Resolving Genotype–Phenotype Discrepancies of the Kidd Blood Group System Using Long-Read Nanopore Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Routine High-Throughput Donor Geno- and Phenotyping
2.2. Nanopore Sequencing of Genotype–Phenotype Discrepancies
2.3. Nanopore Bioinformatics Processing
2.4. Variant Confirmation via Sanger Sequencing and Bridge-PCR
3. Results
3.1. Observed Genotype–Phenotype Discrepancies
3.2. Nanopore Sequencing Output
3.3. Resolving Discrepant Cases
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nurk, S.; Koren, S.; Rhie, A.; Rautiainen, M.; Bzikadze, A.V.; Mikheenko, A.; Vollger, M.R.; Altemose, N.; Uralsky, L.; Gershman, A.; et al. The Complete Sequence of a Human Genome. Science 2022, 376, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Lane, W.J.; Gleadall, N.S.; Aeschlimann, J.; Vege, S.; Sanchis-Juan, A.; Stephens, J.; Cone Sullivan, J.; Mah, H.H.; Aguad, M.; Smeland-Wagman, R.; et al. Multiple GYPB Gene Deletions Associated with the U−Phenotype in Those of African Ancestry. Transfusion 2020, 60, 1294–1307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; An, H.H.; Vege, S.; Hu, T.; Zhang, S.; Mosbruger, T.; Jayaraman, P.; Monos, D.; Westhoff, C.M.; Chou, S.T. Accurate Long-Read Sequencing Allows Assembly of the Duplicated RHD and RHCE Genes Harboring Variants Relevant to Blood Transfusion. Am. J. Hum. Genet. 2022, 109, 180–191. [Google Scholar] [CrossRef]
- Montemayor, C.; Simone, A.; Long, J.; Montemayor, O.; Delvadia, B.; Rivera, R.; Lewis, K.L.; Shahsavari, S.; Gandla, D.; Dura, K.; et al. An Open-source Python Library for Detection of Known and Novel Kell, Duffy and Kidd Variants from Exome Sequencing. Vox Sang. 2021, 116, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Thun, G.A.; Gueuning, M.; Sigurdardottir, S.; Meyer, E.; Gourri, E.; Schneider, L.; Merki, Y.; Trost, N.; Neuenschwander, K.; Engström, C.; et al. Novel Regulatory Variant in ABO Intronic RUNX1 Binding Site Inducing A3 Phenotype. bioRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Isa, K.; Takada, S.; Takeda, H.; Tsuneyama, H.; Ogasawara, K.; Takahashi, D.; Miyazaki, T.; Miyata, S.; Satake, M. Two New JK Silencing Alleles Identified by Single Molecule Sequencing with 20-Kb Long-reads. Transfusion 2023, 63, 1441–1446. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Vollmert, C.; Trost, N.; Brönnimann, C.; Gottschalk, J.; Buser, A.; Frey, B.M.; Gassner, C. High-Throughput Kell, Kidd, and Duffy Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight Mass Spectrometry-Based Blood Group Genotyping of 4000 Donors Shows Close to Full Concordance with Serotyping and Detects New Alleles. Transfusion 2014, 54, 3198–3207. [Google Scholar] [CrossRef] [PubMed]
- Thun, G.A.; Gueuning, M.; Mattle-Greminger, M. Long-Read Sequencing in Blood Group Genetics. Transfus. Med. Hemotherapy 2023, 50, 184–197. [Google Scholar] [CrossRef]
- Gueuning, M.; Thun, G.A.; Wittig, M.; Galati, A.-L.; Meyer, S.; Trost, N.; Gourri, E.; Fuss, J.; Sigurdardottir, S.; Merki, Y.; et al. Haplotype Sequence Collection of ABO Blood Group Alleles by Long-Read Sequencing Reveals Putative A1-Diagnostic Variants. Blood Adv. 2023, 7, 878–892. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Bollas, A.; Wang, Y.; Au, K.F. Nanopore Sequencing Technology, Bioinformatics and Applications. Nat. Biotechnol. 2021, 39, 1348–1365. [Google Scholar] [CrossRef]
- Makałowski, W.; Shabardina, V. Bioinformatics of Nanopore Sequencing. J. Hum. Genet. 2020, 65, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Olson, N.D.; Wagner, J.; McDaniel, J.; Stephens, S.H.; Westreich, S.T.; Prasanna, A.G.; Johanson, E.; Boja, E.; Maier, E.J.; Serang, O.; et al. PrecisionFDA Truth Challenge V2: Calling Variants from Short and Long Reads in Difficult-to-Map Regions. Cell Genomics 2022, 2, 100129. [Google Scholar] [CrossRef] [PubMed]
- International Society of Blood Transfusion. Available online: https://www.isbtweb.org/isbt-working-parties/rcibgt.html (accessed on 10 November 2023).
