Neuroendovascular Surgery Applications in Craniocervical Trauma
Abstract
:1. Introduction
2. Methods
3. Blunt Cerebrovascular Injury
3.1. Grade I–II: Dissection
3.2. Grade III: Pseudoaneurysm
3.3. Grade IV: Occlusion
3.4. Grade V: Transection
4. Intracranial Dissection
5. Post-Traumatic Vasospasm
6. Carotid-Cavernous Fistula
7. Other Intracranial Arteriovenous Fistulas
8. Other Extracranial Arteriovenous Fistulas
9. Epistaxis
10. Cerebral Venous Sinus Thrombosis
11. Subdural Hematoma
12. Limitations
13. Future Directions
14. Conclusions
Funding
Conflicts of Interest
References
- Radvany, M.G.; Gailloud, P. Endovascular management of neurovascular arterial injuries in the face and neck. Semin. Interv. Radiol. 2010, 27, 044–054. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.B.; Severance, S.; Holler, E.; Menard, L.; Savage, S.; Zarzaur, B.L. Treatment of asymptomatic blunt cerebrovascular injury (BCVI): A systematic review. Trauma Surg. Acute Care Open 2021, 6, e000668. [Google Scholar] [CrossRef]
- Múnera, F.; Cohn, S.; Rivas, L.A. Penetrating injuries of the neck: Use of helical computed tomographic angiography. J. Trauma 2005, 58, 413–418. [Google Scholar] [CrossRef]
- Rao, P.M.; Ivatury, R.R.; Sharma, P.; Vinzons, A.T.; Nassoura, Z.; Stahl, W.M. Cervical vascular injuries: A trauma center experience. Surgery 1993, 114, 527–531. [Google Scholar] [PubMed]
- Alderazi, Y.J.; Cruz, G.M.; Kass-Hout, T.; Prestigiacomo, C.J.; Duffis, E.J.; Gandhi, C.D. Endovascular therapy for cerebrovascular injuries after head and neck trauma. Trauma 2015, 17, 258–269. [Google Scholar] [CrossRef]
- Cox, M.W.; Whittaker, D.R.; Martinez, C.; Fox, C.J.; Feuerstein, I.M.; Gillespie, D.L. Traumatic pseudoaneurysms of the head and neck: Early endovascular intervention. J. Vasc. Surg. 2007, 46, 1227–1233. [Google Scholar] [CrossRef]
- Amuluru, K.; Al-Mufti, F.; Roth, W.; Prestigiacomo, C.J.; Gandhi, C.D. Anchoring Pipeline Flow Diverter Construct in the Treatment of Traumatic Distal Cervical Carotid Artery Injury. Interv. Neurol. 2017, 6, 153–162. [Google Scholar] [CrossRef]
- Asensio, J.A.; Dabestani, P.J.; Wenzl, F.A.; Miljkovic, S.S.; Kessler, J.J.; Fernandez, C.A.; Becker, T.; Cornell, D.; Siu, M.; Voigt, C.; et al. A systematic review of penetrating extracranial vertebral artery injuries. J. Vasc. Surg. 2020, 71, 2161–2169. [Google Scholar] [CrossRef] [PubMed]
- Piotin, M.; Blanc, R.; Turner, R.; Tomasello, A.; Ribo, M.; Galdámez, M.; Costalat, V.; Sourour, N.; Mordasini, P.; Killer-Oberpfalzer, M.; et al. P15 Evaluation of effectiveness and safety of the CorPath® GRX System in endovascular embolization procedures of cerebral aneurysms. J. NeuroInterv. Surg. 2022, 14, A15. [Google Scholar] [CrossRef]
- Stein, D.M.; Boswell, S.; Sliker, C.W.; Lui, F.Y.; Scalea, T.M. Blunt cerebrovascular injuries: Does treatment always matter? J. Trauma 2009, 66, 132–143; discussion 143–144. [Google Scholar] [CrossRef]
- Griessenauer, C.J.; Fleming, J.B.; Richards, B.F.; Cava, L.P.; Curé, J.K.; Younan, D.S.; Zhao, L.; Alexandrov, A.V.; Barlinn, K.; Taylor, T.; et al. Timing and mechanism of ischemic stroke due to extracranial blunt traumatic cerebrovascular injury. J. Neurosurg. 2013, 118, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Kerwin, A.J.; Bynoe, R.P.; Murray, J.; Hudson, E.R.; Close, T.P.; Gifford, R.R.M.; Carson, K.W.; Smith, L.P.; Bell, R.M. Liberalized screening for blunt carotid and vertebral artery injuries is justified. J. Trauma 2001, 51, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Biffl, W.L.; Moore, E.E.; Offner, P.J.; Brega, K.E.; Franciose, R.J.; Burch, J.M. Blunt carotid arterial injuries: Implications of a new grading scale. J. Trauma 1999, 47, 845–853. [Google Scholar] [CrossRef]
- Fusco, M.R.; Harrigan, M.R. Cerebrovascular dissections: A review. Part II: Blunt cerebrovascular injury. Neurosurgery 2011, 68, 517–530; discussion 530. [Google Scholar] [CrossRef]
