Is There a Relationship between Adverse Pregnancy Outcomes and Future Development of Atherosclerosis?
Abstract
:1. Pregnancy Implications for Cardiovascular Disease
2. Cardiovascular Abnormalities in Pregnancy
2.1. Specific Placental Factors
2.2. Constriction of Blood Vessels
3. Pregnancy Complications
3.1. Gestational Diabetes
3.1.1. Gestational Diabetes and Associated Cardiovascular Risks
3.1.2. Genetic Predispositions
3.1.3. Management of Gestational Diabetes
3.2. Hypertensive Disorders of Pregnancy
3.2.1. HDPs and Cardiovascular Risk
3.2.2. HDPs and Atherosclerosis
3.3. Pregnancy Loss and Stillbirth
3.3.1. Miscarriages and Cardiovascular Risks
3.3.2. Miscarriage and Later Cardiovascular Outcome
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garcia, M.; Mulvagh, S.L.; Merz, C.N.B.; Buring, J.E.; Manson, J.E. Cardiovascular Disease in Women. Circ. Res. 2016, 118, 1273–1293. [Google Scholar] [CrossRef]
- Kajantie, E.; Osmond, C.; Eriksson, J.G. Gestational hypertension is associated with increased risk of type 2 diabetes in adult offspring: The Helsinki Birth Cohort Study. Am. J. Obstet. Gynecol. 2017, 216, 281.e1–281.e7. [Google Scholar] [CrossRef]
- Wong, N.D.; Budoff, M.J.; Ferdinand, K.; Graham, I.M.; Michos, E.D.; Reddy, T.; Shapiro, M.D.; Toth, P.P. Atherosclerotic cardiovascular disease risk assessment: An American Society for Preventive Cardiology clinical practice statement. Am. J. Prev. Cardiol. 2022, 10, 100335. [Google Scholar] [CrossRef]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar] [CrossRef]
- Täufer Cederlöf, E.; Lundgren, M.; Lindahl, B.; Christersson, C. Pregnancy Complications and Risk of Cardiovascular Disease Later in Life: A Nationwide Cohort Study. J. Am. Heart Assoc. 2022, 11, e023079. [Google Scholar] [CrossRef]
- Adam, K. Pregnancy in Women with Cardiovascular Diseases. Methodist DeBakey Cardiovasc. J. 2017, 13, 209–215. [Google Scholar] [CrossRef]
- Ramezani Tehrani, F.; Behboudi-Gandevani, S.; Dovom, M.R.; Farahmand, M.; Minooee, S.; Noroozzadeh, M.; Amiri, M.; Nazarpour, S.; Azizi, F. Reproductive Assessment: Findings from 20 Years of the Tehran Lipid and Glucose Study. Int. J. Endocrinol. Metab. 2018, 16, e84786. [Google Scholar] [CrossRef]
- Sebastiani, G.; Navarro-Tapia, E.; Almeida-Toledano, L.; Serra-Delgado, M.; Paltrinieri, A.L.; García-Algar, Ó.; Andreu-Fernández, V. Effects of Antioxidant Intake on Fetal Development and Maternal/Neonatal Health during Pregnancy. Antioxidants 2022, 11, 648. [Google Scholar] [CrossRef]
- Barrera, D.; Díaz, L.; Noyola-Martínez, N.; Halhali, A. Vitamin D and Inflammatory Cytokines in Healthy and Preeclamptic Pregnancies. Nutrients 2015, 7, 6465–6490. [Google Scholar] [CrossRef]
- Opichka, M.A.; Rappelt, M.W.; Gutterman, D.D.; Grobe, J.L.; McIntosh, J.J. Vascular Dysfunction in Preeclampsia. Cells 2021, 10, 3055. [Google Scholar] [CrossRef]
- Maynard, S.E.; Karumanchi, S.A. Angiogenic factors and preeclampsia. Semin. Nephrol. 2011, 31, 33–46. [Google Scholar] [CrossRef]
- Creswell, L.; O’Gorman, N.; Palmer, K.R.; da Silva Costa, F.; Rolnik, D.L. Perspectives on the Use of Placental Growth Factor (PlGF) in the Prediction and Diagnosis of Pre-Eclampsia: Recent Insights and Future Steps. Int. J. Women’s Health 2023, 15, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Cirkovic, A.; Stanisavljevic, D.; Milin-Lazovic, J.; Rajovic, N.; Pavlovic, V.; Milicevic, O.; Savic, M.; Kostic Peric, J.; Aleksic, N.; Milic, N.; et al. Preeclamptic Women Have Disrupted Placental microRNA Expression at the Time of Preeclampsia Diagnosis: Meta-Analysis. Front. Bioeng. Biotechnol. 2021, 9, 782845. [Google Scholar] [CrossRef]
