Idiosyncratic Hepatocellular Drug-Induced Liver Injury by Flucloxacillin with Evidence Based on Roussel Uclaf Causality Assessment Method and HLA B*57:01 Genotype: From Metabolic CYP 3A4/3A7 to Immune Mechanisms
Abstract
:1. Introduction
2. Search Terms and Strategy
3. Flucloxacillin among the Top Drugs Causing iDILI
4. Listing of iDILI by Flucloxacillin with Evidence Based on RUCAM and HLA
5. Clinical Features of iDILI Due to Flucloxacillin with Evidence Based on RUCAM and HLA
6. Flucloxacillin as Substrate of Cytochrome P450
7. Role of CYP 3A4 in Converting Flucloxacillin for Toxic Metabolite Formation
8. Flucloxacillin-Modified Hepatocellular Proteins and Hapten Generation
9. Immune-Based Cascade of Events Leading to Hepatocellular DILI by Flucloxacillin
10. Risk of iDILI Due to Flucloxacillin
11. Biliary Injury in Experimental Studies and Cholestatic Liver Injury in Humans with iDILI
12. Strength and Limitation of the Review
13. Conclusions
Funding
Conflicts of Interest
References
- Kobayashi, T.; Iwaki, M.; Nogami, A.; Yoneda, M. Epidemiology and management of drug-induced liver injury: Importance of the updated RUCAM. J. Clin. Transl. Hepatol. 2023, 11, 1239–1245. [Google Scholar] [CrossRef]
- Hosack, T.; Damry, D.; Biswas, S. Drug-induced liver injury: A comprehensive review. Ther. Adv. Gastroenterol. 2023, 16, 17562848231163410. [Google Scholar] [CrossRef] [PubMed]
- Clinton, J.W.; Kiparizoska, S.; Aggarwal, S.; Woo, S.; Davis, W.; Lewis, J.H. Drug-induced liver injury: Highlights and controversies in the recent literature. Drug Saf. 2021, 44, 1125–1149. [Google Scholar] [CrossRef]
- Abeles, R.D.; Foxton, M.; Khan, S.; Goldin, R.; Smith, B.; Thursz, M.R.; Verma, S. Androgenic anabolic steroid-induced liver injury: Two case reports assessed for causality by the updated Roussel Uclaf Causality Assessment Method (RUCAM) score and a comprehensive review of the literature. BMJ Open Gastroenterol. 2020, 7, e000549. [Google Scholar] [CrossRef] [PubMed]
- Tzadok, R.; Levy, S.; Aouizerate, J.; Shibolet, O. Acute liver failure following a single dose of Atezolizumab, as assessed for causality using the updated RUCAM. Case Rep. Gastrointest. Med. 2022, 2022, 5090200. [Google Scholar] [CrossRef] [PubMed]
- Swanson, L.A.; Kassab, I.; Tsung, I.; Schneider, B.J.; Fontana, R.J. Liver injury during durvalumab-based immunotherapy is associated with poorer patient survival: A retrospective analysis. Front. Oncol. 2022, 12, 984940. [Google Scholar] [CrossRef] [PubMed]
- Eze, I.E.; Adidam, S.; Gordon, D.K.; Lasisi, O.G.; Gaijala, J. Probable enoxaparin-induced liver injury in a young patient: A case report of a diagnostic challenge. Cureus 2023, 15, e36869. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Guo, D.; Xu, Y.; Zhu, M.; Yao, C.; Chen, C.; Jia, W. Comparison of different liver test thresholds for drug-induced liver injury: Updated RUCAM versus other methods. Front. Pharmacol. 2019, 10, 816. [Google Scholar] [CrossRef]
- Niijima, K.; Niijima, Y.; Okada, S.; Yamada, M. Drug-induced liver injury caused by ipragliflozin administration with causality established by a positive lymphocyte transformation test (LTT) and the Roussel Uclaf Causality Assessment Method (RUCAM): A case report. Ann. Hepatol. 2017, 16, 308–311. [Google Scholar] [CrossRef]
