Serum Fatty Acids and Inflammatory Patterns in Severe Obesity: A Preliminary Investigation in Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Anthropometric Assessment
2.3. Analysis of Adipokines
2.4. Analysis of Free Fatty Acid Profile in Serum
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arroyo-Johnson, C.; Mincey, K.D. Obesity Epidemiology Trends by Race/Ethnicity, Gender, and Education. Gastroenterol. Clin. N. Am. 2016, 45, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Albracht-Schulte, K.; Kalupahana, N.S.; Ramalingam, L.; Rahman, S.M.; Robert-Mccomb, J.; Moustaid, N. Omega-3 fatty acids in obesity and metabolic syndrome: A mechanistic. J. Nutr. Biochem. 2020, 58, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.S.; Blaha, M.J.; Muse, E.D.; Qasim, A.N.; Reilly, M.P.; Blumenthal, R.S.; Nasir, K.; Criqui, M.H.; McClelland, R.L.; Hughes-Austin, J.M.; et al. Leptin and incident cardiovascular disease: The Multi-ethnic Study of Atherosclerosis (MESA). Atherosclerosis 2015, 239, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.W.; Ok, M.; Lee, S.K. Leptin as a Key between Obesity and Cardiovascular Disease. J. Obes. Metab. Syndr. 2020, 29, 248–259. [Google Scholar] [CrossRef]
- Netto, B.D.; Bettini, S.C.; Clemente, A.P.; Ferreira, J.P.; Boritza, K.; Souza Sde, F.; Von der Heyde, M.E.; Earthman, C.P.; Dâmaso, A.R. Roux-en-Y gastric bypass decreases pro-inflammatory and thrombotic biomarkers in individuals with extreme obesity. Obes. Surg. 2015, 25, 1010–1018. [Google Scholar] [CrossRef]
- Sanches, P.L.; de Mello, M.T.; Elias, N.; Fonseca, F.A.; Campos, R.M.; Carnier, J.; de Piano, A.; Masquio, D.C.; Silva, P.L.; Oyama, L.M.; et al. Hyperleptinemia: Implications on the inflammatory state and vascular protection in obese adolescents submitted to an interdisciplinary therapy. Inflammation 2014, 37, 35–43. [Google Scholar] [CrossRef]
- Bochar, O.M.; Sklyarova, H.Y.; Abrahamovych, K.Y.; Hromnats’ka, N.M.; Bochar, V.T.; Sklyarov, E.Y. Metabolic syndrome, overweight, hyperleptinemia in children and adults. Wiad. Lek. 2021, 74, 313–316. [Google Scholar] [CrossRef]
- Di Filippo, L.; De Lorenzo, R.; Sciorati, C.; Capobianco, A.; Lorè, N.I.; Giustina, A.; Manfredi, A.A.; Rovere-Querini, P.; Conte, C. Adiponectin to leptin ratio reflects inflammatory burden and survival in COVID-19. Diabetes Metab. 2021, 47, 101268. [Google Scholar] [CrossRef]
- Neschen, S.; Morino, K.; Rossbacher, J.C.; Pongratz, R.L.; Cline, G.W.; Sono, S. Fish oil regulates adiponectin secretion by a peroxisome proliferator-activated receptor-γ-dependent mechanism in mice. Diabetes 2006, 55, 924–928. [Google Scholar] [CrossRef]
- Zhao, S.; Kusminski, C.M.; Scherer, P.E. Adiponectin, Leptin and Cardiovascular Disorders. Circ. Res. 2022, 128, 136–149. [Google Scholar] [CrossRef]
- Zaletel, J.; Pongrac Barlovic, D.; Prezelj, J. Adiponectin-leptin ratio: A useful estimate of insulin resistance in patients with type 2 diabetes. J. Endocrinol. Investig. 2010, 33, 514–518. [Google Scholar] [CrossRef] [PubMed]
