Integrin-Dependent Transient Density Increase in Detergent-Resistant Membrane Rafts in Platelets Activated by Thrombin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Patient
2.3. Platelet Preparation
2.4. Sucrose Density Gradient Analysis
2.5. Clot Retraction
2.6. Cell Immunostaining
2.7. Binding Assay of Fibrinogen γ Chain C-Terminal Fusion Protein
2.8. Lipid Extraction
2.9. Mass Spectrometry
3. Results and Discussion
3.1. Transient Platelet DRM Shifted to a Higher Density upon Thrombin Stimulation
3.2. Proteins and Fibrin Translocation to DRM Raft Fraction of Human Platelets by Thrombin Stimulation
3.3. A Change in Phospholipids Composition of DRM Raft Fraction by Thrombin Stimulation
3.4. Impairment of Thrombin-Induced Platelet DRM Shift to a Higher Density in Type I Glanzmann’s Thrombasthenia
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DRM | detergent-resistant membrane |
DIC | differential interference contrast |
PRP | platelet-rich plasma |
CBB | Coomassie Brilliant Blue |
MLC | myosin regulatory light chain |
MAPK | mitogen-activated protein kinase |
PC | Phosphatidylcholine |
PE | phosphatidylethanolamine |
PL | phospholipid |
PS | phosphatidylserine |
Ser | serine |
Thr | threonine |
Tyr | tyrosine |
References
- Simons, K.; Gerl, M.J. Revitalizing membrane rafts: New tools and insights. Nat. Rev. Mol. Cell Biol. 2010, 11, 688–699. [Google Scholar] [CrossRef] [PubMed]
- López, J.A.; del Conde, I.; Shrimpton, C.N. Receptors, rafts, and microvesicles in thrombosis and inflammation. J. Thromb. Haemost. 2005, 3, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Bodin, S.; Tronchère, H.; Payrastre, B. Lipid rafts are critical membrane domains in blood platelet activation processes. Biochim. Biophys. Acta 2003, 1610, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Komatsuya, K.; Kaneko, K.; Kasahara, K. Function of Platelet Glycosphingolipid Microdomains/Lipid Rafts. Int. J. Mol. Sci. 2020, 21, 5539. [Google Scholar] [CrossRef]
- Brown, D.A.; Rose, J.K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 1992, 68, 533–544. [Google Scholar] [CrossRef]
- Dorahy, D.J.; Lincz, L.F.; Meldrum, C.J.; Burns, G.F. Biochemical isolation of a membrane microdomain from resting platelets highly enriched in the plasma membrane glycoprotein CD36. Biochem. J. 1996, 319, 67–72. [Google Scholar] [CrossRef]
- Dorahy, D.J.; Burns, G.F. Active Lyn protein tyrosine kinase is selectively enriched within membrane microdomains of resting platelets. Biochem. J. 1998, 333, 373–379. [Google Scholar] [CrossRef]
- Kasahara, K.; Sanai, Y. Functional roles of glycosphingolipids in signal transduction via lipid rafts. Glycoconj. J. 2000, 17, 153–162. [Google Scholar] [CrossRef]
- Kasahara, K.; Watanabe, Y.; Yamamoto, T.; Sanai, Y. Association of Src family tyrosine kinase Lyn with ganglioside GD3 in rat brain. Possible regulation of Lyn by glycosphingolipid in caveolae-like domains. J. Biol. Chem. 1997, 272, 29947–29953. [Google Scholar] [CrossRef]
- Kasahara, K.; Watanabe, K.; Takeuchi, K.; Kaneko, H.; Oohira, A.; Yamamoto, T.; Sanai, Y. Involvement of gangliosides in glycosylphosphatidylinositol-anchored neuronal cell adhesion molecule TAG-1 signaling in lipid rafts. J. Biol. Chem. 2000, 275, 34701–34709. [Google Scholar] [CrossRef]
- Yuyama, K.; Sekino-Suzuki, N.; Sanai, Y.; Kasahara, K. Translocation of activated heterotrimeric G protein Galpha(o) to ganglioside-enriched detergent-resistant membrane rafts in developing cerebellum. J. Biol. Chem. 2007, 282, 26392–26400. [Google Scholar] [CrossRef] [PubMed]