- Shumar, J.; Ordway, S.; Junga, Z.; Sadowski, B.; Torres, D. Memantine-induced liver injury with probable causality as assessed using the Roussel Uclaf Causality Assessment Method (RUCAM). ACG Case Rep. J. 2019, 6, e00184. [Google Scholar] [CrossRef]
- Qin, F.L.; Sang, G.Y.; Zou, X.Q.; Cheng, D.H. Drug-induced liver injury during consolidation therapy in childhood acute lymphoblastic leukemia as assessed for causality using the updated RUCAM. Can. J. Gastroenterol. Hepatol. 2022, 2022, 5914593. [Google Scholar] [CrossRef] [PubMed]
- Plüß, M.; Tampe, D.; Schwörer, H.; Bremer, S.C.B.; Tampe, B. Case report: Kinetics of human leukocyte antigen receptor HLA-DR during liver injury induced by potassium para-aminobenzoate as assessed for causality using the updated RUCAM. Front. Pharmacol. 2022, 13, 966910. [Google Scholar] [CrossRef]
- Uetrecht, J. Mechanistic studies of idiosyncratic DILI: Clinical implications. Front. Pharmacol. 2019, 10, 837. [Google Scholar] [CrossRef] [PubMed]
- Jee, A.; Sernoskie, S.C.; Uetrecht, J. Idiosyncratic drug-induced liver injury: Mechanistic and clinical challenges. Int. J. Mol. Sci. 2021, 22, 2954. [Google Scholar] [CrossRef]
- Roth, R.A.; Kana, O.; Filipovic, D.; Ganey, P.E. Pharmacokinetic and toxicodynamic concepts in idiosyncratic, drug-induced liver injury. Expert. Opin. Drug Metab. Toxicol. 2022, 18, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Krueger, W.; Boelsterli, U.A.; Rasmussen, T.P. Stem cell strategies to evaluate idiosyncratic drug-induced liver injury. J. Clin. Transl. Hepatol. 2014, 2, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Badenas, E.; Donato, M.T.; Tolosa, L. Mechanistic understanding of idiosyncratic drug-induced hepatotoxicity using co-cultures of hepatocytes and macrophages. Antioxidants 2023, 12, 1315. [Google Scholar] [CrossRef] [PubMed]
- Iorga, A.; Dara, L.; Kaplowitz, N. Drug-induced liver injury: Cascade of events leading to cell death, apoptosis or necrosis. Int. J. Mol. Sci. 2017, 18, 1018. [Google Scholar] [CrossRef] [PubMed]
- McGill, M.R.; Jaeschke, H. Biomarkers of drug-induced liver injury: Progress and utility in research, medicine, and regulation. Expert. Rev. Mol. Diagn. 2018, 18, 797–807. [Google Scholar] [CrossRef]
- Wang, P.Y.; Xie, S.Y.; Hao, Q.; Zhang, C.; Jiang, B.F. NAT2 polymorphisms and susceptibility to anti-tuberculosis drug-induced liver injury: A meta-analysis. Int. J. Tuberc. Lung Dis. 2012, 16, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Danan, G. Human Leucocyte Antigen genetics in idiosyncratic drug-induced liver injury with evidence based on the Roussel Uclaf Causality Assessment Method. Medicines 2024, 11, 9. [Google Scholar] [CrossRef]
- Nicoletti, P.; Aithal, G.P.; Chamberlain, T.C.; Coulthard, S.; Alshabeeb, M.; Grove, J.I.; Andrade, R.J.; Björnsson, E.; Dillon, J.F.; Hallberg, P.; et al. Drug-induced liver injury due to Flucloxacillin: Relevance of multiple Human Leukocyte Antigen alleles. Clin. Pharmacol. Ther. 2019, 106, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Danan, G.; Bénichou, C. Causality assessment of adverse reactions to drugs—I. A novel method based on the conclusions of international consensus meetings: Application to drug-induced liver injuries. J. Clin. Epidemiol. 1993, 46, 1323–1330. [Google Scholar] [CrossRef]
