Oncogenic BRCA1,2 Mutations in the Human Lineage—A By-Product of Sexual Selection?
Abstract
:1. Introduction
2. Types of Breast Cancer and Molecular Basis behind Current and Classical Views on the Mechanisms of Carcinogenesis in the Mammary Gland
2.1. Human BC
- (1)
- Luminal A subtype: ER and/or PgR-positive, HER2-negative, and low Ki67;
- (2)
- Luminal B subtype: ER and/or PgR-positive, HER2-positive or negative, and high Ki67;
- (3)
- HER2-enriched subtype: frequently features not only HER2+ positivity but also its gene amplification, lacks ER or PgR expression;
- (4)
- Basal-like triple negative BC (TNBC)–lacking HER2, ER and PgR, with frequent p53 mutations. TNBC is generally high grade with the poorest prognosis of all subtypes. This subtype is more common among younger, premenopausal women and is more prevalent in those at a higher genetic risk.
2.2. BC in Species Other than Humans
3. Recent Breakthroughs in the Molecular Mechanisms of Breast Cancer Genesis and Progression
4. Vestiges of Positive Selection in Modern Humans versus Other Species: Mutations in Oncosuppressors and Oncogenes Pertinent to Hereditary Human Breast Cancer
Gene, Region | Lineages with Focus on | Other Kns/Ks | Kns/Ks for Homo | Additional | Ref. |
---|---|---|---|---|---|
BRCA1, exon 11 | Primates | Chimp = 2.6, Gor = 0.4 | 3.1 | [29] | |
BRCA1, full length | Great apes | Chimp = 0.98, Gor = 0.65 | 2.54 | [28] | |
BRCA2, full length | Mammals | Mammalian = 0.47 | Mean for 430 genes = 0.12 | [31] | |
BRCA1, full length | Mammals | 36% have 5.2485 | [33] | ||
BRCA2, full length | Mammals | 4% have 2.37 | [33] | ||
BRCA1, full length | Primates | Two sites > 2.5 in RAD51 domain | Kns/Ks footprinting | [34] | |
BRCA1, full length | Primates | Chimp = 2.66 | 2.79 | [32] | |
BRCA2, exon 11 | Primates | 0.24 | [32] | ||
BRCA1, exon 11 | Mammals, 132 species | [35] |
5. The Enigma of Ubiquitous Expression of Genes Associated with Breast Cancer Risk like BRCA1 and BRCA2
6. Peto-like Paradox, Association between Breast Size and Breast Cancer Risk, and Other Factors
7. The Case of Male Breast Cancer
8. Fertility and Breast Cancer Predisposition
9. Hormonal Status and Breast Cancer—Is There a Link with Putative Sexual Selection?
10. The Importance of Understanding Evolutionary Aspects of Breast Cancer Genesis for Breast Cancer Prevention and Treatment
Molecular Mechanisms behind Preventive Strategies for BC
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wallner, C.; Dahlmann, V.; Montemurro, P.; Kümmel, S.; Reinisch, M.; Drysch, M.; Schmidt, S.V.; Reinkemeier, F.; Huber, J.; Wagner, J.M.; et al. The Search for the Ideal Female Breast: A Nationally Representative United-States-Census Study. Aesthetic Plast. Surg. 2022, 46, 1567–1574. [Google Scholar] [CrossRef]
- Kościński, K.; Makarewicz, R.; Bartoszewicz, Z. Stereotypical and Actual Associations of Breast Size with Mating-Relevant Traits. Arch. Sex. Behav. 2020, 49, 821–836. [Google Scholar] [CrossRef]
