Hsa_circ_0092856 Promoted the Proliferation, Migration, and Invasion of NSCLC Cells by Up-Regulating the Expression of eIF3a
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines
2.2. Cell Transfection
2.3. RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction
2.4. RNase R Treatment
2.5. Western Blot Analysis
2.6. Cell Viability Assay
2.7. Colony Formation Assay
2.8. RNA Fluorescence In Situ Hybridization (FISH)
2.9. RNA Immunoprecipitation Assay
2.10. Wound-Healing Experiment
2.11. Invasion and Migration Experiments
2.12. Statistical Analysis
3. Results
3.1. Hsa_circ_0092856 Was Highly Expressed in NSCLC Cells
3.2. Hsa_circ_0092856 Facilitated the Proliferation, Migration, and Invasion of NSCLC Cells
3.3. The Biological Functions of Hsa_circ_0092856
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Faivre, C.; El Cheikh, R.; Barbolosi, D.; Barlesi, F. Mathematical optimisation of the cisplatin plus etoposide combination for managing extensive-stage small-cell lung cancer patients. Br. J. Cancer 2017, 116, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 2008, 83, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.; Chirieac, L.R.; D’Amico, T.A.; DeCamp, M.M.; Dilling, T.J.; Dobelbower, M.; et al. Non-Small Cell Lung Cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. JNCCN 2017, 15, 504–535. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.S.; Yuan, F.Q.; Gao, Y.; Liu, J.Y.; Chen, Y.X.; Wang, C.J.; He, B.M.; Zhou, H.H.; Liu, Z.Q. Circular RNA screening from EIF3a in lung cancer. Cancer Med. 2019, 8, 4159–4168. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Q.; Bao, C.; Li, S.; Guo, W.; Zhao, J.; Chen, D.; Gu, J.; He, X.; Huang, S. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 2015, 25, 981–984. [Google Scholar] [CrossRef]
- Shang, Q.; Yang, Z.; Jia, R.; Ge, S. The novel roles of circRNAs in human cancer. Mol. Cancer 2019, 18, 6. [Google Scholar] [CrossRef]
- Shi, J.; Liu, C.; Chen, C.; Guo, K.; Tang, Z.; Luo, Y.; Chen, L.; Su, Y.; Xu, K. Circular RNA circMBOAT2 promotes prostate cancer progression via a miR-1271-5p/mTOR axis. Aging 2020, 12, 13255–13280. [Google Scholar] [CrossRef]
- Liang, L.; Li, L. Down-Regulation of circNRIP1 Promotes the Apoptosis and Inhibits the Migration and Invasion of Gastric Cancer Cells by miR-182/ROCK1 Axis. OncoTargets Ther. 2020, 13, 6279–6288. [Google Scholar] [CrossRef]
- Zhou, P.; Xie, W.; Huang, H.L.; Huang, R.Q.; Tian, C.; Zhu, H.B.; Dai, Y.H.; Li, Z.Y. circRNA_100859 functions as an oncogene in colon cancer by sponging the miR-217-HIF-1α pathway. Aging 2020, 12, 13338–13353. [Google Scholar] [CrossRef]