- Bénichou, C.; Danan, G.; Flahault, A. Causality assessment of adverse reactions of drugs—II. An original model for validation of drug causality assessment methods: Case reports with positive rechallenge. J. Clin. Epidemiol. 1993, 46, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Danan, G.; Teschke, R. RUCAM in drug and herb induced liver injury: The update. Int. J. Mol. Sci. 2016, 17, 14. [Google Scholar] [CrossRef]
- Li, X.; Tang, J.; Mao, Y. Incidence and risk factors of drug-induced liver injury. Liver Int. 2022, 42, 1999–2014. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, Y.; Lv, T.T.; Liu, J.M.; Kong, Y.Y.; Jia, J.D.; Zhao, X.Y. Mapping the incidence of drug-induced liver injury: A systematic review and meta-analysis. J. Dig. Dis. 2023, 24, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Licata, A.; Minissale, M.G.; Calvaruso, V.; Craxì, A. A focus on epidemiology of drug-induced liver injury: Analysis of a prospective cohort. Eur. Rev. Med. Pharmacol. Sci. 2017, 21 (Suppl. S1), 112–121. [Google Scholar]
- Kang, Y.; Kim, S.H.; Park, S.Y.; Park, B.Y.; Lee, J.H.; An, J.; Won, H.K.; Song, W.J.; Kwon, H.S.; Cho, Y.S.; et al. Evaluation of drug-induced liver injury developed during hospitalization using electronic health record (EHR)-based algorithm. Allergy Asthma Immunol. Res. 2020, 12, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Cano-Paniagua, A.; Amariles, P.; Angulo, N.Y.; Restrepo-Garay, M. Epidemiology of drug-induced liver injury in a university hospital from Colombia: Updated RUCAM being used for prospective causality assessment. Ann. Hepatol. 2019, 18, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.M.; Chen, Y.; Xu, J.; Zhou, Q. Drug-induced liver injury in hospitalized patients with notably elevated alanine aminotransferase. World J. Gastroenterol. 2012, 18, 5972–5978. [Google Scholar] [CrossRef] [PubMed]
- Allison, R.; Guraka, A.; Shawa, I.T.; Tripathi, G.; Moritz, W.; Kermanizadet, A. Drug induced liver injury—A 2023 update. J. Toxicol. Environ. Health Part B Crit. Rev. 2023, 26, 442–467. [Google Scholar] [CrossRef] [PubMed]
- Sgro, C.; Clinard, F.; Ouazir, K.; Chanay, H.; Allard, C.; Guilleminet, C.; Lenoir, C.; Lemoine, A.; Hillon, P. Incidence of drug-induced hepatic injuries: A French population-based study. Hepatology 2002, 36, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Isa, S.E.; Ebonyi, A.O.; Shehu, N.Y.; Idoko, P.; Anejo-Okopi, J.A.; Simji, G.; Odesanya, R.U.; Abah, I.O.; Jimoh, H.O. Antituberculosis drugs and hepatotoxicity among hospitalized patients in Jos, Nigeria. Int. J. Mycobacteriol 2016, 5, 21–26. [Google Scholar] [CrossRef]
- De Valle, M.; Klinteberg, V.; Alem, N.; Olsson, R.; Björnsson, E. Drug-induced liver injury in a Swedish university hospital out-patient hepatology clinic. Aliment. Pharmacol. Ther. 2006, 24, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- De Abajo, F.J.; Montero, D.; Madurga, M.; García Rodríguez, L.A. Acute and clinically relevant drug-induced liver injury: A population based case-control study. Br. J. Clin. Pharmacol. 2004, 58, 71–80. [Google Scholar] [CrossRef]