- Kościński, K. Breast Firmness Is of Greater Importance for Women’s Attractiveness than Breast Size. Am. J. Hum. Biol. Off. J. Hum. Biol. Counc. 2019, 31, e23287. [Google Scholar] [CrossRef]
- Groyecka, A.; Żelaźniewicz, A.; Misiak, M.; Karwowski, M.; Sorokowski, P. Breast Shape (Ptosis) as a Marker of a Woman’s Breast Attractiveness and Age: Evidence from Poland and Papua. Am. J. Hum. Biol. 2017, 29, e22981. [Google Scholar] [CrossRef]
- Dixson, B.J.; Duncan, M.; Dixson, A.F. The Role of Breast Size and Areolar Pigmentation in Perceptions of Women’s Sexual Attractiveness, Reproductive Health, Sexual Maturity, Maternal Nurturing Abilities, and Age. Arch. Sex. Behav. 2015, 44, 1685–1695. [Google Scholar] [CrossRef]
- Dixson, B.J.; Vasey, P.L.; Sagata, K.; Sibanda, N.; Linklater, W.L.; Dixson, A.F. Men’s Preferences for Women’s Breast Morphology in New Zealand, Samoa, and Papua New Guinea. Arch. Sex. Behav. 2011, 40, 1271–1279. [Google Scholar] [CrossRef]
- Dixson, B.J.; Grimshaw, G.M.; Linklater, W.L.; Dixson, A.F. Eye-Tracking of Men’s Preferences for Waist-to-Hip Ratio and Breast Size of Women. Arch. Sex. Behav. 2011, 40, 43–50. [Google Scholar] [CrossRef]
- Lassek, W.D.; Gaulin, S.J.C. Substantial but Misunderstood Human Sexual Dimorphism Results Mainly From Sexual Selection on Males and Natural Selection on Females. Front. Psychol. 2022, 13, 859931. [Google Scholar] [CrossRef]
- Caro, T.M. Human Breasts: Unsupported Hypotheses Reviewed. Hum. Evol. 1987, 2, 271–282. [Google Scholar] [CrossRef]
- Takan, I.; Karakülah, G.; Louka, A.; Pavlopoulou, A. “In the Light of Evolution:” Keratins as Exceptional Tumor Biomarkers. PeerJ 2023, 11, e15099. [Google Scholar] [CrossRef]
- Evers, B.; Jonkers, J. Mouse Models of BRCA1 and BRCA2 Deficiency: Past Lessons, Current Understanding and Future Prospects. Oncogene 2006, 25, 5885–5897. [Google Scholar] [CrossRef]
- Guzmán-Arocho, Y.D.; Rosenberg, S.M.; Garber, J.E.; Vardeh, H.; Poorvu, P.D.; Ruddy, K.J.; Kirkner, G.; Snow, C.; Tamimi, R.M.; Peppercorn, J.; et al. Clinicopathological Features and BRCA1 and BRCA2 Mutation Status in a Prospective Cohort of Young Women with Breast Cancer. Br. J. Cancer 2022, 126, 302–309. [Google Scholar] [CrossRef]
- Lapin, B.A.; Yakovleva, L.A. Spontaneous and Experimental Malignancies in Non-Human Primates. J. Med. Primatol. 2014, 43, 100–110. [Google Scholar] [CrossRef]
- Luth, J.A.; Hubbard, G.B.; Dick, E.J.; Frazier, S.R.; Barrier, B.F. Characterization of Spontaneous Mammary Gland Carcinomas in Female Baboons. J. Med. Primatol. 2008, 37, 55–61. [Google Scholar] [CrossRef]
- Beck, A.P.; Brooks, A.; Zeiss, C.J. Invasive Ductular Carcinoma in 2 Rhesus Macaques (Macaca mulatta). Comp. Med. 2014, 64, 314–322. [Google Scholar]
- Dewi, F.N.; Cline, J.M. Nonhuman Primate Model in Mammary Gland Biology and Neoplasia Research. Lab. Anim. Res. 2021, 37, 3. [Google Scholar] [CrossRef]