- Sun, C.; Li, G.; Liu, M. A Novel Circular RNA, circ_0005394, Predicts Unfavorable Prognosis and Contributes to Hepatocellular Carcinoma Progression by Regulating miR-507/E2F3 and miR-515-5p/CXCL6 Signaling Pathways. OncoTargets Ther. 2020, 13, 6171–6180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, S.; Lin, G.; Wang, D. Down-regulation of circ-PTN suppresses cell proliferation, invasion and glycolysis in glioma by regulating miR-432-5p/RAB10 axis. Neurosci. Lett. 2020, 735, 135153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Nan, A.; Chen, L.; Li, X.; Jia, Y.; Qiu, M.; Dai, X.; Zhou, H.; Zhu, J.; Zhang, H.; et al. Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells. Mol Cancer. 2020, 19, 101. [Google Scholar] [CrossRef]
- Xie, H.; Yao, J.; Wang, Y.; Ni, B. Exosome-transmitted circVMP1 facilitates the progression and cisplatin resistance of non-small cell lung cancer by targeting miR-524-5p-METTL3/SOX2 axis. Drug. Deliv. 2022, 29, 1257–1271. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Dong, Z.; Huang, Y.; Liu, J.Y.; Zhang, J.T. Translation initiation factor eIF3a regulates glucose metabolism and cell proliferation via promoting small GTPase Rheb synthesis and AMPK activation. J. Biol. Chem. 2022, 298, 102044. [Google Scholar] [CrossRef]
- Yin, J.Y.; Shen, J.; Dong, Z.Z.; Huang, Q.; Zhong, M.Z.; Feng, D.Y.; Zhou, H.H.; Zhang, J.T.; Liu, Z.Q. Effect of eIF3a on response of lung cancer patients to platinum-based chemotherapy by regulating DNA repair. Clin. Cancer Res. 2011, 17, 4600–4609. [Google Scholar] [CrossRef]
- Xu, X.; Han, L.; Duan, L.; Zhao, Y.; Yang, H.; Zhou, B.; Ma, R.; Yuan, R.; Zhou, H.; Liu, Z. Association between eIF3a Polymorphism and Severe Toxicity Caused by Platinum-based Chemotherapy in Non-Small Cell Lung Cancer Patients. Br. J. Clin. Pharmacol. 2013, 75, 522–534. [Google Scholar] [CrossRef]
- Xu, X.; Han, L.; Yang, H.; Duan, L.; Zhou, B.; Zhao, Y.; Qu, J.; Ma, R.; Zhou, H.; Liu, Z. The A/G allele of eIF3a rs3740556 predicts platinum-based chemotherapy resistance in lung cancer patients. Lung Cancer 2013, 79, 65–72. [Google Scholar] [CrossRef]
- Chen, Y.X.; Wang, C.-J.; Xiao, D.-S.; He, B.-M.; Li, M.; Yi, X.-P.; Zhang, W.; Yin, J.-Y.; Liu, Z.-Q. eIF3a R803K mutation mediates chemotherapy resistance by inducing cellular senescence in small cell lung cancer. Pharmacol. Res. 2021, 174, 105934. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Zhu, T.; Zhuo, W.; Mao, X.Y.; Yin, J.Y.; Li, X.; He, Y.J.; Zhang, W.; Liu, C.; Liu, Z.Q. eIF3a sustains non-small cell lung cancer stem cell-like properties by promoting YY1-mediated transcriptional activation of β-catenin. Biochem. Pharmacol. 2023, 213, 115616. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 2015, 22, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.O.; Chen, T.; Xiang, J.F.; Yin, Q.F.; Xing, Y.H.; Zhu, S.; Yang, L.; Chen, L.L. Circular intronic long noncoding RNAs. Mol. Cell. 2013, 51, 792–806. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, M.; Chen, S.; Xue, C.; Zheng, L.; Duan, Y.; Deng, H.; Fan, S.; Xiong, W.; Zhou, M. CircBRD7 attenuates tumor growth and metastasis in nasopharyngeal carcinoma via epigenetic activation of its host gene. Cancer Sci. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, J.; Zhang, C.; Lin, C.; Zhang, J.; Zhang, W.; Zhang, W.; Lu, Y.; Zheng, L.; Li, X. Circular RNA circITGA7 inhibits colorectal cancer growth and metastasis by modulating the Ras pathway and upregulating transcription of its host gene ITGA7. J. Pathol. 2018, 246, 166–179. [Google Scholar] [CrossRef]
- Zhou, H.F.; Xu, L.L.; Xie, B.; Ding, H.G.; Fang, F.; Fang, Q. Hsa-circ-0068566 inhibited the development of myocardial ischemia reperfusion injury by regulating hsa-miR-6322/PARP2 signal pathway. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 6980–6993. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.; Meng, G.; Wang, Q.; Lv, X.; Zhang, J.; Li, J. Circular RNAs: Pivotal molecular regulators and novel diagnostic and prognostic biomarkers in non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2019, 145, 2875–2889. [Google Scholar] [CrossRef]
- Yin, Y.; Long, J.; Sun, Y.; Li, H.; Jiang, E.; Zeng, C.; Zhu, W. The function and clinical significance of eIF3 in cancer. Gene 2018, 673, 130–133. [Google Scholar] [CrossRef]
- Mei, C.; Liu, C.; Gao, Y.; Dai, W.T.; Zhang, W.; Li, X.; Liu, Z.Q. eIF3a Regulates Colorectal Cancer Metastasis via Translational Activation of RhoA and Cdc42. Front. Cell Dev. Biol. 2022, 10, 794329. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, X.; Hershey, J.W. Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J. Biol. Chem. 2007, 282, 5790–5800. [Google Scholar] [CrossRef]
- Chen, T.; Sun, L.; Yao, B.; Wang, L.; Wang, Y.; Niu, Y.; Liu, R.; Mo, H.; Liu, Z.; Tu, K.; et al. MicroRNA-875-5p inhibits tumor growth and metastasis of hepatocellular carcinoma by targeting eukaryotic translation initiation factor 3 subunit a. Oncol. Rep. 2020, 44, 2067–2079. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lu, S.; Yao, Y.; Chen, J.; Yang, G.; Tu, L.; Zhang, Z.; Zhang, J.; Chen, L. Downregulation of hsa_circ_0007580 inhibits non-small cell lung cancer tumorigenesis by reducing miR-545-3p sponging. Aging 2020, 12, 14329–14340. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, B.; Ren, H.; Xiao, T.; Zhang, L.; Li, L.; Li, M.; Wang, X.; Zhou, H.; Zhang, W. Hsa_circ_0002483 inhibited the progression and enhanced the Taxol sensitivity of non-small cell lung cancer by targeting miR-182-5p. Cell Death Dis. 2019, 10, 953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.X.; Gao, J.; Long, X.; Zhang, P.F.; Yang, X.; Zhu, S.Q.; Pei, X.; Qiu, B.Q.; Chen, S.W.; Lu, F.; et al. The circular RNA circHMGB2 drives immunosuppression and anti-PD-1 resistance in lung adenocarcinomas and squamous cell carcinomas via the miR-181a-5p/CARM1 axis. Mol. Cancer 2022, 21, 110. [Google Scholar] [CrossRef]