- Tujios, S.R.; Lee, W.M. Acute liver failure induced by idiosyncratic reaction to drugs: Challenges in diagnosis and therapy. Liver Int. 2018, 38, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Uetrecht, J. Mechanism of idiosyncratic drug induced liver injury (DILI): Unresolved basic issues. Ann. Transl. Med. 2021, 9, 730. [Google Scholar] [CrossRef] [PubMed]
- Björnsson, E.; Olsson, R. Outcome and prognostic markers in severe drug-induced liver disease. Hepatology 2005, 42, 481–489. [Google Scholar] [CrossRef]
- Douros, A.; Bronder, E.; Andersohn, F.; Klimpel, A.; Thomae, M.; Sarganas, G.; Kreutz, R.; Garbe, E. Drug-induced liver injury: Results from the hospital-based Berlin case-control surveillance study. Br. J. Clin. Pharmacol. 2014, 79, 988–999. [Google Scholar] [CrossRef]
- Daly, A.K.; Donaldson, P.T.; Bhatnagar, P.; Shen, Y.; Pe’er, I.; Floratos, A.; Daly, M.J.; Goldstein, D.B.; John, S.; Nelson, M.R.; et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat. Genet. 2009, 41, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Monshi, M.M.; Faulkner, L.; Gibson, A.; Jenkins, R.E.; Farrell, J.; Earnshaw, C.J.; Alfirevic, A.; Cederbrant, K.; Daly, A.K.; French, N.; et al. Human leukocyte antigen (HLA)-B*57:01-restricted activation of drug-specific T cells provides the immunological basis for flucloxacillin-induced liver injury. Hepatology 2013, 57, 727–739. [Google Scholar] [CrossRef]
- Teixeira, M.; Macedo, S.; Batista, T.; Martins, S.; Correia, A.; Matos, L.C. Flucloxacillin-induced hepatotoxicity: Association with HLA-B*5701. Rev. Assoc. Med. Bras. 2020, 66, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Wing, K.; Bhaskaran, K.; Pealing, L.; Root, A.; Smeeth, L.; van Staa, T.P.; Klungel, O.H.; Reynolds, R.F.; Douglas, I. Quantification of the risk of liver injury associated with flucloxacillin: A UK population-based cohort study. J. Antimicrob. Chemother. 2017, 72, 2636–2646. [Google Scholar] [CrossRef] [PubMed]
- NICE British National Formulary (BNF). Flucloxacillin. Available online: https://www.nice.org.uk/bnf-uk-only (accessed on 4 April 2024).
- Aithal, P.G.; Day, C.P. The natural history of histologically proved drug induced liver disease. Gut 1999, 44, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Aithal, G.P.; Rawlins, M.D.; Day, C.P. Clinical diagnostic scale: A useful tool in the evaluation of suspected hepatotoxic adverse drug reactions. J. Hepatol. 2000, 33, 949–952. [Google Scholar] [CrossRef]
- Teschke, R.; Danan, G. Idiosyncratic drug induced liver injury, cytochrome P450, metabolic risk factors, and lipophilicity: Highlights and controversies. Int. J. Mol. Sci. 2021, 22, 3441. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Danan, G. Liver injury by drugs metabolized via cytochrome P450. J. Mod. Med. Chem. 2020, 8, 93–98. [Google Scholar] [CrossRef]
- Dekker, S.J.; Dohmen, F.; Vermeulen, N.P.E.; Commandeur, J.N.M. Characterization of kinetics of human cytochrome P450s involved in bioactivation of flucloxacillin: Inhibition of CYP3A-catalysed hydroxylation by sulfaphenazole. Br. J. Pharmacol. 2019, 176, 466–477. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Hopley, L.; van Schalkwyk, J. Cytochrome P450—Just the Basics. Available online: https://www.anaesthetist.com/physiol/basics/metabol/cyp/Findex.htm (accessed on 15 March 2024).