- Harrigan, M.R.; Falola, M.I.; Shannon, C.N.; Westrick, A.C.; Walters, B.C. Incidence and trends in the diagnosis of traumatic extracranial cerebrovascular injury in the nationwide inpatient sample database, 2003–2010. J. Neurotrauma 2014, 31, 1056–1062. [Google Scholar] [CrossRef] [PubMed]
- Spaniolas, K.; Velmahos, G.C.; Alam, H.B.; De Moya, M.; Tabbara, M.; Sailhamer, E. Does improved detection of blunt vertebral artery injuries lead to improved outcomes? Analysis of the National Trauma Data Bank. World J. Surg. 2008, 32, 2190–2194. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Biffl, W.; Bokhari, F.; Brackenridge, S.; Chao, E.; Claridge, J.A.; Fraser, D.; Jawa, R.; Kasotakis, G.; Kerwin, A.; et al. Evaluation and Management of Blunt Cerebrovascular Injury: A Practice Management Guideline from the Eastern Association for the Surgery of Trauma. J. Trauma Acute Care Surg. 2020, 88, 875–887. [Google Scholar] [CrossRef]
- Biffl, W.L.; Cothren, C.C.; Moore, E.E.; Kozar, R.; Cocanour, C.; Davis, J.W.; McIntyre, R.C., Jr.; West, M.A.; Moore, F.A. Western Trauma Association Critical Decisions in Trauma: Screening for and Treatment of Blunt Cerebrovascular Injuries. J. Trauma Inj. Infect. Crit. Care 2009, 67, 1150–1153. [Google Scholar] [CrossRef] [PubMed]
- Bromberg, W.J.; Collier, B.C.D.; Diebel, L.N.; Dwyer, K.M.; Holevar, M.R.; Jacobs, D.G.; Kurek, S.J.D.; Schreiber, M.A.; Shapiro, M.L.; Vogel, T.R. Blunt cerebrovascular injury practice management guidelines: The Eastern Association for the Surgery of Trauma. J. Trauma 2010, 68, 471–477. [Google Scholar] [CrossRef]
- Hundersmarck, D.; Slooff, W.-B.M.; Homans, J.F.; van der Vliet, Q.M.J.; Moayeri, N.; Hietbrink, F.; de Borst, G.J.; Öner, F.C.; Muijs, S.P.J.; Leenen, L.P.H. Blunt cerebrovascular injury: Incidence and long-term follow-up. Eur. J. Trauma Emerg. Surg. 2021, 47, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Kik, C.C.; Slooff, W.-B.M.; Moayeri, N.; de Jong, P.A.; Muijs, S.P.J.; Öner, F.C. Diagnostic accuracy of computed tomography angiography (CTA) for diagnosing blunt cerebrovascular injury in trauma patients: A systematic review and meta-analysis. Eur. Radiol. 2022, 32, 2727–2738. [Google Scholar] [CrossRef]
- Scott, W.W.; Sharp, S.; Figueroa, S.A.; Eastman, A.L.; Hatchette, C.V.; Madden, C.J.; Rickert, K.L. Clinical and radiographic outcomes following traumatic Grade 1 and 2 carotid artery injuries: A 10-year retrospective analysis from a Level I trauma center. The Parkland Carotid and Vertebral Artery Injury Survey. J. Neurosurg. 2015, 122, 1196–1201. [Google Scholar] [CrossRef] [PubMed]
- Scott, W.W.; Sharp, S.; Figueroa, S.A.; Madden, C.J.; Rickert, K.L. Clinical and radiological outcomes following traumatic Grade 1 and 2 vertebral artery injuries: A 10-year retrospective analysis from a Level 1 trauma center. J. Neurosurg. 2014, 121, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Scott, W.W.; Sharp, S.; Figueroa, S.A.; Eastman, A.L.; Hatchette, C.V.; Madden, C.J.; Rickert, K.L. Clinical and radiographic outcomes following traumatic Grade 3 and 4 carotid artery injuries: A 10-year retrospective analysis from a Level 1 trauma center. The Parkland Carotid and Vertebral Artery Injury Survey. J. Neurosurg. 2015, 122, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Scott, W.W.; Sharp, S.; Figueroa, S.A.; Eastman, A.L.; Hatchette, C.V.; Madden, C.J.; Rickert, K.L. Clinical and radiological outcomes following traumatic Grade 3 and 4 vertebral artery injuries: A 10-year retrospective analysis from a Level I trauma center. The Parkland Carotid and Vertebral Artery Injury Survey. J. Neurosurg. 2015, 122, 1202–1207. [Google Scholar] [CrossRef] [PubMed]
- Riordan, K.; Mamaril-Davis, J.; Aguilar-Salinas, P.; Dumont, T.M.; Weinand, M.E. Outcomes following therapeutic intervention of post-traumatic vasospasm: A systematic review and meta-analysis. Clin. Neurol. Neurosurg. 2023, 232, 107877. [Google Scholar] [CrossRef] [PubMed]
