A Quantitative Method for the Evaluation of Deep Vein Thrombosis in a Murine Model Using Three-Dimensional Ultrasound Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Blood Clot Model
2.2. Mouse Model of Deep Vein Thrombosis
2.3. Ultrasound Imaging
2.4. Three-Dimensional Segmentation of Blood Clot
2.5. Data Analysis
3. Results
3.1. Three-Dimensional Blood Clot Volume and Weight
3.2. Characterization of Thrombus in Mouse of IVC Stenosis Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Beaton, A.Z.; Boehme, A.K.; Buxton, A.E.; et al. Heart Disease and Stroke Statistics—2023 Update: A Report from the American Heart Association. Circulation 2023, 147, e93–e621. [Google Scholar] [CrossRef] [PubMed]
- Kahn, S.R. The Post-Thrombotic Syndrome. Hematol. Am. Soc. Hematol. Educ. Program 2016, 2016, 413–418. [Google Scholar] [CrossRef]
- Grosse, S.D.; Nelson, R.E.; Nyarko, K.A.; Richardson, L.C.; Raskob, G.E. The Economic Burden of Incident Venous Thromboembolism in the United States: A Review of Estimated Attributable Healthcare Costs. Thromb. Res. 2016, 137, 3–10. [Google Scholar] [CrossRef] [PubMed]
- White, R.H.; McGahan, J.P.; Daschbach, M.M.; Hartling, R.P. Diagnosis of Deep-Vein Thrombosis Using Duplex Ultrasound. Ann. Intern. Med. 1989, 111, 297–304. [Google Scholar] [CrossRef]
- Male, C.; Chait, P.; Ginsberg, J.S.; Hanna, K.; Andrew, M.; Halton, J.; Anderson, R.; McCusker, P.; Wu, J.; Abshire, T.; et al. Comparison of Venography and Ultrasound for the Diagnosis of Asymptomatic Deep Vein Thrombosis in the Upper Body in Children. Thromb. Haemost. 2002, 87, 593–598. [Google Scholar] [CrossRef]
- Tomkins, A.J.; Hood, R.J.; Levi, C.R.; Spratt, N.J. Tissue Plasminogen Activator for Preclinical Stroke Research: Neither “Rat” nor “Human” Dose Mimics Clinical Recanalization in a Carotid Occlusion Model. Sci. Rep. 2015, 5, 16026. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Kessinger, C.W.; Orii, M.; Lee, H.; Wang, L.; Weinberg, I.; Jaff, M.R.; Reed, G.L.; Libby, P.; Tawakol, A.; et al. Time-Restricted Salutary Effects of Blood Flow Restoration on Venous Thrombosis and Vein Wall Injury in Mouse and Human Subjects. Circulation 2021, 143, 1224–1238. [Google Scholar] [CrossRef]
- Rys, R.N.; Blostein, M.D.; Lemarié, C.A. Deep Vein Thrombosis Induced by Stasis in Mice Monitored by High Frequency Ultrasonography. J. Vis. Exp. JoVE 2018, 134, e57392. [Google Scholar] [CrossRef]
- Wang, Z.; Pan, Y.; Huang, H.; Zhang, Y.; Li, Y.; Zou, C.; Huang, G.; Chen, Y.; Li, Y.; Li, J.; et al. Enhanced Thrombolysis by Endovascular Low-Frequency Ultrasound with Bifunctional Microbubbles in Venous Thrombosis: In Vitro and In Vivo Study. Front. Bioeng. Biotechnol. 2022, 10, 965769. [Google Scholar] [CrossRef]
- Voicu, S.; Bonnin, P.; Malissin, I.; Mohamedi, N.; M’Rad, A.; Ekhérian, J.M.; Sutterlin, L.; Naim, G.; Lacoste-Palasset, T.; Deye, N.; et al. Characteristics of Deep Vein Thrombosis in the Critically Ill COVID-19 Patient—An Observational Cohort Study with Doppler Ultrasound Measurements. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 686–694. [Google Scholar]