- Frazier, S.; McBride, M.W.; Mulvana, H.; Graham, D. From animal models to patients: The role of placental microRNAs, miR-210, miR-126, and miR-148a/152 in preeclampsia. Clin. Sci. 2020, 134, 1001–1025. [Google Scholar] [CrossRef]
- Liu, Z.-N.; Jiang, Y.; Liu, X.-Q.; Yang, M.-M.; Chen, C.; Zhao, B.-H.; Huang, H.-F.; Luo, Q. MiRNAs in Gestational Diabetes Mellitus: Potential Mechanisms and Clinical Applications. J. Diabetes Res. 2021, 2021, 632745. [Google Scholar] [CrossRef]
- Hayes-Ryan, D.; Khashan, A.S.; Hemming, K.; Easter, C.; Devane, D.; Murphy, D.J.; Hunter, A.; Cotter, A.; McAuliffe, F.M.; Morrison, J.J.; et al. Placental growth factor in assessment of women with suspected pre-eclampsia to reduce maternal morbidity: A stepped wedge cluster randomised control trial (PARROT Ireland). BMJ 2021, 374, n1857. [Google Scholar] [CrossRef]
- Stepan, H.; Hund, M.; Andraczek, T. Combining Biomarkers to Predict Pregnancy Complications and Redefine Preeclampsia. Hypertension 2020, 75, 918–926. [Google Scholar] [CrossRef]
- Pankiewicz, K.; Szczerba, E.; Maciejewski, T.; Fijałkowska, A. Non-obstetric complications in preeclampsia. Menopausal Rev. 2019, 18, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Tropea, T.; Nihlen, C.; Weitzberg, E.; Lundberg, J.O.; Wareing, M.; Greenwood, S.L.; Sibley, C.P.; Cottrell, E.C. Enhanced Nitrite-Mediated Relaxation of Placental Blood Vessels Exposed to Hypoxia Is Preserved in Pregnancies Complicated by Fetal Growth Restriction. Int. J. Mol. Sci. 2021, 22, 4500. [Google Scholar] [CrossRef]
- Panaitescu, A.; Peltecu, G. Gestational Diabetes. Obstetrical Perspective. Acta Endocrinol. 2016, 12, 331–334. [Google Scholar] [CrossRef]
- Bengtson, A.M.; Ramos, S.Z.; Savitz, D.A.; Werner, E.F. Risk Factors for Progression From Gestational Diabetes to Postpartum Type 2 Diabetes: A Review. Clin. Obstet. Gynecol. 2021, 64, 234–243. [Google Scholar] [CrossRef]
- Shostrom, D.C.V.; Sun, Y.; Oleson, J.J.; Snetselaar, L.G.; Bao, W. History of Gestational Diabetes Mellitus in Relation to Cardiovascular Disease and Cardiovascular Risk Factors in US Women. Front. Endocrinol. 2017, 8, 144. [Google Scholar] [CrossRef] [PubMed]
- Youk, T.M.; Kang, M.J.; Song, S.O.; Park, E.-C. Effects of BMI and LDL-cholesterol change pattern on cardiovascular disease in normal adults and diabetics. BMJ Open Diabetes Res. Care 2020, 8, e001340. [Google Scholar] [CrossRef]
- Sibal, L.; Agarwal, S.C.; Home, P.D. Carotid intima-media thickness as a surrogate marker of cardiovascular disease in diabetes. Diabetes Metab. Syndr. Obesity Targets Ther. 2011, 4, 23–34. [Google Scholar] [CrossRef]
- Krüger, N.; Biwer, L.A.; Good, M.E.; Ruddiman, C.A.; Wolpe, A.G.; DeLalio, L.J.; Murphy, S.; Macal, E.H.; Ragolia, L.; Serbulea, V.; et al. Loss of Endothelial FTO Antagonizes Obesity-Induced Metabolic and Vascular Dysfunction. Circ. Res. 2020, 126, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Sara, J.D.; Taher, R.; Kolluri, N.; Vella, A.; Lerman, L.O.; Lerman, A. Coronary microvascular dysfunction is associated with poor glycemic control amongst female diabetics with chest pain and non-obstructive coronary artery disease. Cardiovasc. Diabetol. 2019, 18, 22. [Google Scholar] [CrossRef]