- Zhong, Y.; Lin, H.; Li, Q.; Liu, C.; Shen, J. CircRNA_100565 contributes to cisplatin resistance of NSCLC cells by regulating proliferation, apoptosis and autophagy via miR-337-3p/ADAM28 axis. Cancer Biomark. 2021, 30, 261–273. [Google Scholar] [CrossRef]
- Meng, Q.; Li, Y.; Sun, Z.; Yang, X. CircRNA hsa_circ_0070659 predicts poor prognosis and promotes non-small cell lung cancer (NSCLC) progression via microRNA-377 (miR-377)/Ras-Associated Binding Protein 3C (RAB3C) pathway. Bioengineered 2022, 13, 14578–14594. [Google Scholar] [CrossRef]
RNA ID | Primer Sequences |
---|---|
hsa_circ_0004350 | F: 5′-TGGGAGTCTTACAGGCAGTG-3′ R: 5′-ACATCCAGAGCAGGCTGCTT-3′ |
hsa_circ_0004792 | F: 5′-CCTTGATTCTCGAGGTGGAC-3′ R: 5′-GGAGGAGAATGACAAGGACC-3′ |
hsa_circ_0020136 | F: 5′-CTCATTGAAGCCAACACAGAAC-3′ R: 5′-ATGGACTGGCTCTCTGGATTAT-3′ |
hsa_circ_0020137 | F: 5′-TAAGAGACGACAGGGACCGAAG-3′ R: 5′-AGAAGGCGGAGGATGGTGTT-3′ |
hsa_circ_0020138 | F: 5′-TCGGGAGGAGAATGACAAGG-3′ R: 5′-AAGGCGGAGGATGGTGTTGT-3′ |
hsa_circ_0020139 | F: 5′-GAGAAGACTTGGCGATAGTTCC-3′ R: 5′-GGACCAATCGGAGCATCTT-3′ |
hsa_circ_0020140 | F: 5′-GGCTCTTGAACATAAGAATCG-3′ R: 5′-TCTTCACCACTTACAGCACTTAG-3′ |
hsa_circ_0020141 | F: 5′-AGCTGCACGGCAGTCTGTTTAT-3′ R: 5′-CGAAGATCCACGCAAAGTTCC-3′ |
hsa_circ_0020142 | F: 5′-ACAGCCATGTCCTCAGTACTTG-3′ R: 5′-AGAACCTTTGTGACTCGCTCAC-3′ |
hsa_circ_0020143 | F: 5′-GTCAAACGAGAAAACTCAATGC-3′ R: 5′-CGTTTGACTTCTTTGGTTCCTT-3′ |
hsa_circ_0020144 | F: 5′-CAACTGGAACGGGCCATAG-3′ R: 5′-AGACGAAGGGGAACCAGC-3′ |
hsa_circ_0020145 | F: 5′-CTGCAAAACAACACCATCCTC-3′ R: 5′-GGTTCCTTTTCAGGTTGTTCC-3′ |
hsa_circ_0020146 | F: 5′-AACAACACCATCCTCCGCCT-3′ R: 5′-TGCTGCAATTCCGGTTCCT-3′ |
hsa_circ_0020147 | F: 5′-GAACAACCTGAAAAGGAACCG-3′ R: 5′-GCAGCTTCAGTTTTTTCCTCTG-3′ |
hsa_circ_0020148 | F: 5′-ACCGACACGAATTGGCCT-3′ R: 5′-CGAGCAATATCCGTACGCTC-3′ |
hsa_circ_0020149 | F: 5′-TGCAACACTACTAGGTCTTCAAGC-3′ R: 5′-CTTCAGTTTTTTCCTCTGCCAT-3′ |
hsa_circ_0020150 | F: 5′-ACTACTAGGTCTTCAAGCCCCAC-3′ R: 5′-AAGTGGCTCTTGCGAAGATC-3′ |
hsa_circ_0020151 | F: 5′-GCATCTACACTCCATCGTCTTTAC-3′ R: 5′-TTACGGAATTCAGCCTTACGC-3′ |
hsa_circ_0020152 | F: 5′-GGTTAAATTCCTGTGGGAGTCT-3′ R: 5′-TGTCTTCACCACTTACAGCACTT-3′ |
hsa_circ_0020153 | F: 5′-TCTTACAGGCAGTGTTTGGACC-3′ R: 5′-ATGCCCTAACAACATCCTCCAG-3′ |
hsa_circ_0092856 | F: 5′-AGGCGCTGATGATGAGCGAT-3′ R: 5′-TTCCTCAGGACCACGTCTAG-3′ |
hsa_circ_0092857 | F: 5′-AACGAGAACGGCGTAGAGAGG-3′ R: 5′-TAAACAGACTGCCGTGCAGC-3′ |
hsa_circ_0092858 | F: 5′-GTAATGCGACTCAAAGCTGCAC-3′ R: 5′-TCTCTGTTCCTCGTAAGCGCTC-3′ |