- Sekino-Suzuki, N.; Yuyama, K.; Miki, T.; Kaneda, M.; Suzuki, H.; Yamamoto, N.; Yamamoto, T.; Oneyama, C.; Okada, M.; Kasahara, K. Involvement of gangliosides in the process of Cbp/PAG phosphorylation by Lyn in developing cerebellar growth cones. J. Neurochem. 2013, 124, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, K.; Kaneda, M.; Miki, T.; Iida, K.; Sekino-Suzuki, N.; Kawashima, I.; Suzuki, H.; Shimonaka, M.; Arai, M.; Ohno-Iwashita, Y.; et al. Clot retraction is mediated by factor XIII-dependent fibrin-αIIbβ3-myosin axis in platelet sphingomyelin-rich membrane rafts. Blood 2013, 122, 3340–3348. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuka, H.; Iguchi, T.; Hayashi, M.; Kaneda, M.; Iida, K.; Shimonaka, M.; Hara, T.; Arai, M.; Koike, Y.; Yamamoto, N.; et al. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation. PLoS ONE 2017, 12, e0169609. [Google Scholar] [CrossRef] [PubMed]
- Komatsuya, K.; Iguchi, T.; Fukuyama, M.; Kawashima, I.; Ogura, K.; Kikuchi, N.; Shimoda, Y.; Takeda, Y.; Shimonaka, M.; Yamamoto, N.; et al. Phosphacan acts as a repulsive cue in murine and rat cerebellar granule cells in a TAG-1/GD3 rafts-dependent manner. J. Neurochem. 2022, 163, 375–390. [Google Scholar] [CrossRef] [PubMed]
- Komatsuya, K.; Kikuchi, N.; Hirabayashi, T.; Kasahara, K. The Regulatory Roles of Cerebellar Glycosphingolipid Microdomains/Lipid Rafts. Int. J. Mol. Sci. 2023, 24, 5566. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.G.N.; Kusumi, A. Refinement of Singer-Nicolson fluid-mosaic model by microscopy imaging: Lipid rafts and actin-induced membrane compartmentalization. Biochim. Biophys. Acta Biomembr. 2023, 1865, 184093. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Kitagawa, H.; Yamamoto, K.; Tanoue, K.; Yamazaki, H. Calcium ions and the conformation of glycoprotein IIIa that is essential fibrinogen binding to platelets: Analysis by a new monoclonal anti-GP IIIa antibody, TM83. Blood 1989, 73, 1552–1560. [Google Scholar] [CrossRef]
- Xiao, T.; Takagi, J.; Coller, B.S.; Wang, J.H.; Springer, T.A. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 2004, 432, 59–67. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911. [Google Scholar] [CrossRef]
- Taguchi, R.; Houjou, T.; Nakanishi, H.; Yamazaki, T.; Ishida, M.; Imagawa, M.; Shimizu, T. Focused lipidomics by tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 823, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Nurden, A.T. Molecular basis of clot retraction and its role in wound healing. Thromb. Res. 2022, 231, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Tutwiler, V.; Litvinov, R.I.; Lozhkin, A.P.; Peshkova, A.D.; Lebedeva, T.; Ataullakhanov, F.I.; Spiller, K.L.; Cines, D.B.; Weisel, J.W. Kinetics and mechanics of clot contraction are governed by the molecular and cellular composition of the blood. Blood 2016, 127, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.L.; Little, G.; Bye, A.P.; Gaspar, R.S.; Unsworth, A.J.; Kriek, N.; Sage, T.; Stainer, A.; Sangowawa, I.; Morrow, G.B.; et al. Platelet factor XIII-A regulates platelet function and promotes clot retraction and stability. Res. Pract. Thromb. Haemost. 2023, 7, 100200. [Google Scholar] [CrossRef] [PubMed]
- Hrdinka, M.; Otahal, P.; Horejsi, V. The transmembrane region is responsible for targeting of adaptor protein LAX into “heavy rafts”. PLoS ONE 2012, 7, e36330. [Google Scholar] [CrossRef] [PubMed]
- Parkin, E.T.; Turner, A.J.; Hooper, N.M. Isolation and characterization of two distinct low-density, Triton-insoluble, complexes from porcine lung membranes. Biochem. J. 1996, 319, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Knorr, R.; Karacsonyi, C.; Lindner, R. Endocytosis of MHC molecules by distinct membrane rafts. J. Cell Sci. 2009, 122, 1584–1594. [Google Scholar] [CrossRef]