- Al-Jehani, H.M.; Alwadaani, H.A.; Almolani, F.M. Traumatic intracranial internal carotid artery pseudoaneurysm presenting as epistaxis treated by endovascular coiling. Neurosciences 2016, 21, 60–63. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, X.; You, C.; Mao, B.; Wang, C.; He, M.; Sun, H. Endovascular treatment of traumatic pseudoaneurysm presenting as intractable epistaxis. Korean J. Radiol. 2010, 11, 603–611. [Google Scholar] [CrossRef]
- Chen, D.; Concus, A.P.; Halbach, V.V.; Cheung, S.W. Epistaxis originating from traumatic pseudoaneurysm of the internal carotid artery: Diagnosis and endovascular therapy. Laryngoscope 1998, 108, 326–331. [Google Scholar] [CrossRef]
- Auyeung, K.M.; Lui, W.M.; Chow, L.C.; Chan, F.L. Massive epistaxis related to petrous carotid artery pseudoaneurysm after radiation therapy: Emergency treatment with covered stent in two cases. Am. J. Neuroradiol. 2003, 24, 1449–1452. [Google Scholar]
- Celil, G.; Engin, D.; Orhan, G.; Barbaros, Ç.; Hakan, K.; Adil, E. Intractable epistaxis related to cavernous carotid artery pseudoaneurysm: Treatment of a case with covered stent. Auris Nasus Larynx 2004, 31, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Nicosia, G.; Cicala, D.; Mirone, G.; Spennato, P.; Trischitta, V.; Ruggiero, C.; Guarneri, G.; Muto, M.; Cinalli, G. Childhood acute basilar artery thrombosis successfully treated with mechanical thrombectomy using stent retrievers: Case report and review of the literature. Child’s Nerv. Syst. 2017, 33, 349–355. [Google Scholar] [CrossRef]
- Al-Mufti, F.; Kamal, N.; Damodara, N.; Nuoman, R.; Gupta, R.; Alotaibi, N.M.; Alkanaq, A.; El-Ghanem, M.; Keller, I.A.; Schonfeld, S.; et al. Updates in the Management of Cerebral Infarctions and Subarachnoid Hemorrhage Secondary to Intracranial Arterial Dissection: A Systematic Review. World Neurosurg. 2019, 121, 51–58. [Google Scholar] [CrossRef]
- Krings, T.; Choi, I.-S. The Many Faces of Intracranial Arterial Dissections. Interv. Neuroradiol. 2010, 16, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Debette, S.; Compter, A.; Labeyrie, M.-A.; Uyttenboogaart, M.; Metso, T.M.; Majersik, J.J.; Goeggel-Simonetti, B.; Engelter, S.T.; Pezzini, A.; Bijlenga, P.; et al. Epidemiology, pathophysiology, diagnosis, and management of intracranial artery dissection. Lancet Neurol. 2015, 14, 640–654. [Google Scholar] [CrossRef]
- Sonmez, O.; Brinjikji, W.; Murad, M.H.; Lanzino, G. Deconstructive and Reconstructive Techniques in Treatment of Vertebrobasilar Dissecting Aneurysms: A Systematic Review and Meta-Analysis. AJNR Am. J. Neuroradiol. 2015, 36, 1293–1298. [Google Scholar] [CrossRef] [PubMed]
- Urasyanandana, K.; Songsang, D.; Aurboonyawat, T.; Chankaew, E.; Withayasuk, P.; Churojana, A. Treatment outcomes in cerebral artery dissection and literature review. Interv. Neuroradiol. 2018, 24, 254–262. [Google Scholar] [CrossRef]
- Fullerton, H.J.; Johnston, S.C.; Smith, W.S. Arterial dissection and stroke in children. Neurology 2001, 57, 1155–1160. [Google Scholar] [CrossRef] [PubMed]
- Rahmatian, A.; Yaghoobpoor, S.; Tavasol, A.; Aghazadeh-Habashi, K.; Hasanabadi, Z.; Bidares, M.; Safari-Kish, B.; Starke, R.M.; Luther, E.M.; Hajiesmaeili, M.; et al. Clinical efficacy of endovascular treatment approach in patients with carotid cavernous fistula: A systematic review and meta-analysis. World Neurosurg. X 2023, 19, 100189. [Google Scholar] [CrossRef]
- Sadeh-Gonike, U.; Magand, N.; Armoiry, X.; Riva, R.; Labeyrie, P.E.; Lamy, B.; Lukaszewicz, A.-C.; Lehot, J.-J.; Turjman, F.; Gory, B. Transarterial Onyx Embolization of Intracranial Dural Fistulas: A Prospective Cohort, Systematic Review, and Meta-Analysis. Neurosurgery 2018, 82, 854–863. [Google Scholar] [CrossRef]
- Oh, D.C.; Hirsch, J.A.; Yoo, A.J. Novel use of Onyx for treatment of intracranial vertebral artery dissection. J. NeuroInterv. Surg. 2012, 4, 31–33. [Google Scholar] [CrossRef]
- Provencio, J.J.; Vora, N. Subarachnoid hemorrhage and inflammation: Bench to bedside and back. Semin. Neurol. 2005, 25, 435–444. [Google Scholar] [CrossRef]