hsa_circ_0092859 | F: 5′-GTAATGCGACTCAAAGCTGCAC-3′ R: 5′-GAGGACCAATCGGAGCATCTT-3′ |
hsa_circ_0092860 | F: 5′-AGACATGGATCTGTGGGAGC-3′ R: 5′-TCTCTGTTCCTCGTAAGCGC-3′ |
hsa_circ_0092861 | F: 5′-TGGCTAAACAGGTTGAACAAC-3′ R: 5′-TGTTCAACCTGTTTAGCCATG-3′ |
hsa_circ_0092862 | F: 5′-ACAGCCATGTCCTCAGTACTTG-3′ R: 5′-GAATTCAGCCTTACGCGTG-3′ |
hsa_circ_0092863 | F: 5′-TGCATCTACACTCCATCGTCTT-3′ R: 5′-TCCACGCAAAGTTCCAAGTAT-3′ |
hsa_circ_0092864 | F: 5′-CCATGCATTTGGAAACCAGACT 3′ R: 5′-CTCCCACAGGAATTTAACCCAT 3′ |
hsa_circ_0092865 | F: 5′-TGAGAGTGTTCTCCTAAGTGCTGT-3′ R: 5′-GCTGAGATTCTTCTTTAGCAGCT-3′ |
hsa_circ_0092866 | F: 5′-GCTGCTAAAGAAGAATCTCAGCAG-3′ R: 5′-CCACGCAAAGTTCCAAGTATTTC-3′ |
eIF3a | F: 5′-TCAAGTCGCCGGGACGATA-3′ R: 5′-CCTGTCATCAGCACGTCTCCA-3′ |
Type | Sequences |
---|---|
FISH probes | TATCTTCCTCAGGACCACGTCTAGGGCCCCGGTCATCATCCAT |
CircRNA Type | Total | CircRNA ID | ||
---|---|---|---|---|
EcircRNAs | 8 | hsa_circ_0004792 | hsa_circ_0020143 | hsa_circ_0020145 |
hsa_circ_0020148 | hsa_circ_0020152 | hsa_circ_0092856 | ||
hsa_circ_0092860 | hsa_circ_0092861 | |||
EIcircRNAs | 23 | hsa_circ_0004350 | hsa_circ_0020136 | hsa_circ_0020137 |
hsa_circ_0020138 | hsa_circ_0020139 | hsa_circ_0020140 | ||
hsa_circ_0020141 | hsa_circ_0020142 | hsa_circ_0020144 | ||
hsa_circ_0020146 | hsa_circ_0020147 | hsa_circ_0020149 | ||
hsa_circ_0020150 | hsa_circ_0020151 | hsa_circ_0020153 | ||
hsa_circ_0092857 | hsa_circ_0092858 | hsa_circ_0092859 | ||
hsa_circ_0092862 | hsa_circ_0092863 | hsa_circ_0092864 | ||
hsa_circ_0092865 | hsa_circ_0092866 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, F.; Huang, M.; Huang, H.; Mao, X.; Xie, P.; Li, X.; Gao, Y.; Zeng, F.; Liu, Z. Hsa_circ_0092856 Promoted the Proliferation, Migration, and Invasion of NSCLC Cells by Up-Regulating the Expression of eIF3a. Biomedicines 2024, 12, 247. https://doi.org/10.3390/biomedicines12010247
Yuan F, Huang M, Huang H, Mao X, Xie P, Li X, Gao Y, Zeng F, Liu Z. Hsa_circ_0092856 Promoted the Proliferation, Migration, and Invasion of NSCLC Cells by Up-Regulating the Expression of eIF3a. Biomedicines. 2024; 12(1):247. https://doi.org/10.3390/biomedicines12010247
Chicago/Turabian StyleYuan, Fuqiang, Masha Huang, Hanxue Huang, Xiaoyuan Mao, Pan Xie, Xi Li, Yang Gao, Feiyue Zeng, and Zhaoqian Liu. 2024. "Hsa_circ_0092856 Promoted the Proliferation, Migration, and Invasion of NSCLC Cells by Up-Regulating the Expression of eIF3a" Biomedicines 12, no. 1: 247. https://doi.org/10.3390/biomedicines12010247
APA StyleYuan, F., Huang, M., Huang, H., Mao, X., Xie, P., Li, X., Gao, Y., Zeng, F., & Liu, Z. (2024). Hsa_circ_0092856 Promoted the Proliferation, Migration, and Invasion of NSCLC Cells by Up-Regulating the Expression of eIF3a. Biomedicines, 12(1), 247. https://doi.org/10.3390/biomedicines12010247