- Clark, S.R.; Thomas, C.P.; Hammond, V.J.; Aldrovandi, M.; Wilkinson, G.W.; Hart, K.W.; Murphy, R.C.; Collins, P.W.; O’Donnell, V.B. Characterization of platelet aminophospholipid externalization reveals fatty acids as molecular determinants that regulate coagulation. Proc. Natl. Acad. Sci. USA 2013, 110, 5875–5880. [Google Scholar] [CrossRef]
- Suzuki, J.; Umeda, M.; Sims, P.J.; Nagata, S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 2010, 468, 834–838. [Google Scholar] [CrossRef]
- Egot, M.; Kauskot, A.; Lasne, D.; Gaussem, P.; Bachelot-Loza, C. Biphasic myosin II light chain activation during clot retraction. Thromb. Haemost. 2013, 110, 1215–1222. [Google Scholar] [CrossRef]
- Lian, L.; Suzuki, A.; Hayes, V.; Saha, S.; Han, X.; Xu, T.; Yates, J.R.; Poncz, M.; Kashina, A.; Abrams, C.S. Loss of ATE1-mediated arginylation leads to impaired platelet myosin phosphorylation, clot retraction, and in vivo thrombosis formation. Haematologica 2014, 99, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Flevaris, P.; Li, Z.; Zhang, G.; Zheng, Y.; Liu, J.; Du, X. Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK-dependent integrin outside-in retractile signaling pathway. Blood 2009, 113, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, X.; Shi, X.; Zhu, M.; Wang, J.; Huang, S.; Huang, X.; Wang, H.; Li, L.; Deng, H.; et al. Platelet integrin alphaIIbbeta3: Signal transduction, regulation, and its therapeutic targeting. J. Hematol. Oncol. 2019, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Flevaris, P.; Stojanovic, A.; Gong, H.; Chishti, A.; Welch, E.; Du, X. A molecular switch that controls cell spreading and retraction. J. Cell Biol. 2007, 179, 553–565. [Google Scholar] [CrossRef]
- Léon, C.; Eckly, A.; Hechler, B.; Aleil, B.; Freund, M.; Ravanat, C.; Jourdain, M.; Nonne, C.; Weber, J.; Tiedt, R.; et al. Megakaryocyte-restricted MYH9 inactivation dramatically affects hemostasis while preserving platelet aggregation and secretion. Blood 2007, 110, 3183–3191. [Google Scholar] [CrossRef]
- Bodin, S.; Soulet, C.; Tronchère, H.; Sié, P.; Gachet, C.; Plantavid, M.; Payrastre, B. Integrin-dependent interaction of lipid rafts with the actin cytoskeleton in activated human platelets. J. Cell Sci. 2005, 118, 759–769. [Google Scholar] [CrossRef]
- Rabani, V.; Montange, D.; Meneveau, N.; Davani, S. Impact of ticagrelor on P2Y1 and P2Y12 localization and on cholesterol levels in platelet plasma membrane. Platelets 2018, 29, 709–715. [Google Scholar] [CrossRef]
Resting Lysate | Resting Raft | Resting Non-Raft | Thrombin Lysate | Thrombin Raft | Thrombin Non-Raft | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m/z | Species | Peak Height | Relative Abundance | Peak Height | Relative Abundance | Peak Height | Relative Abundance | Peak Height | Relative Abundance | Peak Height | Relative Abundance | Peak Height | Relative Abundance | |||||
812 | PS(38:4) | 4.05 × 105 | 1.00 | 3.59 × 105 | 1.00 | 2.80 × 104 | 0.43 | 3.90 × 105 | 1.00 | 3.37 × 105 | 0.78 | 5.58 × 104 | 0.76 | |||||
790 | PS(36:1) | 3.36 × 105 | 0.83 | 3.37 × 105 | 0.94 | 6.50 × 104 | 1.00 | 3.12 × 105 | 0.80 | 4.32 × 105 | 1.00 | 7.34 × 104 | 1.00 | |||||
836 | PS(40:6) | 5.67 × 104 | 0.14 | 7.18 × 104 | 0.20 | 1.56 × 104 | 0.24 | 5.46 × 104 | 0.14 | 5.73 × 104 | 0.17 | 4.40 × 103 | 0.06 | |||||
788 | PS(36:2) | 5.27 × 104 | 0.13 | 3.95 × 104 | 0.11 | 2.60 × 103 | 0.04 | 4.29 × 104 | 0.11 | 4.04 × 104 | 0.12 | 1.47 × 103 | 0.02 | |||||
810 | PS(38:5) | 3.24 × 104 | 0.08 | 1.80 × 104 | 0.05 | 1.95 × 103 | 0.03 | 5.07 × 104 | 0.13 | 3.37 × 104 | 0.10 | 1.03 × 104 | 0.14 | |||||
Total Height | 8.83 × 105 | 8.26 × 105 | 1.13 × 105 | 8.50 × 105 | 9.00 × 105 | 1.45 × 105 |