- Al-Mufti, F.; Amuluru, K.; Changa, A.; Lander, M.; Patel, N.; Wajswol, E.; Al-Marsoummi, S.; Alzubaidi, B.; Singh, I.P.; Nuoman, R.; et al. Traumatic brain injury and intracranial hemorrhage–induced cerebral vasospasm: A systematic review. Neurosurg. Focus 2017, 43, E14. [Google Scholar] [CrossRef] [PubMed]
- O’brien, N.F.; Reuter-Rice, K.E.; Khanna, S.; Peterson, B.M.; Quinto, K.B. Vasospasm in children with traumatic brain injury. Intensiv. Care Med. 2010, 36, 680–687. [Google Scholar] [CrossRef]
- Ract, C.; Le Moigno, S.; Bruder, N.; Vigué, B. Transcranial Doppler ultrasound goal-directed therapy for the early management of severe traumatic brain injury. Intensiv. Care Med. 2007, 33, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Shahlaie, K.; Keachie, K.; Hutchins, I.M.; Rudisill, N.; Madden, L.K.; Smith, K.A.; Ko, K.A.; Latchaw, R.E.; Muizelaar, J.P. Risk factors for posttraumatic vasospasm. J. Neurosurg. 2011, 115, 602–611. [Google Scholar] [CrossRef]
- Armonda, R.A.; Bell, R.S.; Vo, A.H.; Ling, G.; DeGraba, T.J.; Crandall, B.; Ecklund, J.; Campbell, W.W. Wartime traumatic cerebral vasospasm: Recent review of combat casualties. Neurosurgery 2006, 59, 1215–1225; discussion 1225. [Google Scholar] [CrossRef] [PubMed]
- O’brien, N.F.; Maa, T.; Yeates, K.O. The epidemiology of vasospasm in children with moderate-to-severe traumatic brain injury. Crit. Care Med. 2015, 43, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Zubkov, A.Y.; Lewis, A.I.; Raila, F.A.; Zhang, J.; Parent, A.D. Risk factors for the development of post-traumatic cerebral vasospasm. Surg. Neurol. 2000, 53, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Al-Mufti, F.; Amuluru, K.; Lander, M.; Mathew, M.; El-Ghanem, M.; Nuoman, R.; Park, S.; Patel, V.; Singh, I.P.; Gupta, G.; et al. Low Glasgow Coma Score in Traumatic Intracranial Hemorrhage Predicts Development of Cerebral Vasospasm. World Neurosurg. 2018, 120, e68–e71. [Google Scholar] [CrossRef]
- Harders, A.; Kakarieka, A.; Braakman, R. Traumatic subarachnoid hemorrhage and its treatment with nimodipine. J. Neurosurg. 1996, 85, 82–89. [Google Scholar] [CrossRef]
- Ogami, K.; Dofredo, M.; Moheet, A.M.; Lahiri, S. Early and Severe Symptomatic Cerebral Vasospasm After Mild Traumatic Brain Injury. World Neurosurg. 2017, 101, 813.e11–813.e14. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Kuo, C.C.; Waqas, M.; Cappuzzo, J.M.; Monteiro, A.; Baig, A.A.; Snyder, K.V.; Davies, J.M.; Levy, E.I.; Siddiqui, A.H. A Systematic Review of Non-Galenic Pial Arteriovenous Fistulas. World Neurosurg. 2023, 170, 226–235.e3. [Google Scholar] [CrossRef] [PubMed]
- Mergeani, A.; Popescu, D.; Laza, C.; Dorobat, B.; Bajenaru, O.A.; Antochi, F. A review on endovascular techniques for treatment of direct post-traumatic carotid-cavernous fistula supported by case presentations. Maedica 2012, 7, 332–338. [Google Scholar] [PubMed]
- Gemmete, J.J.; Ansari, S.A.; Gandhi, D.M. Endovascular techniques for treatment of carotid-cavernous fistula. J. Neuro-Ophthalmol. 2009, 29, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Henderson, A.D.; Miller, N.R. Carotid-cavernous fistula: Current concepts in aetiology, investigation, and management. Eye 2018, 32, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, B.C.; Waldau, B. Surgical and Nonsurgical Treatment of Vascular Skull Base Trauma. J. Neurol. Surg. B Skull Base 2016, 77, 396–403. [Google Scholar] [CrossRef]
- Shownkeen, H.; Bova, D.; Origitano, T.C.; Petruzzelli, G.J.; Leonetti, J.P. Carotid-cavernous fistulas: Pathogenesis and routes of approach to endovascular treatment. Skull Base 2001, 11, 207–218. [Google Scholar] [CrossRef]
