Could SARS-CoV-1 Vaccines in the Pipeline Have Contributed to Fighting the COVID-19 Pandemic? Lessons for the Next Coronavirus Plague
Abstract
:1. Brief Introduction on SARS-CoV-2, COVID-19 and Vaccines
2. Empirical Vaccination against Smallpox Provides the First Clues
3. Among Ebolaviruses, There Is Also Cross-Protection
4. Can There Be Cross-Protection between SARS-CoV-1 Vaccines and SARS-CoV-2 Infection?
5. SARS-CoV-1 Vaccines Could Have Been Rapidly Deployed as a First Line of Defense against the COVID-19 Pandemic
6. Fighting Future Pandemics with Bioinformatics Tools
7. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Selvaraj, G.; Kaliamurthi, S.; Peslherbe, G.H.; Wei, D.Q. Are the Allergic Reactions of COVID-19 Vaccines Caused by mRNA Constructs or Nanocarriers? Immunological Insights. Interdiscip. Sci. 2021, 13, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.K.; Abrams, E.M.; Golden, D.B.K.; Blumenthal, K.G.; Wolfson, A.R.; Stone, C.A., Jr.; Krantz, M.S.; Shaker, M.; Greenhawt, M. Risk of Second Allergic Reaction to SARS-CoV-2 Vaccines: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2022, 182, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, R.; Askari, N. A review of neurological side effects of COVID-19 vaccination. Eur. J. Med. Res. 2023, 28, 102. [Google Scholar] [CrossRef] [PubMed]
- Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Hoxha, I.; Agahi, R.; Bimbashi, A.; Aliu, M.; Raka, L.; Bajraktari, I.; Beqiri, P.; Adams, L.V. Higher COVID-19 Vaccination Rates Are Associated with Lower COVID-19 Mortality: A Global Analysis. Vaccines 2022, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.M.; Hanage, W.P.; Lipsitch, M.; Johnson, A.G.; Amin, A.B.; Ali, A.R.; Scobie, H.M.; Swerdlow, D.L. Estimated preventable COVID-19-associated deaths due to non-vaccination in the United States. Eur. J. Epidemiol. 2023, 38, 1125–1128. [Google Scholar] [CrossRef]
- Barquet, N.; Domingo, P. Smallpox: The triumph over the most terrible of the ministers of death. Ann. Intern. Med. 1997, 127, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Fenner, F.; Henderson, D.A.; Arita, I.; Jezek, Z.; Ladnyi, I. Smallpox and Its Eradication; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Lopez, D.; Lorente, E.; Barriga, A.; Johnstone, C.; Mir, C. Vaccination and the TAP-independent antigen processing pathways. Expert. Rev. Vaccines 2013, 12, 1077–1083. [Google Scholar] [CrossRef]
- World Health Organization. Global Commission for the Certification of Smallpox Eradication. In The Global Eradication of Smallpox: Final Report of the Global Commission for the Certification of Smallpox Eradication; World Health Organization: Geneva, Switzerland, 1980. [Google Scholar]
- Manenti, A.; Solfanelli, N.; Cantaloni, P.; Mazzini, L.; Leonardi, M.; Benincasa, L.; Piccini, G.; Marchi, S.; Boncioli, M.; Spertilli, R.C.; et al. Evaluation of Monkeypox- and Vaccinia virus-neutralizing antibodies in human serum samples after vaccination and natural infection. Front. Public Health 2023, 11, 1195674. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Sohail, M.S.; Quadeer, A.A.; McKay, M.R. Vaccinia-Virus-Based Vaccines Are Expected to Elicit Highly Cross-Reactive Immunity to the 2022 Monkeypox Virus. Viruses 2022, 14, 1960. [Google Scholar] [CrossRef]
- Cao, W.; He, S.; Liu, G.; Schulz, H.; Emeterio, K.; Chan, M.; Tierney, K.; Azaransky, K.; Soule, G.; Tailor, N.; et al. The rVSV-EBOV vaccine provides limited cross-protection against Sudan virus in guinea pigs. NPJ Vaccines 2023, 8, 91. [Google Scholar] [CrossRef] [PubMed]
- Marzi, A.; Ebihara, H.; Callison, J.; Groseth, A.; Williams, K.J.; Geisbert, T.W.; Feldmann, H. Vesicular stomatitis virus-based Ebola vaccines with improved cross-protective efficacy. J. Infect. Dis. 2011, 204 (Suppl. 3), S1066–S1074. [Google Scholar] [CrossRef] [PubMed]