- Deycmar, S.; Gomes, B.; Charo, J.; Ceppi, M.; Cline, J.M. Spontaneous, Naturally Occurring Cancers in Non-Human Primates as a Translational Model for Cancer Immunotherapy. J. Immunother. Cancer 2023, 11, e005514. [Google Scholar] [CrossRef]
- Lovstad, J.N.; Gamble, K.; Sullivan, M.; Akroush, M.; Terio, K.A. Prospective postmortem assessment of the incidence of mammary neoplasia in Chimpanzees (Pan troglodytes). J. Zoo Wildl. Med. Off. Publ. Am. Assoc. Zoo Vet. 2023, 54, 428–434. [Google Scholar] [CrossRef]
- Brown, S.L.; Anderson, D.C.; Dick, E.J., Jr.; Guardado-Mendoza, R.; Garcia, A.P.; Hubbard, G.B. Neoplasia in the Chimpanzee (Pan spp.). J. Med. Primatol. 2009, 38, 137–144. [Google Scholar] [CrossRef]
- Varki, N.M.; Varki, A. On the Apparent Rarity of Epithelial Cancers in Captive Chimpanzees. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140225. [Google Scholar] [CrossRef]
- Liu, S.; Ginestier, C.; Charafe-Jauffret, E.; Foco, H.; Kleer, C.G.; Merajver, S.D.; Dontu, G.; Wicha, M.S. BRCA1 Regulates Human Mammary Stem/Progenitor Cell Fate. Proc. Natl. Acad. Sci. USA 2008, 105, 1680–1685. [Google Scholar] [CrossRef]
- Hu, L.; Su, L.; Cheng, H.; Mo, C.; Ouyang, T.; Li, J.; Wang, T.; Fan, Z.; Fan, T.; Lin, B.; et al. Single-Cell RNA Sequencing Reveals the Cellular Origin and Evolution of Breast Cancer in BRCA1 Mutation Carriers. Cancer Res. 2021, 81, 2600–2611. [Google Scholar] [CrossRef]
- Lim, E.; Vaillant, F.; Wu, D.; Forrest, N.C.; Pal, B.; Hart, A.H.; Asselin-Labat, M.-L.; Gyorki, D.E.; Ward, T.; Partanen, A.; et al. Aberrant Luminal Progenitors as the Candidate Target Population for Basal Tumor Development in BRCA1 Mutation Carriers. Nat. Med. 2009, 15, 907–913. [Google Scholar] [CrossRef]
- He, Z.; Ghorayeb, R.; Tan, S.; Chen, K.; Lorentzian, A.C.; Bottyan, J.; Aalam, S.M.M.; Pujana, M.A.; Lange, P.F.; Kannan, N.; et al. Pathogenic BRCA1 Variants Disrupt PLK1-Regulation of Mitotic Spindle Orientation. Nat. Commun. 2022, 13, 2200. [Google Scholar] [CrossRef]
- Nee, K.; Ma, D.; Nguyen, Q.H.; Pein, M.; Pervolarakis, N.; Insua-Rodríguez, J.; Gong, Y.; Hernandez, G.; Alshetaiwi, H.; Williams, J.; et al. Preneoplastic Stromal Cells Promote BRCA1-Mediated Breast Tumorigenesis. Nat. Genet. 2023, 55, 595–606. [Google Scholar] [CrossRef]
- Nishimura, T.; Kakiuchi, N.; Yoshida, K.; Sakurai, T.; Kataoka, T.R.; Kondoh, E.; Chigusa, Y.; Kawai, M.; Sawada, M.; Inoue, T.; et al. Evolutionary Histories of Breast Cancer and Related Clones. Nature 2023, 620, 607–614. [Google Scholar] [CrossRef]
- de Magalhães, J.P.; Church, G.M. Analyses of Human-Chimpanzee Orthologous Gene Pairs to Explore Evolutionary Hypotheses of Aging. Mech. Ageing Dev. 2007, 128, 355–364. [Google Scholar] [CrossRef]
- Pavlicek, A.; Noskov, V.N.; Kouprina, N.; Barrett, J.C.; Jurka, J.; Larionov, V. Evolution of the Tumor Suppressor BRCA1 Locus in Primates: Implications for Cancer Predisposition. Hum. Mol. Genet. 2004, 13, 2737–2751. [Google Scholar] [CrossRef]