- de Keizer, R. Carotid-cavernous and orbital arteriovenous fistulas: Ocular features, diagnostic and hemodynamic considerations in relation to visual impairment and morbidity. Orbit 2003, 22, 121–142. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.A.; Goldstein, H.; Connolly, E.S.; Meyers, P.M. Carotid-cavernous fistulas. Neurosurg. Focus 2012, 32, E9. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Chen, Y.; Cheng, J.; Yip, P.; Tu, Y. Long-term clinical outcome of spontaneous carotid cavernous sinus fistulae supplied by dural branches of the internal carotid artery. Neuroradiology 2001, 43, 1007–1014. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Duan, C.-Z.; Gu, D.-Q.; Zhang, X.; Li, X.-F.; He, X.-Y.; Su, S.-X.; Lai, L.-F.; Li, H. The recovery time of traumatic carotid-cavernous fistula-induced oculomotor nerve paresis after endovascular treatment with detachable balloons. J. Neuroradiol. 2014, 41, 329–335. [Google Scholar] [CrossRef]
- Ogilvy, C.S.; Motiei-Langroudi, R.; Ghorbani, M.; Griessenauer, C.J.; Alturki, A.Y.; Thomas, A.J. Flow Diverters as Useful Adjunct to Traditional Endovascular Techniques in Treatment of Direct Carotid-Cavernous Fistulas. World Neurosurg. 2017, 105, 812–817. [Google Scholar] [CrossRef]
- Amuluru, K.; Al-Mufti, F.; Gandhi, C.D.; Prestigiacomo, C.J.; Singh, I.P. Direct carotid-cavernous fistula: A complication of, and treatment with, flow diversion. Interv. Neuroradiol. 2016, 22, 569–576. [Google Scholar] [CrossRef]
- Giannopoulos, S.; Texakalidis, P.; Alkhataybeh, R.A.M.; Charisis, N.; Rangel-Castilla, L.; Jabbour, P.; Grossberg, J.A.; Machinis, T. Treatment of Ethmoidal Dural Arteriovenous Fistulas: A Meta-analysis Comparing Endovascular versus Surgical Treatment. World Neurosurg. 2019, 128, 593–599.e1. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, M.R.; Lanzino, G.; Zipfel, G.J. Intracranial Dural Arteriovenous Fistulae. Stroke 2017, 48, 1424–1431. [Google Scholar] [CrossRef] [PubMed]
- Ropper, A.H.; Klein, J.P. Cerebral Venous Thrombosis. N. Engl. J. Med. 2021, 385, 59–64. [Google Scholar] [CrossRef]
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N. Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef]
- Herrera, D.; Vargas, S.; Dublin, A. Endovascular treatment of traumatic injuries of the vertebral artery. Am. J. Neuroradiol. 2008, 29, 1585–1589. [Google Scholar] [CrossRef] [PubMed]
- Robbs, J.V.; Carrim, A.A.; Kadwa, A.M.; Mars, M. Traumatic arteriovenous fistula: Experience with 202 patients. Br. J. Surg. 1994, 81, 1296–1299. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Chen, Y.-L.; Wu, Y.-M.; Huang, Y.-C.; Wong, H.-F. Anatomically based approach for endovascular treatment of vertebro-vertebral arteriovenous fistula. Interv. Neuroradiol. 2014, 20, 766–773. [Google Scholar] [CrossRef]
- Felbaum, D.; Chidambaram, S.; Mason, R.B.; Armonda, R.A.; Liu, A.H. Vertebral–venous fistula: An unusual cause for ocular symptoms mimicking a carotid cavernous fistula. J. NeuroInterv. Surg. 2016, 8, e35. [Google Scholar] [CrossRef]
- Yu, J.; Guo, Y.; Wu, Z.; Xu, K. Traumatic arteriovenous fistula between the extracranial middle meningeal artery and the pterygoid plexus: A case report and literature review. Interv. Neuroradiol. 2017, 23, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Múnera, F.; Soto, J.A.; Palacio, D.M.; Castañeda, J.; Morales, C.; Sanabria, A.; Gutiérrez, J.E.; García, G. Penetrating neck injuries: Helical CT angiography for initial evaluation. Radiology 2002, 224, 366–372. [Google Scholar] [CrossRef]
- Múnera, F.; Soto, J.A.; Palacio, D.; Velez, S.M.; Medina, E. Diagnosis of Arterial Injuries Caused by Penetrating Trauma to the Neck: Comparison of Helical CT Angiography and Conventional Angiography. Radiology 2000, 216, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Sweid, A.; Hammoud, B.; Bekelis, K.; Missios, S.; Tjoumakaris, S.I.; Gooch, M.R.; Herial, N.A.; Zarzour, H.; Romo, V.; DePrince, M.; et al. Cerebral ischemic and hemorrhagic complications of coronavirus disease 2019. Int. J. Stroke 2020, 15, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Mankahla, N.; LeFeuvre, D.; Taylor, A. Delayed massive epistaxis from traumatic cavernous carotid false aneurysms: A report of two unusual cases. Interv. Neuroradiol. 2017, 23, 387–391. [Google Scholar] [CrossRef]
- Wong, C.-W.; Tan, W.-C.; Yeh, Y.-T.; Chou, M.-C.; Yeh, C.-B. Transarterial embolization for traumatic intractable oronasal hemorrhage. J. Emerg. Med. 2013, 44, 1088–1091. [Google Scholar] [CrossRef]
