takahata, K.; Kariya, T.; Kume, S. Separable function of platelet release reaction and clot retraction. Biochem. Biophys. Res. Commun. 1986, 140, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Kanji, R.; Gue, Y.X.; Memtsas, V.; Gorog, D.A. Fibrinolysis in Platelet Thrombi. Int. J. Mol. Sci. 2021, 22, 5135. [Google Scholar] [CrossRef] [PubMed]
- Tutwiler, V.; Peshkova, A.D.; Le Minh, G.; Zaitsev, S.; Litvinov, R.I.; Cines, D.B.; Weisel, J.W. Blood clot contraction differentially modulates internal and external fibrinolysis. J. Thromb. Haemost. 2019, 17, 361–370. [Google Scholar] [PubMed]
- Litvinov, R.I.; Weisel, J.W. Blood clot contraction: Mechanisms, pathophysiology, and disease. Res. Pract. Thromb. Haemost. 2022, 7, 100023. [Google Scholar]
- Samson, A.L.; Alwis, I.; Maclean, J.A.A.; Priyananda, P.; Hawkett, B.; Schoenwaelder, S.M.; Jackson, S.P. Endogenous fibrinolysis facilitates clot retraction in vivo. Blood 2017, 130, 2453–2462. [Google Scholar] [CrossRef]
- Tutwiler, V.; Peshkova, A.D.; Andrianova, I.A.; Khasanova, D.R.; Weisel, J.W.; Litvinov, R.I. Contraction of Blood Clots Is Impaired in Acute Ischemic Stroke. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 271–279. [Google Scholar] [CrossRef]
- Peshkova, A.D.; Malyasyov, D.V.; Bredikhin, R.A.; Le Minh, G.; Andrianova, I.A.; Tutwiler, V.; Nagaswami, C.; Weisel, J.W.; Litvinov, R.I. Reduced Contraction of Blood Clots in Venous Thromboembolism Is a Potential Thrombogenic and Embologenic Mechanism. TH Open. 2018, 2, 104–115. [Google Scholar] [CrossRef]
- Leong, L.; Chernysh, I.N.; Xu, Y.; Sim, D.; Nagaswami, C.; de Lange, Z.; Kosolapova, S.; Cuker, A.; Kauser, K.; Weisel, J.W. Clot stability as a determinant of effective factor VIII replacement in hemophilia A. Res. Pract. Thromb. Haemost. 2017, 1, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Krishnaswami, A.; Carr MEJr Jesse, R.L.; Kontos, M.C.; Minisi, A.J.; Ornato, J.P.; Vetrovec, G.W.; Martin, E.J. Patients with coronary artery disease who present with chest pain have significantly elevated platelet contractile force and clot elastic modulus. Thromb. Haemost. 2002, 88, 739–744. [Google Scholar] [CrossRef]
- Greilich, P.E.; Carr, M.E.; Zekert, S.L.; Dent, R.M. Quantitative assessment of platelet function and clot structure in patients with severe coronary artery disease. Am. J. Med. Sci. 1994, 307, 15–20. [Google Scholar] [PubMed]
- Undas, A.; Brummel, K.; Musial, J.; Mann, K.G.; Szczeklik, A. Pl(A2) polymorphism of beta(3) integrins is associated with enhanced thrombin generation and impaired antithrombotic action of aspirin at the site of microvascular injury. Circulation 2001, 104, 2666–2672. [Google Scholar] [CrossRef] [PubMed]
- Floyd, C.N.; Ellis, B.H.; Ferro, A. The PlA1/A2 polymorphism of glycoprotein IIIa as a risk factor for stroke: A systematic review and meta-analysis. PLoS ONE 2014, 9, e100239. [Google Scholar]
- Floyd, C.N.; Mustafa, A.; Ferro, A. The PlA1/A2 polymorphism of glycoprotein IIIa as a risk factor for myocardial infarction: A meta-analysis. PLoS ONE 2014, 9, e101518. [Google Scholar]
- Galasso, G.; Santulli, G.; Piscione, F.; De Rosa, R.; Trimarco, V.; Piccolo, R.; Cassese, S.; Iaccarino, G.; Trimarco, B.; Chiariello, M. The GPIIIA PlA2 polymorphism is associated with an increased risk of cardiovascular adverse events. BMC Cardiovasc. Disord. 2010, 10, 41. [Google Scholar] [CrossRef]
- Carr, M.E., Jr. In vitro assessment of platelet function. Transfus. Med. Rev. 1997, 11, 106–115. [Google Scholar] [CrossRef]
- Owen, C.A., Jr. Historical account of tests of hemostasis. Am. J. Clin. Pathol. 1990, 93, S3–S8. [Google Scholar]