- Huttley, G.A.; Easteal, S.; Southey, M.C.; Tesoriero, A.; Giles, G.G.; McCredie, M.R.; Hopper, J.L.; Venter, D.J. Adaptive Evolution of the Tumour Suppressor BRCA1 in Humans and Chimpanzees. Australian Breast Cancer Family Study. Nat. Genet. 2000, 25, 410–413. [Google Scholar] [CrossRef]
- Crespi, B.J.; Summers, K. Positive Selection in the Evolution of Cancer. Biol. Rev. Camb. Philos. Soc. 2006, 81, 407–424. [Google Scholar] [CrossRef]
- Vicens, A.; Posada, D. Selective Pressures on Human Cancer Genes along the Evolution of Mammals. Genes 2018, 9, 582. [Google Scholar] [CrossRef] [PubMed]
- Lou, D.I.; McBee, R.M.; Le, U.Q.; Stone, A.C.; Wilkerson, G.K.; Demogines, A.M.; Sawyer, S.L. Rapid Evolution of BRCA1 and BRCA2 in Humans and Other Primates. BMC Evol. Biol. 2014, 14, 155. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, M.J. Selection and the Cell Cycle: Positive Darwinian Selection in a Well-Known DNA Damage Response Pathway. J. Mol. Evol. 2010, 71, 444–457. [Google Scholar] [CrossRef] [PubMed]
- Wakefield, M.J.; Maxwell, P.; Huttley, G.A. Vestige: Maximum Likelihood Phylogenetic Footprinting. BMC Bioinform. 2005, 6, 130. [Google Scholar] [CrossRef] [PubMed]
- Burk-Herrick, A.; Scally, M.; Amrine-Madsen, H.; Stanhope, M.J.; Springer, M.S. Natural Selection and Mammalian BRCA1 Sequences: Elucidating Functionally Important Sites Relevant to Breast Cancer Susceptibility in Humans. Mamm. Genome Off. J. Int. Mamm. Genome Soc. 2006, 17, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Xia, C.; Yang, S.; Yang, G. The Adaptive Evolution of Cancer Driver Genes. BMC Genom. 2023, 24, 215. [Google Scholar] [CrossRef] [PubMed]
- Michalak, P.; Kang, L. Unique Divergence of the Breast Cancer 2 (BRCA2) Gene in Neanderthals. Hereditas 2018, 155, 34. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Burraco, A. Differences in the Neanderthal BRCA2 Gene Might Be Related to Their Distinctive Cognitive Profile. Hereditas 2018, 155, 38. [Google Scholar] [CrossRef]
- Im, K.M.; Kirchhoff, T.; Wang, X.; Green, T.; Chow, C.Y.; Vijai, J.; Korn, J.; Gaudet, M.M.; Fredericksen, Z.; Shane Pankratz, V.; et al. Haplotype Structure in Ashkenazi Jewish BRCA1 and BRCA2 Mutation Carriers. Hum. Genet. 2011, 130, 685–699. [Google Scholar] [CrossRef]
- Pfeffer, C.M.; Ho, B.N.; Singh, A.T.K. The Evolution, Functions and Applications of the Breast Cancer Genes BRCA1 and BRCA2. Cancer Genom. Proteom. 2017, 14, 293–298. [Google Scholar] [CrossRef]
- Usui, Y.; Taniyama, Y.; Endo, M.; Koyanagi, Y.N.; Kasugai, Y.; Oze, I.; Ito, H.; Imoto, I.; Tanaka, T.; Tajika, M.; et al. Helicobacter Pylori, Homologous-Recombination Genes, and Gastric Cancer. N. Engl. J. Med. 2023, 388, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Frost, H.R. Analyzing Cancer Gene Expression Data through the Lens of Normal Tissue-Specificity. PLoS Comput. Biol. 2021, 17, e1009085. [Google Scholar] [CrossRef] [PubMed]