- Ardekian, L.; Samet, N.; Shoshani, Y.; Taicher, S. Life-threatening bleeding following maxillofacial trauma. J. Cranio-Maxillofac. Surg. 1993, 21, 336–338. [Google Scholar] [CrossRef]
- Tung, T.-C.; Tseng, W.-S.; Chen, C.-T.; Lai, J.-P.; Chen, Y.-R. Acute life-threatening injuries in facial fracture patients: A review of 1025 patients. J. Trauma 2000, 49, 420–424. [Google Scholar] [CrossRef]
- Liao, C.-C.; Hsu, Y.-P.; Chen, C.-T.; Tseng, Y.-Y. Transarterial embolization for intractable oronasal hemorrhage associated with craniofacial trauma: Evaluation of prognostic factors. J. Trauma 2007, 63, 827–830. [Google Scholar] [CrossRef]
- Karamoskos, P.; Dohrmann, P.J. Traumatic internal carotid artery aneurysm and massive epistaxis. Aust. N. Z. J. Surg. 1989, 59, 745–747. [Google Scholar] [CrossRef] [PubMed]
- Bynoe, R.P.; Kerwin, A.J.; Parker, H.H., III; Nottingham, J.M.; Bell, R.M.; Yost, M.J.; Close, T.C.; Hudson, E.R.; Sheridan, D.J.; Wade, M.D. Maxillofacial injuries and life-threatening hemorrhage: Treatment with transcatheter arterial embolization. J. Trauma 2003, 55, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Eckert, B.; Thie, A.; Carvajal, M.; Groden, C.; Zeumer, H. Predicting hemodynamic ischemia by transcranial Doppler monitoring during therapeutic balloon occlusion of the internal carotid artery. AJNR Am. J. Neuroradiol. 1998, 19, 577–582. [Google Scholar]
- Elias, A.E.; Chaudhary, N.; Pandey, A.S.; Gemmete, J.J. Intracranial endovascular balloon test occlusion: Indications, methods, and predictive value. Neuroimaging Clin. N. Am. 2013, 23, 695–702. [Google Scholar] [CrossRef]
- Hersh, D.S.; Hayman, E.; Aarabi, B.; Stein, D.; Diaz, C.; Massetti, J.; Schwartzbauer, G.T. 175 Safety of Anticoagulation for the Treatment of Cerebral Venous Sinus Thrombosis in Adult Trauma Patients. Neurosurgery 2016, 63, 169–170. [Google Scholar] [CrossRef]
- Qureshi, A.I.; Sahito, S.; Liaqat, J.; Chandrasekaran, P.N.; Siddiq, F. Traumatic Injury of Major Cerebral Venous Sinuses Associated with Traumatic Brain Injury or Head and Neck Trauma: Analysis of National Trauma Data Bank. J. Vasc. Interv. Neurol. 2020, 11, 27–33. [Google Scholar] [PubMed]
- Ferro, J.M.; Canhão, P.; Stam, J.; Bousser, M.-G.; Barinagarrementeria, F.; ISCVT Investigators. Prognosis of cerebral vein and dural sinus thrombosis: Results of the International Study on Cerebral Vein and Dural Sinus Thrombosis (ISCVT). Stroke 2004, 35, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Siegler, J.E.; Cardona, P.; Arenillas, J.F.; Talavera, B.; Guillen, A.N.; Chavarría-Miranda, A.; de Lera, M.; Khandelwal, P.; Bach, I.; Patel, P.; et al. Cerebrovascular events and outcomes in hospitalized patients with COVID-19: The SVIN COVID-19 Multinational Registry. Int. J. Stroke 2021, 16, 437–447. [Google Scholar] [CrossRef]
- Jumaa, M.A.; Salahuddin, H.; Burgess, R. The Future of Endovascular Therapy. Neurology 2021, 97, S185–S193. [Google Scholar] [CrossRef]
- Legeza, P.; Britz, G.W.; Loh, T.; Lumsden, A. Current utilization and future directions of robotic-assisted endovascular surgery. Expert Rev. Med. Devices 2020, 17, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Akinyemi, T.; Du, W.; Ma, J.; Chen, X.; Wang, F.; Omisore, O.; Luo, J.; Wang, H.; Wang, L. Technical and Clinical Progress on Robot-Assisted Endovascular Interventions: A Review. Micromachines 2023, 14, 197. [Google Scholar] [CrossRef] [PubMed]
- Almandoz, J.E.D.; Kelly, H.R.; Schaefer, P.W.; Lev, M.H.; Gonzalez, R.G.; Romero, J.M. Prevalence of traumatic dural venous sinus thrombosis in high-risk acute blunt head trauma patients evaluated with multidetector CT venography. Radiology 2010, 255, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Afshari, F.T.; Yakoub, K.M.; Zisakis, A.; Thomas, A.; Ughratdar, I.; Sturman, S.; Belli, A. Traumatic dural venous sinus thrombosis; a challenge in management of head injury patients. J. Clin. Neurosci. 2018, 57, 169–173. [Google Scholar] [CrossRef]