Resting Lysate | Resting Raft | Resting Non-Raft | Thrombin Lysate | Thrombin Raft | Thrombin Non-Raft | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m/z | Species | Peak Height | Relative Abundance | Peak Height | Relative Abundance | Peak Height | Relative Abundance | Peak Height | Relative Abundance | Peak Height | Relative Abundance | Peak Height | Relative Abundance | |||||
760 | PC(34:1) | 2.41 × 106 | 1.00 | 3.85 × 106 | 1.00 | 4.53 × 105 | 1.00 | 2.14 × 106 | 1.00 | 3.80 × 106 | 1.00 | 2.89 × 105 | 1.00 | |||||
788 | PC(36:1) | 1.21 × 106 | 0.50 | 2.12 × 106 | 0.55 | 1.63 × 105 | 0.36 | 1.18 × 106 | 0.55 | 2.09 × 106 | 0.55 | 1.50 × 105 | 0.52 | |||||
758 | PC(34:2) | 8.19 × 105 | 0.34 | 1.42 × 106 | 0.37 | 1.40 × 105 | 0.31 | 6.85 × 105 | 0.32 | 1.25 × 106 | 0.33 | 1.13 × 105 | 0.39 | |||||
810 | PC(38:4) | 5.78 × 105 | 0.24 | 8.47 × 105 | 0.22 | 5.44 × 104 | 0.12 | 4.49 × 105 | 0.21 | 7.22 × 105 | 0.19 | 3.18 × 104 | 0.11 | |||||
734 | PC(32:0) | 5.54 × 105 | 0.23 | 1.16 × 106 | 0.30 | 8.61 × 104 | 0.19 | 4.92 × 105 | 0.23 | 8.74 × 105 | 0.23 | 7.23 × 104 | 0.25 | |||||
Total Height | 5.57 × 106 | 9.39 × 106 | 8.97 × 105 | 4.94 × 106 | 8.74 × 106 | 6.56 × 105 |
Resting Lysate | Resting Raft | Resting Non-Raft | Thrombin Lysate | Thrombin Raft | Thrombin Non-Raft | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m/z | Species | Peak Height | Relative Abundance | Peak Height | Relative Abundance | Peak Height | Relative Abundance | Peak Height | Relative Abundance | Peak Height | Relative Abundance | Peak Height | Relative Abundance | |||||
768 | PE(38:4) | 3.32 × 105 | 1.00 | 4.72 × 105 | 1.00 | 2.53 × 104 | 1.00 | 3.82 × 105 | 1.00 | 3.47 × 105 | 1.00 | 3.17 × 104 | 1.00 | |||||
744 | PE(36:2) | 1.10 × 105 | 0.33 | 9.91 × 104 | 0.21 | 1.44 × 104 | 0.57 | 6.11 × 104 | 0.16 | 9.02 × 104 | 0.26 | 9.83 × 103 | 0.31 | |||||
752 | PE(p38:4) | 8.30 × 104 | 0.25 | 8.50 × 104 | 0.18 | 6.58 × 103 | 0.26 | 5.73 × 104 | 0.15 | 7.29 × 104 | 0.21 | 8.24 × 103 | 0.26 | |||||
766 | PE(38:5) | 7.97 × 104 | 0.24 | 8.02 × 104 | 0.17 | 1.54 × 104 | 0.61 | 6.11 × 104 | 0.16 | 6.94 × 104 | 0.20 | 5.39 × 103 | 0.17 | |||||
740 | PE(36:4) | 6.97 × 104 | 0.21 | 6.61 × 104 | 0.14 | 2.78 × 103 | 0.11 | 7.64 × 104 | 0.20 | 4.51 × 104 | 0.13 | 7.61 × 103 | 0.24 | |||||
Total Height | 6.74 × 105 | 8.02 × 105 | 6.45 × 104 | 6.38 × 105 | 6.25 × 105 | 6.28 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komatsuya, K.; Ishikawa, M.; Kikuchi, N.; Hirabayashi, T.; Taguchi, R.; Yamamoto, N.; Arai, M.; Kasahara, K. Integrin-Dependent Transient Density Increase in Detergent-Resistant Membrane Rafts in Platelets Activated by Thrombin. Biomedicines 2024, 12, 69. https://doi.org/10.3390/biomedicines12010069
Komatsuya K, Ishikawa M, Kikuchi N, Hirabayashi T, Taguchi R, Yamamoto N, Arai M, Kasahara K. Integrin-Dependent Transient Density Increase in Detergent-Resistant Membrane Rafts in Platelets Activated by Thrombin. Biomedicines. 2024; 12(1):69. https://doi.org/10.3390/biomedicines12010069
Chicago/Turabian StyleKomatsuya, Keisuke, Masaki Ishikawa, Norihito Kikuchi, Tetsuya Hirabayashi, Ryo Taguchi, Naomasa Yamamoto, Morio Arai, and Kohji Kasahara. 2024. "Integrin-Dependent Transient Density Increase in Detergent-Resistant Membrane Rafts in Platelets Activated by Thrombin" Biomedicines 12, no. 1: 69. https://doi.org/10.3390/biomedicines12010069
APA StyleKomatsuya, K., Ishikawa, M., Kikuchi, N., Hirabayashi, T., Taguchi, R., Yamamoto, N., Arai, M., & Kasahara, K. (2024). Integrin-Dependent Transient Density Increase in Detergent-Resistant Membrane Rafts in Platelets Activated by Thrombin. Biomedicines, 12(1), 69. https://doi.org/10.3390/biomedicines12010069