- López-Jaramillo, P.; Gómez-Arbeláez, D.; López-López, J.; López-López, C.; Martínez-Ortega, J.; Gómez-Rodríguez, A. The role of leptin/adiponectin ratio in metabolic syndrome and diabetes. Horm. Mol. Biol. Clin. Investig. 2014, 18, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Satoh, N.; Naruse, M.; Usui, T.; Tagami, T.; Suganami, T.; Yamada, K.; Kuzuya, H.; Shimatsu, A.; Ogawa, Y. Leptin-to-adiponectin ratio as a potential atherogenic index in obese type 2 diabetic patients. Diabetes Care 2004, 27, 2488–2490. [Google Scholar] [CrossRef] [PubMed]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Ramírez, B.; Becerril, S.; Salvador, J.; Colina, I.; Gómez-Ambrosi, J. Adiponectin-leptin ratio is a functional biomarker of adipose tissue inflammation. Nutrients 2019, 11, 454. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, Y.A.M.; Kravchychyn, A.C.P.; Vicente, S.D.C.F.; da Silveira Campos, R.M.; Tock, L.; Oyama, L.M.; Boldarine, V.T.; Masquio, D.C.L.; Damaso, A.R. Influence of magnitude of weight loss on Adipo/lep ratio in adolescents with obesity undergoing multicomponent therapy. Cytokine 2020, 131, 155111. [Google Scholar] [CrossRef]
- Masquio, D.C.L.; Campos, R.M.D.S.; Netto, B.D.M.; Carvalho-Ferreira, J.P.; Bueno, C.R., Jr.; Alouan, S.; Poletto, G.T.; Ganen, A.P.; Tufik, S.; de Mello, M.T.; et al. Interdisciplinary Therapy Improves the Mediators of Inflammation and Cardio-vascular Risk in Adolescents with Obesity. Int. J. Environ. Res. Public Health 2023, 20, 7114. [Google Scholar] [CrossRef]
- Simopoulos, A. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 8, 365–379. [Google Scholar] [CrossRef]
- Monteiro, J.; Leslie, M.; Moghadasian, M.H.; Arendt, B.M.; Allard, J.P.; Ma, D.W.L. The role of n − 6 and n − 3 polyunsaturated fatty acids in the manifestation of the metabolic syndrome in cardiovascular disease and non-alcoholic fatty liver disease. Food Funct. 2014, 5, 426–435. [Google Scholar] [CrossRef]
- Masquio, D.C.L.; de Piano-Ganen, A.; Oyama, L.M.; da Silveira Campos, R.M.; Santamarina, A.B.; Gomes, A.D.O.; Moreira, R.G.; Corgosinho, F.C.; do Nascimento, C.M.O.; Tock, L.; et al. The role of free fatty acids in the inflammatory and cardiometabolic profile in adolescents with metabolic syndrome engaged in interdisciplinary therapy. J. Nutr. Biochem. 2016, 33, 136–144. [Google Scholar] [CrossRef]
- Allain-Regnault, M.; Bwibo, N.O.; Chigier, E. Young People’s Health-a Challenge for Society: Report of a WHO Study Group on Young People and “Health for All by the Year 2000”; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Akour, A.; Kasabri, V.; Bulatova, N.; Al Muhaissen, S.; Naffa, R.; Fahmawi, H.; Momani, M.; Zayed, A.; Bustanji, Y. Association of Oxytocin with Glucose Intolerance and Inflammation Biomarkers in Metabolic Syndrome Patients with and without Prediabetes. Rev. Diabet. Stud. 2018, 14, 364–371. [Google Scholar] [CrossRef]
- Moraes Ados, S.; Pisani, L.P.; Corgosinho, F.C.; Carvalho, L.O.; Masquio, D.C.; Jamar, G.; Sanches, R.B.; Oyama, L.M.; Dâmaso, A.R.; Belote, C.; et al. The role of leptinemia state as a mediator of inflammation in obese adults. Horm. Metab. Res. 2013, 45, 605–610. [Google Scholar] [PubMed]
- Lopes, K.L.S.; Figueiredo, N.; Kattah, F.M.; Lima, G.C.; Oliveira, E.S.; Horst, M.A.; Oyama, L.M.; Dâmaso, A.R.; Whitton, R.G.M.; de Souza Abreu, V.; et al. The degree of food processing can influence serum fatty acid and lipid profiles in women with severe obesity. Front. Nutr. 2023, 10, 1046710. [Google Scholar] [CrossRef] [PubMed]