- Chiewvit, P.; Piyapittayanan, S.; Poungvarin, N. Cerebral venous thrombosis: Diagnosis dilemma. Neurol. Int. 2011, 3, 50–56. [Google Scholar] [CrossRef]
- Khandelwal, N.; Agarwal, A.; Kochhar, R.; Bapuraj, J.R.; Singh, P.; Prabhakar, S.; Suri, S. Comparison of CT venography with MR venography in cerebral sinovenous thrombosis. AJR Am. J. Roentgenol. 2006, 187, 1637–1643. [Google Scholar] [CrossRef]
- Sari, S.; Verim, S.; Hamcan, S.; Battal, B.; Akgun, V.; Akgun, H.; Celikkanat, S.; Tasar, M. MRI diagnosis of dural sinus—Cortical venous thrombosis: Immediate post-contrast 3D GRE T1-weighted imaging versus unenhanced MR venography and conventional MR sequences. Clin. Neurol. Neurosurg. 2015, 134, 44–54. [Google Scholar] [CrossRef]
- Grangeon, L.; Gilard, V.; Ozkul-Wermester, O.; Lefaucheur, R.; Curey, S.; Gerardin, E.; Derrey, S.; Maltete, D.; Magne, N.; Triquenot, A. Management and outcome of cerebral venous thrombosis after head trauma: A case series. Rev. Neurol. 2017, 173, 411–417. [Google Scholar] [CrossRef]
- Qureshi, A.I. A Classification Scheme for Assessing Recanalization and Collateral Formation following Cerebral Venous Thrombosis. J. Vasc. Interv. Neurol. 2010, 3, 1–2. [Google Scholar]
- Qureshi, A.I.; Grigoryan, M.; Saleem, M.A.; Aytac, E.; Wallery, S.S.; Rodriguez, G.J.; Suri, M.F.K. Prolonged Microcatheter-Based Local Thrombolytic Infusion as a Salvage Treatment After Failed Endovascular Treatment for Cerebral Venous Thrombosis: A Multicenter Experience. Neurocrit. Care 2018, 29, 54–61. [Google Scholar] [CrossRef]
- Ilyas, A.; Chen, C.-J.; Raper, D.M.; Ding, D.; Buell, T.; Mastorakos, P.; Liu, K.C. Endovascular mechanical thrombectomy for cerebral venous sinus thrombosis: A systematic review. J. NeuroInterv. Surg. 2017, 9, 1086–1092. [Google Scholar] [CrossRef]
- Chen, K.-W.; Lin, Y.-H.; Lee, C.-W. Acute Posttraumatic Cerebral Venous Sinus Thrombosis-Induced Malignant Increased Intracranial Pressure Treated with Endovascular Dural Sinus Thrombectomy and Stenting. World Neurosurg. 2019, 128, 393–397. [Google Scholar] [CrossRef]
- Okuma, Y.; Hirotsune, N.; Sato, Y.; Tanabe, T.; Muraoka, K.; Nishino, S. Midterm Follow-Up of Patients with Middle Meningeal Artery Embolization in Intractable Chronic Subdural Hematoma. World Neurosurg. 2019, 126, e671–e678. [Google Scholar] [CrossRef]
- Karibe, H.; Kameyama, M.; Kawase, M.; Hirano, T.; Kawaguchi, T.; Tominaga, T. Epidemiology of chronic subdural hematomas. No Shinkei Geka 2011, 39, 1149–1153. [Google Scholar]
- Kudo, H.; Kuwamura, K.; Izawa, I.; Sawa, H.; Tamaki, N. Chronic subdural hematoma in elderly people: Present status on Awaji Island and epidemiological prospect. Neurol. Med. Chir. 1992, 32, 207–209. [Google Scholar] [CrossRef]
- Ramachandran, R.; Hegde, T. Chronic subdural hematomas—Causes of morbidity and mortality. Surg. Neurol. 2007, 67, 367–372; discussion 372–373. [Google Scholar] [CrossRef]
- Amirjamshidi, A.; Abouzari, M.; Eftekhar, B.; Rashidi, A.; Rezaii, J.; Esfandiari, K.; Shirani, A.; Asadollahi, M.; Aleali, H. Outcomes and recurrence rates in chronic subdural haematoma. Br. J. Neurosurg. 2007, 21, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.-G.; Jung, N.-Y.; Kim, E. Independent predictors for recurrence of chronic subdural hematoma. J. Korean Neurosurg. Soc. 2015, 57, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Santarius, T.; Kirkpatrick, P.J.; Kolias, A.G.; Hutchinson, P.J. Working toward rational and evidence-based treatment of chronic subdural hematoma. Clin. Neurosurg. 2010, 57, 112–122. [Google Scholar] [PubMed]
- Frati, A.; Salvati, M.; Mainiero, F.; Ippoliti, F.; Rocchi, G.; Raco, A.; Caroli, E.; Cantore, G.; Delfini, R. Inflammation markers and risk factors for recurrence in 35 patients with a posttraumatic chronic subdural hematoma: A prospective study. J. Neurosurg. 2004, 100, 24–32. [Google Scholar] [CrossRef]