- Bisht, H.; Roberts, A.; Vogel, L.; Bukreyev, A.; Collins, P.L.; Murphy, B.R.; Subbarao, K.; Moss, B. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc. Natl. Acad. Sci. USA 2004, 101, 6641–6646. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, J.; Heck, S.; Lustigman, S.; Jiang, S. Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: Implication for vaccine design. J. Virol. 2006, 80, 5757–5767. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ulitzky, L.; Silberstein, E.; Taylor, D.R.; Viscidi, R. Immunogenicity and protection efficacy of monomeric and trimeric recombinant SARS coronavirus spike protein subunit vaccine candidates. Viral Immunol. 2013, 26, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Trial watch: SARS vaccine enters Phase I trials. Expert. Rev. Vaccines 2004, 3, 386. [CrossRef]
- Lin, J.T.; Zhang, J.S.; Su, N.; Xu, J.G.; Wang, N.; Chen, J.T.; Chen, X.; Liu, Y.X.; Gao, H.; Jia, Y.P.; et al. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir. Ther. 2007, 12, 1107–1113. [Google Scholar] [CrossRef]
- Martin, J.E.; Louder, M.K.; Holman, L.A.; Gordon, I.J.; Enama, M.E.; Larkin, B.D.; Andrews, C.A.; Vogel, L.; Koup, R.A.; Roederer, M.; et al. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine 2008, 26, 6338–6343. [Google Scholar] [CrossRef]
- Lopez, D. Prediction of Conserved HLA Class I and Class II Epitopes from SARS-CoV-2 Licensed Vaccines Supports T-Cell Cross-Protection against SARS-CoV-1. Biomedicines 2022, 10, 1622. [Google Scholar] [CrossRef]
- Dangi, T.; Palacio, N.; Sanchez, S.; Park, M.; Class, J.; Visvabharathy, L.; Ciucci, T.; Koralnik, I.J.; Richner, J.M.; Penaloza-MacMaster, P. Cross-protective immunity following coronavirus vaccination and coronavirus infection. J. Clin. Investig. 2021, 131, 151969. [Google Scholar] [CrossRef]
- Martin-Galiano, A.J.; Diez-Fuertes, F.; McConnell, M.J.; Lopez, D. Predicted Epitope Abundance Supports Vaccine-Induced Cytotoxic Protection Against SARS-CoV-2 Variants of Concern. Front. Immunol. 2021, 12, 732693. [Google Scholar] [CrossRef] [PubMed]
- Lopez, D. Predicted HLA Class I and Class II Epitopes From Licensed Vaccines Are Largely Conserved in New SARS-CoV-2 Omicron Variant of Concern. Front. Immunol. 2022, 13, 832889. [Google Scholar] [CrossRef] [PubMed]
- Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: Final results of a phase 3, individually randomised, controlled trial. Lancet 2015, 386, 31–45. [CrossRef] [PubMed]
- Xiong, Q.; Cao, L.; Ma, C.; Tortorici, M.A.; Liu, C.; Si, J.; Liu, P.; Gu, M.; Walls, A.C.; Wang, C.; et al. Close relatives of MERS-CoV in bats use ACE2 as their functional receptors. Nature 2022, 612, 748–757. [Google Scholar] [CrossRef]
- Koch, T.; Dahlke, C.; Fathi, A.; Kupke, A.; Krahling, V.; Okba, N.M.A.; Halwe, S.; Rohde, C.; Eickmann, M.; Volz, A.; et al. Safety and immunogenicity of a modified vaccinia virus Ankara vector vaccine candidate for Middle East respiratory syndrome: An open-label, phase 1 trial. Lancet Infect. Dis. 2020, 20, 827–838. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López, D.; García-Peydró, M. Could SARS-CoV-1 Vaccines in the Pipeline Have Contributed to Fighting the COVID-19 Pandemic? Lessons for the Next Coronavirus Plague. Biomedicines 2024, 12, 62. https://doi.org/10.3390/biomedicines12010062
López D, García-Peydró M. Could SARS-CoV-1 Vaccines in the Pipeline Have Contributed to Fighting the COVID-19 Pandemic? Lessons for the Next Coronavirus Plague. Biomedicines. 2024; 12(1):62. https://doi.org/10.3390/biomedicines12010062
Chicago/Turabian StyleLópez, Daniel, and Marina García-Peydró. 2024. "Could SARS-CoV-1 Vaccines in the Pipeline Have Contributed to Fighting the COVID-19 Pandemic? Lessons for the Next Coronavirus Plague" Biomedicines 12, no. 1: 62. https://doi.org/10.3390/biomedicines12010062
APA StyleLópez, D., & García-Peydró, M. (2024). Could SARS-CoV-1 Vaccines in the Pipeline Have Contributed to Fighting the COVID-19 Pandemic? Lessons for the Next Coronavirus Plague. Biomedicines, 12(1), 62. https://doi.org/10.3390/biomedicines12010062