- Carr, M.E., Jr.; Carr, S.L.; Greilich, P.E. Heparin ablates force development during platelet mediated clot retraction. Thromb. Haemost. 1996, 75, 674–678. [Google Scholar] [CrossRef]
- Chu, S.G.; Becker, R.C.; Berger, P.B.; Bhatt, D.L.; Eikelboom, J.W.; Konkle, B.; Mohler, E.R.; Reilly, M.P.; Berger, J.S. Mean platelet volume as a predictor of cardiovascular risk: A systematic review and meta-analysis. J. Thromb. Haemost. 2010, 8, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Slavka, G.; Perkmann, T.; Haslacher, H.; Greisenegger, S.; Marsik, C.; Wagner, O.F.; Endler, G. Mean platelet volume may represent a predictive parameter for overall vascular mortality and ischemic heart disease. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1215–1218. [Google Scholar] [CrossRef] [PubMed]
- Voetsch, B.; Loscalzo, J. Genetic determinants of arterial thrombosis. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 216–229. [Google Scholar] [PubMed]
- Komsa-Penkova, R.; Golemanov, G.; Tsankov, B.; Ivanov, P.; Beshev, L.; Tonchev, P. Rs5918ITGB3 Polymorphism, Smoking, and BMI as Risk Factors for Early Onset and Recurrence of DVT in Young Women. Clin. Appl. Thromb. Hemost. 2017, 23, 585–595. [Google Scholar]
- Simurda, T.; Zolkova, J.; Snahnicanova, Z.; Loderer, D.; Skornova, I.; Sokol, J.; Hudecek, J.; Stasko, J.; Lasabova, Z.; Kubisz, P. Identification of Two Novel Fibrinogen Bβ Chain Mutations in Two Slovak Families with Quantitative Fibrinogen Disorders. Int. J. Mol. Sci. 2017, 19, 100. [Google Scholar] [CrossRef]
- Oshinowo, O.; Azer, S.S.; Lin, J.; Lam, W.A. Why platelet mechanotransduction matters for hemostasis and thrombosis. J. Thromb. Haemost. 2023, 21, 2339–2353. [Google Scholar]
- White, J.G. EDTA-induced changes in platelet structure and function: Clot retraction. Platelets 2000, 11, 49–55. [Google Scholar] [CrossRef]
- Jalal, M.M.; Whyte, C.S.; Coxon, F.P.; Mutch, N.J. Atorvastatin-mediated inhibition of prenylation of Rab27b and Rap1a in platelets attenuates their prothrombotic capacity and modulates clot structure. Platelets 2023, 34, 2206921. [Google Scholar]
- Hsia, C.W.; Huang, W.C.; Jayakumar, T.; Hsia, C.H.; Hou, S.M.; Chang, C.C.; Yen, T.L.; Sheu, J.R. Garcinol acts as a novel integrin αIIbβ3 inhibitor in human platelets. Life Sci. 2023, 326, 121791. [Google Scholar] [CrossRef]
White (31) | Black (11) | Asian (9) | Hispanic (2) | |
---|---|---|---|---|
Female sex (%) | 55 | 40 | 30 | 0 |
Age | 46.2 ± 5.7 | 39.0 ± 2.6 | 29.0 ± 5.1 | 42 |
Platelet counts (103/µL) | 267 ± 132 | 311 ± 99 | 198 ± 89 | 298 |
RBC counts (104/µL) | 526 ± 219 | 499 ± 169 | 418 ± 176 | 498 |
Leukocyte counts (103/µL) | 5.6 ± 1.9 | 6.8 ± 3.9 | 6.3 ± 1.6 | 6.2 |
PLA1 | PLA2 | |
---|---|---|
Allele frequency | 41 (82%) | 9 (18%) |
Clot retraction (%) | 88.18 ± 4.59 | 87.52 ± 6.13 |
P2 binding site | 37,926 ± 5914 | 37,668 ± 6254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, D.; Sun, C.W.; Woodley, A.B.; Dong, J.-f. Clot Retraction and Its Correlation with the Function of Platelet Integrin αIIbβ3. Biomedicines 2023, 11, 2345. https://doi.org/10.3390/biomedicines11092345
Gao D, Sun CW, Woodley AB, Dong J-f. Clot Retraction and Its Correlation with the Function of Platelet Integrin αIIbβ3. Biomedicines. 2023; 11(9):2345. https://doi.org/10.3390/biomedicines11092345
Chicago/Turabian StyleGao, Daniel, Caroline W. Sun, Angela B. Woodley, and Jing-fei Dong. 2023. "Clot Retraction and Its Correlation with the Function of Platelet Integrin αIIbβ3" Biomedicines 11, no. 9: 2345. https://doi.org/10.3390/biomedicines11092345
APA StyleGao, D., Sun, C. W., Woodley, A. B., & Dong, J.-f. (2023). Clot Retraction and Its Correlation with the Function of Platelet Integrin αIIbβ3. Biomedicines, 11(9), 2345. https://doi.org/10.3390/biomedicines11092345