- Stanisic, M.; Aasen, A.O.; Pripp, A.H.; Lindegaard, K.-F.; Ramm-Pettersen, J.; Lyngstadaas, S.P.; Ivanovic, J.; Konglund, A.; Ilstad, E.; Sandell, T.; et al. Local and systemic pro-inflammatory and anti-inflammatory cytokine patterns in patients with chronic subdural hematoma: A prospective study. Inflamm. Res. 2012, 61, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Yamamoto, S.; Komai, T.; Mizukoshi, H. Role of local hyperfibrinolysis in the etiology of chronic subdural hematoma. J. Neurosurg. 1976, 45, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Kalamatianos, T.; Stavrinou, L.C.; Koutsarnakis, C.; Psachoulia, C.; Sakas, D.E.; Stranjalis, G. PlGF and sVEGFR-1 in chronic subdural hematoma: Implications for hematoma development. J. Neurosurg. 2013, 118, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Vakhari, K.; Weimer, P.V.; Hashmi, E.; Davies, J.M.; Siddiqui, A.H. Safety and Effectiveness of Embolization for Chronic Subdural Hematoma: Systematic Review and Case Series. World Neurosurg. 2019, 126, 228–236. [Google Scholar] [CrossRef]
- Ban, S.P.; Hwang, G.; Byoun, H.S.; Kim, T.; Lee, S.U.; Bang, J.S.; Han, J.H.; Kim, C.Y.; Kwon, O.K.; Oh, C.W. Middle Meningeal Artery Embolization for Chronic Subdural Hematoma. Radiology 2018, 286, 992–999. [Google Scholar] [CrossRef]
- Srivatsan, A.; Mohanty, A.; Nascimento, F.A.; Hafeez, M.U.; Srinivasan, V.M.; Thomas, A.; Chen, S.R.; Johnson, J.N.; Kan, P. Middle Meningeal Artery Embolization for Chronic Subdural Hematoma: Meta-Analysis and Systematic Review. World Neurosurg. 2019, 122, 613–619. [Google Scholar] [CrossRef]
- Kim, E. Embolization Therapy for Refractory Hemorrhage in Patients with Chronic Subdural Hematomas. World Neurosurg. 2017, 101, 520–527. [Google Scholar] [CrossRef]
- Najafi, G.; Kreiser, K.; Abdelaziz, M.E.M.K.; Hamady, M.S. Current State of Robotics in Interventional Radiology. Cardiovasc. Interv. Radiol. 2023, 46, 549–561. [Google Scholar] [CrossRef]
- Andras, I.; Mazzone, E.; van Leeuwen, F.W.B.; De Naeyer, G.; van Oosterom, M.N.; Beato, S.; Buckle, T.; O’sullivan, S.; van Leeuwen, P.J.; Beulens, A.; et al. Artificial intelligence and robotics: A combination that is changing the operating room. World J. Urol. 2020, 38, 2359–2366. [Google Scholar] [CrossRef]
- Pereira, V.M.; Cancelliere, N.M.; Nicholson, P.; Radovanovic, I.; Drake, K.E.; Sungur, J.-M.; Krings, T.; Turk, A. First-in-human, robotic-assisted neuroendovascular intervention. J. NeuroInterv. Surg. 2020, 12, 338–340. [Google Scholar] [CrossRef]
Grade | Description | Management | Outcomes | Sources |
---|---|---|---|---|
I–II | I—intimal irregularity; <25% vessel stenosis II—dissection; >25% vessel stenosis |
|
| [14,22,23] |
III | Pseudoaneurysm |
|
| [5,7,23,27,28,29,30,31] |
IV | Occlusion |
|
| [5,7,23,24,25] |
V | Transection of the extracranial carotid or vertebral arteries with active extravasation |
|
| [5,18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Subah, G.; Cooper, J.; Fortunato, M.; Nolan, B.; Bowers, C.; Prabhakaran, K.; Nuoman, R.; Amuluru, K.; Soldozy, S.; et al. Neuroendovascular Surgery Applications in Craniocervical Trauma. Biomedicines 2023, 11, 2409. https://doi.org/10.3390/biomedicines11092409
Kim M, Subah G, Cooper J, Fortunato M, Nolan B, Bowers C, Prabhakaran K, Nuoman R, Amuluru K, Soldozy S, et al. Neuroendovascular Surgery Applications in Craniocervical Trauma. Biomedicines. 2023; 11(9):2409. https://doi.org/10.3390/biomedicines11092409
Chicago/Turabian StyleKim, Michael, Galadu Subah, Jared Cooper, Michael Fortunato, Bridget Nolan, Christian Bowers, Kartik Prabhakaran, Rolla Nuoman, Krishna Amuluru, Sauson Soldozy, and et al. 2023. "Neuroendovascular Surgery Applications in Craniocervical Trauma" Biomedicines 11, no. 9: 2409. https://doi.org/10.3390/biomedicines11092409
APA StyleKim, M., Subah, G., Cooper, J., Fortunato, M., Nolan, B., Bowers, C., Prabhakaran, K., Nuoman, R., Amuluru, K., Soldozy, S., Das, A. S., Regenhardt, R. W., Izzy, S., Gandhi, C., & Al-Mufti, F. (2023). Neuroendovascular Surgery Applications in Craniocervical Trauma. Biomedicines, 11(9), 2409. https://doi.org/10.3390/biomedicines11092409