- von Brühl, M.L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Köllnberger, M.; et al. Monocytes, Neutrophils, and Platelets Cooperate to Initiate and Propagate Venous Thrombosis in Mice in Vivo. J. Exp. Med. 2012, 209, 819–835. [Google Scholar] [CrossRef] [PubMed]
- Brill, A.; Fuchs, T.A.; Chauhan, A.K.; Yang, J.J.; De Meyer, S.F.; Köllnberger, M.; Wakefield, T.W.; Lämmle, B.; Massberg, S.; Wagner, D.D. Von Willebrand Factor–Mediated Platelet Adhesion Is Critical for Deep Vein Thrombosis in Mouse Models. Blood 2011, 117, 1400–1407. [Google Scholar] [CrossRef]
- Okano, M.; Hara, T.; Nishimori, M.; Irino, Y.; Satomi, K.S.; Shinohara, M.; Toh, R.; Jaffer, F.A.; Ishida, T.; Hirata, K.I. In Vivo Imaging of Venous Thrombus and Pulmonary Embolism Using Novel Murine Venous Thromboembolism Model. JACC Basic Transl. Sci. 2020, 5, 344–356. [Google Scholar] [CrossRef]
- Shaya, S.A.; Westrick, R.J.; Gross, P.L. Thrombus Stability Explains the Factor V Leiden Paradox: A Mouse Model. Blood Adv. 2019, 3, 3375–3378. [Google Scholar] [CrossRef] [PubMed]
- Shaya, S.A.; Saldanha, L.J.; Vaezzadeh, N.; Zhou, J.; Ni, R.; Gross, P.L. Comparison of the Effect of Dabigatran and Dalteparin on Thrombus Stability in a Murine Model of Venous Thromboembolism. J. Thromb. Haemost. 2016, 14, 143–152. [Google Scholar] [CrossRef]
- Zhao, L.; Prior, S.J.; Kampmann, M.; Sorkin, J.D.; Caldwell, K.; Braganza, M.; McEvoy, S.; Lal, B.K. Measurement of Thrombus Resolution Using Three-Dimensional Ultrasound Assessment of Deep Vein Thrombosis Volume. J. Vasc. Surgery Venous Lymphat. Disord. 2014, 2, 140–147. [Google Scholar] [CrossRef]
- Zhao, L.; Patel, R.; Sikdar, S.; Prior, S.J. Comparison of Freehand 3D and 4D Ultrasound to Measure Thrombus Volume in Patients with Acute Deep Vein Thrombosis. J. Vasc. Ultrasound 2016, 40, 76–82. [Google Scholar] [CrossRef]
- Auboire, L.; Escoffre, J.M.; Fouan, D.; Jacquet, J.R.; Ossant, F.; Grégoire, J.M.; Bouakaz, A. Evaluation of High Resolution Ultrasound as a Tool for Assessing the 3D Volume of Blood Clots during In Vitro Thrombolysis. Sci. Rep. 2017, 7, 6211. [Google Scholar] [CrossRef]
- Geddings, J.; Aleman, M.M.; Wolberg, A.; von Brühl, M.L.; Massberg, S.; Mackman, N. Strengths and Weaknesses of a New Mouse Model of Thrombosis Induced by Inferior Vena Cava Stenosis: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2014, 12, 571–573. [Google Scholar] [CrossRef]
- Prakash, S.; Dhar, N.R. Influence of Electrolytes on the Syneresis and Clotting of Blood. J. Phys. Chem. 1931, 35, 629–637. [Google Scholar] [CrossRef]
- Dixon, A.J.; Rickel, J.M.R.; Shin, B.D.; Klibanov, A.L.; Hossack, J.A. In Vitro Sonothrombolysis Enhancement by Transiently Stable Microbubbles Produced by a Flow-Focusing Microfluidic Device. Ann. Biomed. Eng. 2018, 46, 222–232. [Google Scholar] [CrossRef]
- Sutton, J.T.; Ivancevich, N.M.; Perrin, S.R.; Vela, D.C.; Holland, C.K. Clot Retraction Affects the Extent of Ultrasound-Enhanced Thrombolysis in an Ex Vivo Porcine Thrombosis Model. Ultrasound Med. Biol. 2013, 39, 813–824. [Google Scholar] [CrossRef]