- Elledge, S.J.; Amon, A. The BRCA1 Suppressor Hypothesis: An Explanation for the Tissue-Specific Tumor Development in BRCA1 Patients. Cancer Cell 2002, 1, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Sedic, M.; Kuperwasser, C. BRCA1-Hapoinsufficiency: Unraveling the Molecular and Cellular Basis for Tissue-Specific Cancer. Cell Cycle Georget. Tex 2016, 15, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Rosen, E.M.; Fan, S.; Goldberg, I.D. BRCA1 and Prostate Cancer. Cancer Investig. 2001, 19, 396–412. [Google Scholar] [CrossRef] [PubMed]
- Welcsh, P.L.; Schubert, E.L.; King, M.C. Inherited Breast Cancer: An Emerging Picture. Clin. Genet. 1998, 54, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Semmler, L.; Reiter-Brennan, C.; Klein, A. BRCA1 and Breast Cancer: A Review of the Underlying Mechanisms Resulting in the Tissue-Specific Tumorigenesis in Mutation Carriers. J. Breast Cancer 2019, 22, 1–14. [Google Scholar] [CrossRef]
- Singh, A.K.; Yu, X. Tissue-Specific Carcinogens as Soil to Seed BRCA1/2-Mutant Hereditary Cancers. Trends Cancer 2020, 6, 559–568. [Google Scholar] [CrossRef]
- Scully, R.; Livingston, D.M. In Search of the Tumour-Suppressor Functions of BRCA1 and BRCA2. Nature 2000, 408, 429–432. [Google Scholar] [CrossRef]
- Sasanuma, H.; Tsuda, M.; Morimoto, S.; Saha, L.K.; Rahman, M.M.; Kiyooka, Y.; Fujiike, H.; Cherniack, A.D.; Itou, J.; Callen Moreu, E.; et al. BRCA1 Ensures Genome Integrity by Eliminating Estrogen-Induced Pathological Topoisomerase II-DNA Complexes. Proc. Natl. Acad. Sci. USA 2018, 115, E10642–E10651. [Google Scholar] [CrossRef]
- Sedic, M.; Skibinski, A.; Brown, N.; Gallardo, M.; Mulligan, P.; Martinez, P.; Keller, P.J.; Glover, E.; Richardson, A.L.; Cowan, J.; et al. Haploinsufficiency for BRCA1 Leads to Cell-Type-Specific Genomic Instability and Premature Senescence. Nat. Commun. 2015, 6, 7505. [Google Scholar] [CrossRef] [PubMed]
- De Vargas Roditi, L.; Michor, F. Evolutionary Dynamics of BRCA1 Alterations in Breast Tumorigenesis. J. Theor. Biol. 2011, 273, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Qi, L.; Chiang, H.-C.; Pan, H.; Zhang, X.; Greenbaum, A.; Stark, E.; Wang, L.-J.; Chen, Y.; Haddad, B.R.; et al. BRCA1 Deficiency in Mature CD8+ T Lymphocytes Impairs Antitumor Immunity. J. Immunother. Cancer 2023, 11, e005852. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulos, D.; Lipman, R.D. Mammary Gland Mass and Breast Cancer Risk. Epidemiol. Camb. Mass 1992, 3, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Jansen, L.A.; Backstein, R.M.; Brown, M.H. Breast Size and Breast Cancer: A Systematic Review. J. Plast. Reconstr. Aesthetic Surg. JPRAS 2014, 67, 1615–1623. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.C.; Trichopoulos, D. Breast Size, Handedness and Breast Cancer Risk. Eur. J. Cancer Clin. Oncol. 1991, 27, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Tavani, A.; Pregnolato, A.; La Vecchia, C.; Negri, E.; Favero, A.; Franceschi, S. Breast Size and Breast Cancer Risk. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. ECP 1996, 5, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Han, W.Y.; Eom, J.S.; Kim, E.K.; Han, H.H. Analysis on the Difference between the Practical Brassiere Size and Real Breast Volume. Plast. Reconstr. Surg. Glob. Open 2023, 11, e5141. [Google Scholar] [CrossRef]