- Huang, Q.; Chen, Y.; Zhang, Z.; Xue, Z.; Hua, Z.; Luo, X.; Li, Y.; Lu, C.; Lu, A.; Liu, Y. The endoplasmic reticulum participated in drug metabolic toxicity. Cell Biol. Toxicol. 2022, 38, 945–961. [Google Scholar] [CrossRef]
- Lu, A.Y. Liver microsomal drug-metabolizing enzyme system: Functional components and their properties. Fed. Proc. 1976, 35, 2460–2463. [Google Scholar] [PubMed]
- Lakehal, F.; Dansette, P.M.; Becquemont, L.; Lasnier, E.; Delelo, R.; Balladur, P.; Poupon, R.; Beaune, P.H.; Housset, C. Indirect cytotoxicity of flucloxacillin toward human biliary epithelium via metabolite formation in hepatocytes. Chem. Res. Toxicol. 2001, 14, 694–701. [Google Scholar] [CrossRef]
- Gath, J.; Charles, B.; Sampson, J.; Smithurst, B. Pharmacokinetics and bioavailability of flucloxacillin in elderly hospitalized patients. Clin. Pharmacol. 1995, 35, 31–36. [Google Scholar] [CrossRef]
- Ye, H.; Nelson, L.J.; Gómez Del Moral, M.; Martínez-Naves, E.; Cubero, F.J. Dissecting the molecular pathophysiology of drug-induced liver injury. World J. Gastroenterol. 2018, 24, 1373–1385. [Google Scholar] [CrossRef]
- Pu, S.; Pan, Y.; Zhang, Q.; You, T.; Yue, T.; Zhang, Y.; Wang, M. Endoplasmic reticulum stress and mitochondrial stress in drug-induced liver injury. Molecules 2023, 28, 3160. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, R.E.; Meng, X.; Elliott, V.L.; Kitteringham, N.R.; Pirmohamed, M.; Park, B.K. Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin haptenated HSA in vitro and in vivo. Proteom. Clin. Appl. 2009, 3, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Burban, A.; Sharanek, A.; Guguen-Guillouzo, C.; Guillouzo, A. Endoplasmic reticulum stress precedes oxidative stress in antibiotic-induced cholestasis and cytotoxicity in human hepatocytes. Free Radic. Biol. Med. 2018, 115, 166–178. [Google Scholar] [CrossRef]
- Ali, S.E.; Waddington, J.C.; Lister, A.; Sison-Young, R.; Jones, R.P.; Rehman, A.H.; Goldring, C.E.P.; Naisbitt, D.J.; Meng, X. Identification of flucloxacillin-modified hepatocellular proteins: Implications in flucloxacillin-induced liver injury. Toxicol. Sci. 2023, 192, 106–116. [Google Scholar] [CrossRef]
- Usui, T.; Naisbitt, D.J. Human leukocyte antigen and idiosyncratic adverse drug reactions. Drug Metab. Pharmacokinet. 2017, 32, 21–30. [Google Scholar] [CrossRef]
- Waddington, J.C.; Meng, X.; Illing, P.T.; Tailor, A.; Adair, K.; Whitaker, P.; Hamlett, J.; Jenkins, R.E.; Farrell, J.; Berry, N.; et al. Identification of flucloxacillin-haptenated HLA-B*57:01 ligands: Evidence of antigen processing and presentation. Toxicol. Sci. 2020, 177, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Puig, M.; Ananthula, S.; Venna, R.; Kumar Polumuri, S.; Mattson, E.; Walker, L.M.; Cardone, M.; Takahashi, M.; Su, S.; Boyd, L.F.; et al. Alterations in the HLA-B*57:01 Immunopeptidome by flucloxacillin and immunogenicity of drug-haptenated peptides. Front. Immunol. 2021, 11, 629399. [Google Scholar] [CrossRef] [PubMed]
- Wuillemin, N.; Adam, J.; Fontana, S.; Krähenbühl, S.; Pichler, W.J.; Yerly, D. HLA haplotype determines hapten or p-i T cell reactivity to flucloxacillin. J. Immunol. 2013, 190, 4956–4964. [Google Scholar] [CrossRef] [PubMed]
- Adair, K.; Meng, X.; Naisbitt, D.J. Drug hapten-specific T-cell activation: Current status and unanswered questions. Proteomics 2021, 21, e2000267. [Google Scholar] [CrossRef] [PubMed]