- Jansen, E.E.; Hartmann, M. Clot Retraction: Cellular Mechanisms and Inhibitors, Measuring Methods, and Clinical Implications. Biomedicines 2021, 9, 1064. [Google Scholar] [CrossRef] [PubMed]
- Kaul, M.G.; Salamon, J.; Knopp, T.; Ittrich, H.; Adam, G.; Weller, H.; Jung, C. Magnetic Particle Imaging for In Vivo Blood Flow Velocity Measurements in Mice. Phys. Med. Biol. 2018, 63, 064001. [Google Scholar] [CrossRef]
- National Research Council (US) Institute for Laboratory Animal Research. Guide for the Care and Use of Laboratory Animals; National Academies Press (US): Washington, DC, USA, 1996. [Google Scholar]
- Peyman, G.A.; Ingram, C.P.; Montilla, L.G.; Witte, R.S. A High-Resolution 3D Ultrasonic System for Rapid Evaluation of the Anterior and Posterior Segment. Ophthalmic Surg. Lasers Imaging Off. J. Int. Soc. Imaging Eye 2012, 43, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Kolesov, I.; Gao, Y.; Kikinis, R.; Tannenbaum, A. An Effective Interactive Medical Image Segmentation Method Using Fast Growcut. In Proceedings of the MICCAI Workshop on Interactive Medical Image Computing, Boston, MA, USA, 14–18 September 2014. [Google Scholar]
- Kikinis, R.; Pieper, S.D.; Vosburgh, K.G. 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support. In Intraoperative Imaging and Image-Guided Therapy; Jolesz, F.A., Ed.; Springer: New York, NY, USA, 2014; pp. 277–289. [Google Scholar] [CrossRef]
- Puentes, J.; Dhibi, M.; Bressollette, L.; Guias, B.; Solaiman, B. Computer-Assisted Venous Thrombosis Volume Quantification. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Takanari, K.; Hong, Y.; Lee, K.W.; Amoroso, N.J.; Wang, Y.; Wagner, W.R.; Kim, K. Non-Invasive Characterization of Polyurethane-Based Tissue Constructs in a Rat Abdominal Repair Model Using High Frequency Ultrasound Elasticity Imaging. Biomaterials 2013, 34, 2701–2709. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, C.D.; Blake, C.C.; Tamayo, A.; Beletsky, V.; Fenster, A.; Spence, J.D. 3D Ultrasound Measurement of Change in Carotid Plaque Volume. Stroke 2005, 36, 1904–1909. [Google Scholar] [CrossRef]
- Landry, A.; Spence, J.D.; Fenster, A. Quantification of Carotid Plaque Volume Measurements Using 3D Ultrasound Imaging. Ultrasound Med. Biol. 2005, 31, 751–762. [Google Scholar] [CrossRef]
- Goldberg, A.; Pakkiri, P.; Dai, E.; Lucas, A.; Fenster, A. Measurements of Aneurysm Morphology Determined by 3-d Micro-Ultrasound Imaging as Potential Quantitative Biomarkers in a Mouse Aneurysm Model. Ultrasound Med. Biol. 2007, 33, 1552–1560. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, H.; Wang, Y.; Chen, L.; Li, S.; Hussein, I.A.; Wu, Y.; Shang, Y.; Yao, S.; Du, R. The Rate of Missed Diagnosis of Lower-Limb DVT by Ultrasound Amounts to 50% or so in Patients without Symptoms of DVT: A Meta-Analysis. Medicine 2019, 98, e17103. [Google Scholar] [CrossRef] [PubMed]