- da Cunha Gomes, E.G.; Machado, L.A.F.; de Oliveira, L.C.; Neto, J.F.N. The Erythrocyte Alloimmunisation in Patients with Sickle Cell Anaemia: A Systematic Review. Transfus. Med. 2019, 29, 149–161. [Google Scholar] [CrossRef]
- Dean, L. Chapter10: The Kidd Blood Group. In Blood Groups and Red Cell Antigens; Bethesda National Library of Medicine: Bethesda, MD, USA, 2005. [Google Scholar]
- Gassner, C.; Meyer, S.; Frey, B.M.; Vollmert, C. Matrix-Assisted Laser Desorption/Ionisation, Time-of-Flight Mass Spectrometry–Based Blood Group Genotyping—The Alternative Approach. Transfus. Med. Rev. 2013, 27, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Trost, N.; Frey, B.M.; Gassner, C. Parallel Donor Genotyping for 46 Selected Blood Group and 4 Human Platelet Antigens Using High-Throughput MALDI-TOF Mass Spectrometry BT-Molecular Typing of Blood Cell Antigens; Bugert, P., Ed.; Springer: New York, NY, USA, 2015; pp. 51–70. ISBN 978-1-4939-2690-9. [Google Scholar]
- Irshaid, N.M.; Eicher, N.I.; Hustinx, H.; Poole, J.; Olsson, M.L. Novel Alleles at the JK Blood Group Locus Explain the Absence of the Erythrocyte Urea Transporter in European Families. Br. J. Haematol. 2002, 116, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Irshaid, N.M.; Henry, S.M.; Olsson, M.L. Genomic Characterization of the Kidd Blood Group Gene: Different Molecular Basis of the Jk(a-b-) Phenotype in Polynesians and Finns. Transfusion 2000, 40, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.R. Kidd Blood Group System: A Review. Immunohematology 2015, 31, 29–35. [Google Scholar] [CrossRef]
- Dinardo, C.L.; Oliveira, T.G.M.; Kelly, S.; Ashley-Koch, A.; Telen, M.; Schmidt, L.C.; Castilho, S.; Melo, K.; Dezan, M.R.; Wheeler, M.M.; et al. Diversity of Variant Alleles Encoding Kidd, Duffy, and Kell Antigens in Individuals with Sickle Cell Disease Using Whole Genome Sequencing Data from the NHLBI TOPMed Program. Transfusion 2021, 61, 603–616. [Google Scholar] [CrossRef]
- Vorholt, S.M.; Lenz, V.; Just, B.; Enczmann, J.; Fischer, J.C.; Horn, P.A.; Zeiler, T.A.; Balz, V. High-Throughput Next-Generation Sequencing of the Kidd Blood Group: Unexpected Antigen Expression Properties of Four Alleles and Detection of Novel Variants. Transfus. Med. Hemotherapy 2023, 50, 51–65. [Google Scholar] [CrossRef]
- Sherry, S.T.; Ward, M.; Sirotkin, K. DbSNP-Database for Single Nucleotide Polymorphisms and Other Classes of Minor Genetic Variation. Genome Res. 1999, 9, 677–679. [Google Scholar] [CrossRef]
- Gaur, L.; Posadas, J.; Teraaur, G.; Hamura, A.; Gile, P.; Nakaya, S. Molecular Diversity of the JK Null Phenotype. Vox Sang. 2010, 99 (Suppl. S1), 371. [Google Scholar]
- Chen, S.; Francioli, L.C.; Goodrich, J.K.; Collins, R.L.; Kanai, M.; Wang, Q.; Alföldi, J.; Watts, N.A.; Vittal, C.; Gauthier, L.D.; et al. A Genome-Wide Mutational Constraint Map Quantified from Variation in 76,156 Human Genomes. bioRxiv 2022. [Google Scholar] [CrossRef]
- Ramsey, G.; Sumugod, R.D.; Lindholm, P.F.; Zinni, J.G.; Keller, J.A.; Horn, T.; Keller, M.A. A Caucasian JK*A/JK*B Woman with Jk(A+b-) Red Blood Cells, Anti-Jkb, and a Novel JK*B Allele c.1038delG. Immunohematology 2016, 32, 91–95. [Google Scholar] [CrossRef]
- Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Abecasis, G.R.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.; et al. A Global Reference for Human Genetic Variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef]