- Kusano, A.S.; Trichopoulos, D.; Terry, K.L.; Chen, W.Y.; Willett, W.C.; Michels, K.B. A Prospective Study of Breast Size and Premenopausal Breast Cancer Incidence. Int. J. Cancer 2006, 118, 2031–2034. [Google Scholar] [CrossRef]
- Egan, K.M.; Newcomb, P.A.; Titus-Ernstoff, L.; Trentham-Dietz, A.; Baron, J.A.; Willett, W.C.; Stampfer, M.J.; Trichopoulos, D. The Relation of Breast Size to Breast Cancer Risk in Postmenopausal Women (United States). Cancer Causes Control 1999, 10, 115–118. [Google Scholar] [CrossRef]
- Eriksson, N.; Benton, G.M.; Do, C.B.; Kiefer, A.K.; Mountain, J.L.; Hinds, D.A.; Francke, U.; Tung, J.Y. Genetic Variants Associated with Breast Size Also Influence Breast Cancer Risk. BMC Med. Genet. 2012, 13, 53. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.M.; Isaacs, C. Management of Breast Cancer Risk in BRCA1/2 Mutation Carriers Who Are Unaffected with Cancer. Breast J. 2020, 26, 1520–1527. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, L.C.; Schaid, D.J.; Woods, J.E.; Crotty, T.P.; Myers, J.L.; Arnold, P.G.; Petty, P.M.; Sellers, T.A.; Johnson, J.L.; McDonnell, S.K.; et al. Efficacy of Bilateral Prophylactic Mastectomy in Women with a Family History of Breast Cancer. N. Engl. J. Med. 1999, 340, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Ye, F.; Huang, X.; Li, S.; Yang, L.; Xiao, X.; Xie, X. The Tumor-to-Breast Volume Ratio (TBR) Predicts Cancer-Specific Survival in Breast Cancer Patients Who Underwent Modified Radical Mastectomy. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2016, 37, 7493–7500. [Google Scholar] [CrossRef] [PubMed]
- Friedman, L.S.; Gayther, S.A.; Kurosaki, T.; Gordon, D.; Noble, B.; Casey, G.; Ponder, B.A.; Anton-Culver, H. Mutation Analysis of BRCA1 and BRCA2 in a Male Breast Cancer Population. Am. J. Hum. Genet. 1997, 60, 313–319. [Google Scholar] [PubMed]
- Ferzoco, R.M.; Ruddy, K.J. The Epidemiology of Male Breast Cancer. Curr. Oncol. Rep. 2016, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.F.; Althuis, M.D.; Brinton, L.A.; Devesa, S.S. Is Male Breast Cancer Similar or Different than Female Breast Cancer? Breast Cancer Res. Treat. 2004, 83, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.R.; Hanson, H.A.; Mineau, G.P.; Buys, S.S. Effects of BRCA1 and BRCA2 Mutations on Female Fertility. Proc. Biol. Sci. 2012, 279, 1389–1395. [Google Scholar] [CrossRef]