- Demené, C.; Deffieux, T.; Pernot, M.; Osmanski, B.F.; Biran, V.; Gennisson, J.L.; Sieu, L.A.; Bergel, A.; Franqui, S.; Correas, J.M.; et al. Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity. IEEE Trans. Med. Imaging 2015, 34, 2271–2285. [Google Scholar] [CrossRef] [PubMed]
- Ophir, J.; Céspedes, I.; Ponnekanti, H.; Yazdi, Y.; Li, X. Elastography: A Quantitative Method for Imaging the Elasticity of Biological Tissues. Ultrason. Imaging 1991, 13, 111–134. [Google Scholar] [CrossRef]
- Kainz, B.; Heinrich, M.P.; Makropoulos, A.; Oppenheimer, J.; Mandegaran, R.; Sankar, S.; Deane, C.; Mischkewitz, S.; Al-Noor, F.; Rawdin, A.C.; et al. Non-Invasive Diagnosis of Deep Vein Thrombosis from Ultrasound Imaging with Machine Learning. npj Digit. Med. 2021, 4, 137. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, M.; Sakai, A.; Dozen, A.; Shozu, K.; Yasutomi, S.; Machino, H.; Asada, K.; Kaneko, S.; Hamamoto, R. Towards Clinical Application of Artificial Intelligence in Ultrasound Imaging. Biomedicines 2021, 9, 720. [Google Scholar] [CrossRef]
- Vijayan, S.; Klein, S.; Hofstad, E.F.; Lindseth, F.; Ystgaard, B.; Langø, T. Motion Tracking in the Liver: Validation of a Method Based on 4D Ultrasound Using a Nonrigid Registration Technique. Med. Phys. 2014, 41, 082903. [Google Scholar] [CrossRef]
- Bureau, F.; Robin, J.; Le Ber, A.; Lambert, W.; Fink, M.; Aubry, A. Three-Dimensional Ultrasound Matrix Imaging. Nat. Commun. 2023, 14, 6793. [Google Scholar] [CrossRef]
Parameters | B-Mode | Doppler |
---|---|---|
Frequency | 40 MHz | 30 MHz |
Depth | 12 mm | |
Width | 14 mm | |
Resolution (width × depth) | 512 × 400 pixels | 256 × 200 pixels |
Step size | 0.03 mm (long axis)/0.1 mm (short axis) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Huang, Y.; Stevenson, H.C.S.; Yin, L.; Zhang, K.; Islam, Z.H.; Marcum, W.A.; Johnston, C.; Hoyt, N.; Kent, E.W.; et al. A Quantitative Method for the Evaluation of Deep Vein Thrombosis in a Murine Model Using Three-Dimensional Ultrasound Imaging. Biomedicines 2024, 12, 200. https://doi.org/10.3390/biomedicines12010200
Xie Y, Huang Y, Stevenson HCS, Yin L, Zhang K, Islam ZH, Marcum WA, Johnston C, Hoyt N, Kent EW, et al. A Quantitative Method for the Evaluation of Deep Vein Thrombosis in a Murine Model Using Three-Dimensional Ultrasound Imaging. Biomedicines. 2024; 12(1):200. https://doi.org/10.3390/biomedicines12010200
Chicago/Turabian StyleXie, Yanjun, Yi Huang, Hugo C. S. Stevenson, Li Yin, Kaijie Zhang, Zain Husain Islam, William Aaron Marcum, Campbell Johnston, Nicholas Hoyt, Eric William Kent, and et al. 2024. "A Quantitative Method for the Evaluation of Deep Vein Thrombosis in a Murine Model Using Three-Dimensional Ultrasound Imaging" Biomedicines 12, no. 1: 200. https://doi.org/10.3390/biomedicines12010200
APA StyleXie, Y., Huang, Y., Stevenson, H. C. S., Yin, L., Zhang, K., Islam, Z. H., Marcum, W. A., Johnston, C., Hoyt, N., Kent, E. W., Wang, B., & Hossack, J. A. (2024). A Quantitative Method for the Evaluation of Deep Vein Thrombosis in a Murine Model Using Three-Dimensional Ultrasound Imaging. Biomedicines, 12(1), 200. https://doi.org/10.3390/biomedicines12010200