- Lindh, M.; Hallberg, P.; Yue, Q.Y.; Wadelius, M. Clinical factors predicting drug-induced liver injury due to flucloxacillin. Drug Healthc. Patient Saf. 2018, 10, 95–101. [Google Scholar] [CrossRef]
- Ananthula, S.; Krishnaveni Sivakumar, K.; Cardone, M.; Su, S.; Roderiquez, G.; Abuzeineh, H.; Kleiner, D.E.; Norcross, M.A.; Puig, M. Development of mouse models with restricted HLA-B∗57:01 presentation for the study of flucloxacillin-driven T-cell activation and tolerance in liver injury. J. Allergy Clin. Immunol. 2023, 152, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Maier-Salamon, A.; Elgendy, S.A.; Meyer, B.; Vossen, M.; Thalhammer, T.; Thalhammer, F.; Jäger, W. Pharmacokinetics of flucloxacillin and its metabolites in patients with renal failure: Impact on liver toxicity. Int. J. Clin. Pharmacol. Ther. 2017, 55, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Waddington, J.C.; Ali, S.E.; Penman, S.L.; Whitaker, P.; Hamlett, J.; Chadwick, A.; Naisbitt, D.J.; Park, B.K.; Meng, X. Cell membrane transporters facilitate the accumulation of hepatocellular flucloxacillin protein adducts: Implication in flucloxacillin-induced liver injury. Chem. Res. Toxicol. 2020, 33, 2939–2943. [Google Scholar] [CrossRef]
DRUG | HLA Allele | RUCAM-Based iDILI Cases (n) | RUCAM-Based Causality | First Author |
---|---|---|---|---|
Flucloxacillin | B*57:01 | 51 | 4/51 patients had a possible causality, 18 a probable causality, and 29 a highly probable causality grading | Daly, 2009 [41] |
Flucloxacillin | B*57:01 | 6 | 2/6 patients had a possible causality, 2 a probable, and 2 a highly probable causality | Monshi, 2013 [42] |
Flucloxacillin | B*57:01 B*57:03 | 197 | 22/197 patients had a possible causality, 90 a probable, and 85 a highly probable causality grading | Nicoletti, 2019 [22] |
Flucloxacillin | B*57:01 | 1 | Score 8, probable causality | Teixera, 2020 [43] |
Clinical Specifics of iDILI by Flucloxacillin Based on RUCAM and HLA B*57:01 [22] | Clinical Specifics of iDILI by Flucloxacillin Based on RUCAM [44] |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teschke, R. Idiosyncratic Hepatocellular Drug-Induced Liver Injury by Flucloxacillin with Evidence Based on Roussel Uclaf Causality Assessment Method and HLA B*57:01 Genotype: From Metabolic CYP 3A4/3A7 to Immune Mechanisms. Biomedicines 2024, 12, 2208. https://doi.org/10.3390/biomedicines12102208
Teschke R. Idiosyncratic Hepatocellular Drug-Induced Liver Injury by Flucloxacillin with Evidence Based on Roussel Uclaf Causality Assessment Method and HLA B*57:01 Genotype: From Metabolic CYP 3A4/3A7 to Immune Mechanisms. Biomedicines. 2024; 12(10):2208. https://doi.org/10.3390/biomedicines12102208
Chicago/Turabian StyleTeschke, Rolf. 2024. "Idiosyncratic Hepatocellular Drug-Induced Liver Injury by Flucloxacillin with Evidence Based on Roussel Uclaf Causality Assessment Method and HLA B*57:01 Genotype: From Metabolic CYP 3A4/3A7 to Immune Mechanisms" Biomedicines 12, no. 10: 2208. https://doi.org/10.3390/biomedicines12102208
APA StyleTeschke, R. (2024). Idiosyncratic Hepatocellular Drug-Induced Liver Injury by Flucloxacillin with Evidence Based on Roussel Uclaf Causality Assessment Method and HLA B*57:01 Genotype: From Metabolic CYP 3A4/3A7 to Immune Mechanisms. Biomedicines, 12(10), 2208. https://doi.org/10.3390/biomedicines12102208