- Lucien, N.; Chiaroni, J.; Cartron, J.-P.; Bailly, P. Partial Deletion in the JK Locus Causing a Jknull Phenotype. Blood 2002, 99, 1079–1081. [Google Scholar] [CrossRef]
- Wester, E.S.; Johnson, S.T.; Copeland, T.; Malde, R.; Lee, E.; Storry, J.R.; Olsson, M.L. Erythroid Urea Transporter Deficiency Due to Novel JKnull Alleles. Transfusion 2008, 48, 365–372. [Google Scholar] [CrossRef]
- Liwski, R.; Clarke, G.; Cheng, C.; Abidi, S.S.R.; Abidi, S.R.; Quinn, J.G. Validation of a Flow-cytometry-based Red Blood Cell Antigen Phenotyping Method. Vox Sang. 2023, 118, 207–216. [Google Scholar] [CrossRef]
- Collins, R.L.; Brand, H.; Karczewski, K.J.; Zhao, X.; Alföldi, J.; Francioli, L.C.; Khera, A.V.; Lowther, C.; Gauthier, L.D.; Wang, H.; et al. A Structural Variation Reference for Medical and Population Genetics. Nature 2020, 581, 444–451. [Google Scholar] [CrossRef]
- Beyter, D.; Ingimundardottir, H.; Oddsson, A.; Eggertsson, H.P.; Bjornsson, E.; Jonsson, H.; Atlason, B.A.; Kristmundsdottir, S.; Mehringer, S.; Hardarson, M.T.; et al. Long-Read Sequencing of 3622 Icelanders Provides Insight into the Role of Structural Variants in Human Diseases and Other Traits. Nat. Genet. 2021, 53, 779–786. [Google Scholar] [CrossRef] [PubMed]
Sample | Observed Serology | Deduced Phenotype Based on MALDI-TOF MS Genotyping | Nanopore Sequencing | |
---|---|---|---|---|
Haplotype 1 | Haplotype 2 | |||
Known weak and null alleles | ||||
s01 | Jk(a+weak b−) | Jk(a+b+) | JK*01W.06 | JK*02N.08 † |
s04 | Jk(a+b−) | Jk(a+b+) | JK*01 | JK*02W.03 |
s05 | Jk(a−b+) | Jk(a+b+) | JK*01W.05 | JK*02 † |
s06 | Jk(a+b−) | Jk(a+b+) | JK*01 | JK*02N.06 † |
s08 | Jk(a+weak b−) | Jk(a+b+) | JK*01W.06 | JK*02N.09 † |
Novel null alleles | ||||
s09 | Jk(a+b−) | Jk(a+b+) | JK*01 | JK*02(c.725G>A)Null §† |
s10 | Jk(a−b+) | Jk(a+b+) | JK*01(c.119G>A)Null § | JK*02 † |
Novel structural variant | ||||
s02 | Jk(a−b+) | Jk(a+b+) | JK*01(Ex9_10del)Null § | JK*02 † |
s03 | Jk(a−b+) | Jk(a+b+) | JK*01(Ex9_10del)Null § | JK*02 † |
s07 | Jk(a−b+) | Jk(a+b+) | JK*01(Ex9_10del)Null § | JK*02 † |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gueuning, M.; Thun, G.A.; Trost, N.; Schneider, L.; Sigurdardottir, S.; Engström, C.; Larbes, N.; Merki, Y.; Frey, B.M.; Gassner, C.; et al. Resolving Genotype–Phenotype Discrepancies of the Kidd Blood Group System Using Long-Read Nanopore Sequencing. Biomedicines 2024, 12, 225. https://doi.org/10.3390/biomedicines12010225
Gueuning M, Thun GA, Trost N, Schneider L, Sigurdardottir S, Engström C, Larbes N, Merki Y, Frey BM, Gassner C, et al. Resolving Genotype–Phenotype Discrepancies of the Kidd Blood Group System Using Long-Read Nanopore Sequencing. Biomedicines. 2024; 12(1):225. https://doi.org/10.3390/biomedicines12010225
Chicago/Turabian StyleGueuning, Morgan, Gian Andri Thun, Nadine Trost, Linda Schneider, Sonja Sigurdardottir, Charlotte Engström, Naemi Larbes, Yvonne Merki, Beat M. Frey, Christoph Gassner, and et al. 2024. "Resolving Genotype–Phenotype Discrepancies of the Kidd Blood Group System Using Long-Read Nanopore Sequencing" Biomedicines 12, no. 1: 225. https://doi.org/10.3390/biomedicines12010225
APA StyleGueuning, M., Thun, G. A., Trost, N., Schneider, L., Sigurdardottir, S., Engström, C., Larbes, N., Merki, Y., Frey, B. M., Gassner, C., Meyer, S., & Mattle-Greminger, M. P. (2024). Resolving Genotype–Phenotype Discrepancies of the Kidd Blood Group System Using Long-Read Nanopore Sequencing. Biomedicines, 12(1), 225. https://doi.org/10.3390/biomedicines12010225