- Jacobsen, D.P.; Røysland, R.; Strand, H.; Moe, K.; Sugulle, M.; Omland, T.; Staff, A.C. Cardiovascular biomarkers in pregnancy with diabetes and associations to glucose control. Acta Diabetol. 2022, 59, 1229–1236. [Google Scholar] [CrossRef]
- Bo, S.; Valpreda, S.; Menato, G.; Bardelli, C.; Botto, C.; Gambino, R.; Rabbia, C.; Durazzo, M.; Cassader, M.; Massobrio, M.; et al. Should we consider gestational diabetes a vascular risk factor? Atherosclerosis 2007, 194, e72–e79. [Google Scholar] [CrossRef] [PubMed]
- Volpe, L.; Di Cianni, G.; Lencioni, C.; Cuccuru, I.; Benzi, L.; Del Prato, S. Gestational diabetes, inflammation, and late vascular disease. J. Endocrinol. Investig. 2007, 30, 873–879. [Google Scholar] [CrossRef]
- Kaul, P.; Savu, A.; Yeung, R.O.; Ryan, E.A. Association between maternal glucose and large for gestational outcomes: Real-world evidence to support Hyperglycaemia and Adverse Pregnancy Outcomes (HAPO) study findings. Diabet. Med. 2022, 39, e14786. [Google Scholar] [CrossRef] [PubMed]
- Retnakaran, R.; Shah, B.R. Mediating effect of vascular risk factors underlying the link between gestational diabetes and cardiovascular disease. BMC Med. 2022, 20, 389. [Google Scholar] [CrossRef]
- Ye, X.; Kong, W.; Zafar, M.I.; Chen, L.-L. Serum triglycerides as a risk factor for cardiovascular diseases in type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Cardiovasc. Diabetol. 2019, 18, 48. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Gillies, C.L.; Lin, S.; Stewart, Z.A.; Melford, S.E.; Abrams, K.R.; Baker, P.N.; Khunti, K.; Tan, B.K. Association of maternal lipid profile and gestational diabetes mellitus: A systematic review and meta-analysis of 292 studies and 97,880 women. EClinicalMedicine 2021, 34, 100830. [Google Scholar] [CrossRef] [PubMed]
- Di Cianni, G.; Lacaria, E.; Lencioni, C.; Resi, V. Preventing type 2 diabetes and cardiovascular disease in women with gestational diabetes—The evidence and potential strategies. Diabetes Res. Clin. Pract 2018, 145, 184–192. [Google Scholar] [CrossRef]
- Gongora, M.C.; Wenger, N.K. Cardiovascular Complications of Pregnancy. Int. J. Mol. Sci. 2015, 16, 23905–23928. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A. Environmental Determinants of Cardiovascular Disease. Circ. Res. 2017, 121, 162–180. [Google Scholar] [CrossRef]
- Li, L.; Shi, G.; Zhang, X.; Wang, H.; He, S. Analysis and Intervention of Factors Affecting Abnormal Postpartum Glucose Tolerance and Gestational Recurrence in Gestational Diabetes. Evid. Based Complement. Altern. Med. 2021, 2021, 8470944. [Google Scholar] [CrossRef]
- Franzago, M.; Fraticelli, F.; Di Nicola, M.; Bianco, F.; Marchetti, D.; Celentano, C.; Liberati, M.; De Caterina, R.; Stuppia, L.; Vitacolonna, E. Early Subclinical Atherosclerosis in Gestational Diabetes: The Predictive Role of Routine Biomarkers and Nutrigenetic Variants. J. Diabetes Res. 2018, 2018, 9242579. [Google Scholar] [CrossRef]
- Hechmi, M.; Dallali, H.; Gharbi, M.; Jmel, H.; Fassatoui, M.; Ben Halima, Y.; Bahri, S.; Bahlous, A.; Abid, A.; Jamoussi, H.; et al. Association of rs662799 variant and APOA5 gene haplotypes with metabolic syndrome and its components: A meta-analysis in North Africa. Biosci. Rep. 2020, 40, BSR20200706. [Google Scholar] [CrossRef]