- Derks-Smeets, I.A.P.; van Tilborg, T.C.; van Montfoort, A.; Smits, L.; Torrance, H.L.; Meijer-Hoogeveen, M.; Broekmans, F.; Dreesen, J.C.F.M.; Paulussen, A.D.C.; Tjan-Heijnen, V.C.G.; et al. BRCA1 Mutation Carriers Have a Lower Number of Mature Oocytes after Ovarian Stimulation for IVF/PGD. J. Assist. Reprod. Genet. 2017, 34, 1475–1482. [Google Scholar] [CrossRef]
- Kwiatkowski, F.; Arbre, M.; Bidet, Y.; Laquet, C.; Uhrhammer, N.; Bignon, Y.-J. BRCA Mutations Increase Fertility in Families at Hereditary Breast/Ovarian Cancer Risk. PLoS ONE 2015, 10, e0127363. [Google Scholar] [CrossRef]
- Terry, M.B.; Liao, Y.; Kast, K.; Antoniou, A.C.; McDonald, J.A.; Mooij, T.M.; Engel, C.; Nogues, C.; Buecher, B.; Mari, V.; et al. The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations. JNCI Cancer Spectr. 2018, 2, pky078. [Google Scholar] [CrossRef] [PubMed]
- Kotsopoulos, J.; Lubinski, J.; Salmena, L.; Lynch, H.T.; Kim-Sing, C.; Foulkes, W.D.; Ghadirian, P.; Neuhausen, S.L.; Demsky, R.; Tung, N.; et al. Breastfeeding and the Risk of Breast Cancer in BRCA1 and BRCA2 Mutation Carriers. Breast Cancer Res. BCR 2012, 14, R42. [Google Scholar] [CrossRef]
- Anothaisintawee, T.; Wiratkapun, C.; Lerdsitthichai, P.; Kasamesup, V.; Wongwaisayawan, S.; Srinakarin, J.; Hirunpat, S.; Woodtichartpreecha, P.; Boonlikit, S.; Teerawattananon, Y.; et al. Risk Factors of Breast Cancer: A Systematic Review and Meta-Analysis. Asia. Pac. J. Public Health 2013, 25, 368–387. [Google Scholar] [CrossRef]
- Talamini, R.; Franceschi, S.; Favero, A.; Negri, E.; Parazzini, F.; La Vecchia, C. Selected Medical Conditions and Risk of Breast Cancer. Br. J. Cancer 1997, 75, 1699–1703. [Google Scholar] [CrossRef] [PubMed]
- Coelingh Bennink, H.J.T.; Schultz, I.J.; Schmidt, M.; Jordan, V.C.; Briggs, P.; Egberts, J.F.M.; Gemzell-Danielsson, K.; Kiesel, L.; Kluivers, K.; Krijgh, J.; et al. Progesterone from Ovulatory Menstrual Cycles Is an Important Cause of Breast Cancer. Breast Cancer Res. BCR 2023, 25, 60. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, H.; Grievink, L.S.; Mano, R.; Ber, Y.; Ozalbo, R.; Tuval, S.; Baniel, J.; Margel, D. Is There a Difference in Testosterone Levels and Its Regulators in Men Carrying BRCA Mutations? Oncotarget 2017, 8, 103843–103850. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.; Brook, M.N.; Bancroft, E.K.; Page, E.C.; Chamberlain, A.; Saya, S.; Amin, J.; Mikropoulos, C.; Taylor, N.; Myhill, K.; et al. Serum Testosterone and Prostate Cancer in Men with Germline BRCA1/2 Pathogenic Variants. BJUI Compass 2023, 4, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, B.; Huang, T.; Qin, Z.; Wang, S.M. Human BRCA Pathogenic Variants Were Originated during Recent Human History. Life Sci. Alliance 2022, 5, e202101263. [Google Scholar] [CrossRef]
- Zimmerman, E.S.; Chen, J.; Andersen, J.L.; Ardon, O.; Dehart, J.L.; Blackett, J.; Choudhary, S.K.; Camerini, D.; Nghiem, P.; Planelles, V. Human Immunodeficiency Virus Type 1 Vpr-Mediated G2 Arrest Requires Rad17 and Hus1 and Induces Nuclear BRCA1 and Gamma-H2AX Focus Formation. Mol. Cell. Biol. 2004, 24, 9286–9294. [Google Scholar] [CrossRef]