- Ferreira, C.N.; Carvalho, M.G.; Gomes, K.B.; Reis, H.J.; Fernandes, A.-P.; Palotás, A.; Sousa, M.O. Apolipoprotein polymorphism is associated with pro-thrombotic profile in non-demented dyslipidemic subjects. Exp. Biol. Med. 2014, 240, 79–86. [Google Scholar] [CrossRef]
- Qiao, S.; Hong, L.; Zhu, Y.; Zha, J.; Wang, A.; Qiu, J.; Li, W.; Wang, C.; An, J.; Zhang, H. RIPK1-RIPK3 mediates myocardial fibrosis in type 2 diabetes mellitus by impairing autophagic flux of cardiac fibroblasts. Cell Death Dis. 2022, 13, 147. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.A.; Mahmud, S.A. Correlation between Carotid Artery Intima-Media Thickness and Luminal Diameter with Body Mass Index and Other Cardiovascular Risk Factors in Adults. Sultan Qaboos Univ. Med J. 2015, 15, e344–e350. [Google Scholar] [CrossRef]
- Jha, C.K.; Mir, R.; Banu, S.; Elfaki, I.; Chahal, S.M.S. Heterozygosity in LDLR rs2228671 and rs72658855 Gene is Associated with Increased Risk of Developing Coronary Artery Disease in India—A Case-Control Study. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 388–399. [Google Scholar] [CrossRef]
- Koseoglu, C.; Erdogan, M.; Koseoglu, G.; Kurmus, O.; Ertem, A.G.; Efe, T.H.; Kurmus, G.I.; Durmaz, T.; Keles, T.; Bozkurt, E. The Relationship between Lichen Planus and Carotid Intima Media Thickness. Acta Cardiol. Sin. 2016, 32, 738–743. [Google Scholar] [CrossRef]
- Mecacci, F.; Lisi, F.; Vannuccini, S.; Ottanelli, S.; Rambaldi, M.P.; Serena, C.; Simeone, S.; Petraglia, F. Different Gestational Diabetes Phenotypes: Which Insulin Regimen Fits Better? Front. Endocrinol. 2021, 12, 630903. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, H.; Li, N.; Dong, W.; Li, W.; Wang, L.; Zhang, Y.; Yang, Y.; Leng, J. Relationship between gestational body mass index change and the risk of gestational diabetes mellitus: A community-based retrospective study of 41,845 pregnant women. BMC Pregnancy Childbirth 2022, 22, 336. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, E.; Gomersall, J.C.; Tieu, J.; Han, S.; Crowther, C.A.; Middleton, P. Combined diet and exercise interventions for preventing gestational diabetes mellitus. Cochrane Database Syst. Rev. 2017, 11, CD010443. [Google Scholar] [CrossRef]
- Muhwava, L.S.; Murphy, K.; Zarowsky, C.; Levitt, N. Experiences of lifestyle change among women with gestational diabetes mellitus (GDM): A behavioural diagnosis using the COM-B model in a low-income setting. PLoS ONE 2019, 14, e0225431. [Google Scholar] [CrossRef] [PubMed]
- Pathirana, M.M.; Andraweera, P.H.; Aldridge, E.; Leemaqz, S.Y.; Harrison, M.; Harrison, J.; Verburg, P.E.; Arstall, M.A.; Dekker, G.A.; Roberts, C.T. Gestational diabetes mellitus and cardio-metabolic risk factors in women and children at 3 years postpartum. Acta Diabetol. 2022, 59, 1237–1246. [Google Scholar] [CrossRef]
- Yu, H.; He, Y.; Mao, Z.; Dong, W.; Fu, X.; Lei, X. Hypertensive disorders during pregnancy and elevated blood pressure in the offspring. Medicine 2019, 98, e15677. [Google Scholar] [CrossRef]
- Park, S.K.; Ha, E.; Jung, J.Y.; Oh, C.-M.; Choi, J.-M.; Kang, H.Y.; Choi, Y.-S.; Kim, M.G.; Kim, J.-W.; Ryoo, J.-H. The Risk for Incident Ischemic Heart Disease According to Estimated Glomerular Filtration Rate in A Korean Population. J. Atheroscler. Thromb. 2020, 27, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-X.; Arvizu, M.; Rich-Edwards, J.W.; Wang, L.; Rosner, B.; Stuart, J.J.; Rexrode, K.M.; Chavarro, J.E. Hypertensive Disorders of Pregnancy and Subsequent Risk of Premature Mortality. J. Am. Coll. Cardiol. 2021, 77, 1302–1312. [Google Scholar] [CrossRef]
- Rayes, B.; Ardissino, M.; Slob, E.A.W.; Patel, K.H.K.; Girling, J.; Ng, F.S. Association of Hypertensive Disorders of Pregnancy With Future Cardiovascular Disease. JAMA Netw. Open 2023, 6, e230034. [Google Scholar] [CrossRef] [PubMed]
- Abraham, T.; Romani, A.M.P. The Relationship between Obesity and Pre-Eclampsia: Incidental Risks and Identification of Potential Biomarkers for Pre-Eclampsia. Cells 2022, 11, 1548. [Google Scholar] [CrossRef]
- Kuć, A.; Kubik, D.; Kościelecka, K.; Szymanek, W.; Męcik-Kronenberg, T. The Relationship Between Peripartum Cardiomyopathy and Preeclampsia—Pathogenesis, Diagnosis and Management. J. Multidiscip. Health 2022, 15, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Cantor, R.M.; Lange, K.; Sinsheimer, J.S. Prioritizing GWAS results: A review of statistical methods and recommendations for their application. Am. J. Hum. Genet. 2010, 86, 6–22. [Google Scholar] [CrossRef]
- Kronenberg, F.; Mora, S.; Stroes, E.S.G.; Ference, B.A.; Arsenault, B.J.; Berglund, L.; Dweck, M.R.; Koschinsky, M.; Lambert, G.; Mach, F.; et al. Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: A European Atherosclerosis Society consensus statement. Eur. Heart J. 2022, 43, 3925–3946. [Google Scholar] [CrossRef] [PubMed]
- White, W.M.; Mielke, M.M.; Araoz, P.A.; Lahr, B.D.; Bailey, K.R.; Jayachandran, M.; Miller, V.M.; Garovic, V.D. A history of preeclampsia is associated with a risk for coronary artery calcification 3 decades later. Am. J. Obstet. Gynecol. 2016, 214, 519.e1–519.e8. [Google Scholar] [CrossRef]
- Aksu, E.; Cuglan, B.; Tok, A.; Celik, E.; Doganer, A.; Sokmen, A.; Sokmen, G. Cardiac electrical and structural alterations in preeclampsia. J. Matern. Neonatal Med. 2022, 35, 1–10. [Google Scholar] [CrossRef]
- Wright, C.E.; Enquobahrie, D.A.; Prager, S.; Painter, I.; Kooperberg, C.; Wild, R.A.; Park, K.; Sealy-Jefferson, S.; Kernic, M.A. Pregnancy loss and risk of incident CVD within 5 years: Findings from the Women’s Health Initiative. Front. Cardiovasc. Med. 2023, 10, 1108286. [Google Scholar] [CrossRef]
- Roeder, H.J.; Lopez, J.R.; Miller, E.C. Ischemic stroke and cerebral venous sinus thrombosis in pregnancy. Handb. Clin. Neurol. 2020, 172, 3–31. [Google Scholar] [CrossRef] [PubMed]
- Kyriacou, H.; Al-Mohammad, A.; Muehlschlegel, C.; Foster-Davies, L.; Bruco, M.E.F.; Legard, C.; Fisher, G.; Simmons-Jones, F.; Oliver-Williams, C. The risk of cardiovascular diseases after miscarriage, stillbirth, and induced abortion: A systematic review and meta-analysis. Eur. Heart J. Open 2022, 2, oeac065. [Google Scholar] [CrossRef]
- Yeung, E.H.; Park, H.; Nobles, C.; Mumford, S.L.; Silver, R.; Schisterman, E.F. Cardiovascular disease family history and risk of pregnancy loss. Ann. Epidemiol. 2019, 34, 40–44. [Google Scholar] [CrossRef]
- Emmungil, H.; Ilgen, U.; Direskeneli, R.H. Autoimmunity in psoriatic arthritis: Pathophysiological and clinical aspects. Turk. J. Med. Sci. 2021, 51, 1601–1614. [Google Scholar] [CrossRef] [PubMed]
- Blue, N.R.; Page, J.M.; Silver, R.M. Genetic abnormalities and pregnancy loss. Semin. Perinatol. 2019, 43, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Chung, H.-F.; Dobson, A.J.; Hayashi, K.; van der Schouw, Y.T.; Kuh, D.; Hardy, R.; Derby, C.A.; El Khoudary, S.R.; Janssen, I.; et al. Infertility, recurrent pregnancy loss, and risk of stroke: Pooled analysis of individual patient data of 618 851 women. BMJ 2022, 377, e070603. [Google Scholar] [CrossRef] [PubMed]