- Rubin, J.B. Sexual Selection and Cancer Biology. Oncotarget 2015, 6, 15714–15715. [Google Scholar] [CrossRef]
- Wu, X.; Guo, M.; Cui, J.; Cai, H.; Wang, S.M. Heterozygotic Brca1 Mutation Initiates Mouse Genome Instability at Embryonic Stage. Oncogenesis 2022, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.S.; Algouneh, A.; Krishnan, R.; Reynolds, J.J.; Nixon, K.C.J.; Hao, J.; Lee, J.; Feng, Y.; Fozil, C.; Stanic, M.; et al. Excessive Transcription-Replication Conflicts Are a Vulnerability of BRCA1-Mutant Cancers. Nucleic Acids Res. 2023, 51, 4341–4362. [Google Scholar] [CrossRef] [PubMed]
- Crossley, M.P.; Song, C.; Bocek, M.J.; Choi, J.-H.; Kousorous, J.; Sathirachinda, A.; Lin, C.; Brickner, J.R.; Bai, G.; Lans, H.; et al. R-Loop-Derived Cytoplasmic RNA-DNA Hybrids Activate an Immune Response. Nature 2023, 613, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pike, M.C.; Wu, N.; Lin, Y.G.; Mucowski, S.; Punj, V.; Tang, Y.; Yen, H.-Y.; Stanczyk, F.Z.; Enbom, E.; et al. Brca1 Mutations Enhance Mouse Reproductive Functions by Increasing Responsiveness to Male-Derived Scent. PLoS ONE 2015, 10, e0139013. [Google Scholar] [CrossRef]
- Albuquerque, T.A.F.; Drummond do Val, L.; Doherty, A.; de Magalhães, J.P. From Humans to Hydra: Patterns of Cancer across the Tree of Life. Biol. Rev. Camb. Philos. Soc. 2018, 93, 1715–1734. [Google Scholar] [CrossRef]
- Korneenko, T.V.; Pestov, N.B.; Nevzorov, I.A.; Daks, A.A.; Trachuk, K.N.; Solopova, O.N.; Barlev, N.A. At the Crossroads of the cGAS-cGAMP-STING Pathway and the DNA Damage Response: Implications for Cancer Progression and Treatment. Pharmaceuticals 2023, 16, 1675. [Google Scholar] [CrossRef]
- Abegglen, L.M.; Caulin, A.F.; Chan, A.; Lee, K.; Robinson, R.; Campbell, M.S.; Kiso, W.K.; Schmitt, D.L.; Waddell, P.J.; Bhaskara, S.; et al. Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans. JAMA 2015, 314, 1850–1860. [Google Scholar] [CrossRef]
- Nunney, L. Cancer Suppression and the Evolution of Multiple Retrogene Copies of TP53 in Elephants: A Re-Evaluation. Evol. Appl. 2022, 15, 891–901. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korneenko, T.V.; Pestov, N.B. Oncogenic BRCA1,2 Mutations in the Human Lineage—A By-Product of Sexual Selection? Biomedicines 2024, 12, 22. https://doi.org/10.3390/biomedicines12010022
Korneenko TV, Pestov NB. Oncogenic BRCA1,2 Mutations in the Human Lineage—A By-Product of Sexual Selection? Biomedicines. 2024; 12(1):22. https://doi.org/10.3390/biomedicines12010022
Chicago/Turabian StyleKorneenko, Tatyana V., and Nikolay B. Pestov. 2024. "Oncogenic BRCA1,2 Mutations in the Human Lineage—A By-Product of Sexual Selection?" Biomedicines 12, no. 1: 22. https://doi.org/10.3390/biomedicines12010022
APA StyleKorneenko, T. V., & Pestov, N. B. (2024). Oncogenic BRCA1,2 Mutations in the Human Lineage—A By-Product of Sexual Selection? Biomedicines, 12(1), 22. https://doi.org/10.3390/biomedicines12010022