- Peters SA, E.; Yang, L.; Guo, Y.; Chen, Y.; Bian, Z.; Tian, X.; Chang, L.; Zhang, S.; Liu, J.; Wang, T.; et al. Pregnancy, pregnancy loss, and the risk of cardiovascular disease in Chinese women: Findings from the China Kadoorie Biobank. BMC Med. 2017, 15, 148. [Google Scholar] [CrossRef]
- Muehlschlegel, C.; Kyriacou, H.; Al-Mohammad, A.; Foster-Davies, L.A.; Simmons-Jones, F.; Oliver-Williams, C. The risk of cardiovascular disease in women after miscarriage, stillbirth, and therapeutic abortion: A protocol for a systematic review and meta-analysis. Syst. Rev. 2020, 9, 234. [Google Scholar] [CrossRef]
- Ortega, M.A.; Fraile-Martínez, O.; García-Montero, C.; Sáez, M.A.; Álvarez-Mon, M.A.; Torres-Carranza, D.; Álvarez-Mon, M.; Bujan, J.; García-Honduvilla, N.; Bravo, C.; et al. The Pivotal Role of the Placenta in Normal and Pathological Pregnancies: A Focus on Preeclampsia, Fetal Growth Restriction, and Maternal Chronic Venous Disease. Cells 2022, 11, 568. [Google Scholar] [CrossRef]
- El Hachem, H.; Crepaux, V.; May-Panloup, P.; Descamps, P.; Legendre, G.; Bouet, P.-E. Recurrent pregnancy loss: Current perspectives. Int. J. Womens Health 2017, 9, 331–345. [Google Scholar] [CrossRef]
- Woolner, A.M.F.; Raja, E.A.; Bhattacharya, S.; Danielian, P.; Bhattacharya, S. Inherited susceptibility to miscarriage: A nested case-control study of 31,565 women from an intergenerational cohort. Am. J. Obstet. Gynecol. 2020, 222, 168.e1–168.e8. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.C., Jr.; Grundy, S.M. 2013 ACC/AHA guideline recommends fixed-dose strategies instead of targeted goals to lower blood cholesterol. J. Am. Coll. Cardiol. 2014, 64, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Laisk, T.; Soares, A.L.G.; Ferreira, T.; Painter, J.N.; Censin, J.C.; Laber, S.; Bacelis, J.; Chen, C.-Y.; Lepamets, M.; Lin, K.; et al. The genetic architecture of sporadic and multiple consecutive miscarriage. Nat. Commun. 2020, 11, 5980. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poznyak, A.V.; Khotina, V.A.; Zhigmitova, E.B.; Sukhorukov, V.N.; Postnov, A.Y.; Orekhov, A.N. Is There a Relationship between Adverse Pregnancy Outcomes and Future Development of Atherosclerosis? Biomedicines 2023, 11, 2430. https://doi.org/10.3390/biomedicines11092430
Poznyak AV, Khotina VA, Zhigmitova EB, Sukhorukov VN, Postnov AY, Orekhov AN. Is There a Relationship between Adverse Pregnancy Outcomes and Future Development of Atherosclerosis? Biomedicines. 2023; 11(9):2430. https://doi.org/10.3390/biomedicines11092430
Chicago/Turabian StylePoznyak, Anastasia V., Victoria A. Khotina, Elena B. Zhigmitova, Vasily N. Sukhorukov, Anton Y. Postnov, and Alexander N. Orekhov. 2023. "Is There a Relationship between Adverse Pregnancy Outcomes and Future Development of Atherosclerosis?" Biomedicines 11, no. 9: 2430. https://doi.org/10.3390/biomedicines11092430
APA StylePoznyak, A. V., Khotina, V. A., Zhigmitova, E. B., Sukhorukov, V. N., Postnov, A. Y., & Orekhov, A. N. (2023). Is There a Relationship between Adverse Pregnancy Outcomes and Future Development of Atherosclerosis? Biomedicines, 11(9), 2430. https://doi.org/10.3390/biomedicines11092430