- Liqiang, S.; Fang-Hui, L.; Minghui, Q.; Yanan, Y.; Haichun, C. Free fatty acids and peripheral blood mononuclear cells (PBMC) are correlated with chronic inflammation in obesity. Lipids Health Dis. 2023, 22, 93. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Lee, H.N.; Kim, W.; Surh, Y.J. Docosahexaenoic acid induces M2 macrophage polarization through peroxisome proliferator-activated receptor γ activation. Life Sci. 2015, 120, 39–47. [Google Scholar] [CrossRef]
- Yu, K.; Bayona, W.; Kallen, C.B.; Harding, H.P.; Ravera, C.P.; McMahon, G.; Brown, M.; Lazar, M.A. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J. Biol. Chem. 1995, 270, 23975–23983. [Google Scholar] [CrossRef]
- Marion-Letellier, R.; Savoye, G.; Ghosh, S. Fatty acids, eicosanoids and PPAR gamma. Eur. J. Pharmacol. 2016, 785, 44–49. [Google Scholar] [CrossRef]
- Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-inflammatory and Insulin-Sensitizing Effects. Cell 2010, 142, 687–698. [Google Scholar]
- Calder, P.C. Polyunsaturated fatty acids, inflammation, and immunity. Lipids 2001, 36, 1007–1024. [Google Scholar] [CrossRef]
- Candela, C.G.; López, L.M.B.; Kohen, L.V. Importance of a balanced omega 6/omega 3 ratio for the mainte-nance of health. Nutritional recommendations. Nutr. Hosp. 2011, 26, 323–329. [Google Scholar]
- Simopoulos, A.P. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: Nutritional implications for chronic diseases. Biomed. Pharmacother. 2006, 60, 502–507. [Google Scholar] [CrossRef]
- Sergeant, S.; Rahbar, E.; Chilton, F.H. Gamma-linolenic acid, Dihommo-gamma linolenic, Eicosanoids and Inflammatory Processes. Eur. J. Pharmacol. 2016, 785, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Innes, J.K.; Calder, P.C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent. Fat. Acids. 2018, 132, 41–48. [Google Scholar] [CrossRef]
- Moreno-Aliaga, M.J.; Lorente-Cebrián, S.; Martínez, J.A. Regulation of adipokine secretion by n-3 fatty acids. Proc. Nutr. Soc. 2010, 69, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Garófolo, A.; Petrilli, A.S. Omega-3 and 6 fatty acids balance in inflammatory response in patients with cancer and cachexia. Rev. Nutr. Camp. 2006, 19, 611–621. [Google Scholar] [CrossRef]
- Willis, A.L.; Kuhn, D.C.; Vane, F.M.; Scott, C.G.; Petrin, M. An endoperoxide aggregator (LASS), formed in platelets in response to thrombotic stimuli-purification, identification and unique biological significance. Prostaglandins 1974, 8, 453–507. [Google Scholar] [CrossRef]
- Hamberg, M.; Svensson, J.; Samuelsson, B. Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Natl. Acad. Sci. USA 1975, 72, 2994–2998. [Google Scholar] [CrossRef]
- Bermúdez-Cardona, J.; Velásquez-Rodrígues, C. Profile of Free Fatty Acids and Fractions of Phospholipids, Cholesterol Esters and Triglycerides in Serum of Obese Youth with and without Metabolic Syndrome. Nutrients 2016, 8, 54. [Google Scholar] [CrossRef]
- Kim, O.Y.; Lim, H.H.; Lee, M.J.; Kim, J.Y.; Lee, J.H. Association of fatty acid composition in serum phospholipids with metabolic syndrome and arterial stiffness. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 366–374. [Google Scholar] [CrossRef]
Mean/Median | SD/Quartile Range | |
---|---|---|
Characteristics and Anthropometric Data | ||
Age (y) | 40.22 | ±8.3 |
Height (m) | 1.59 | ±0.05 |
Body mass (kg) | 118.80 | 111.95–129.10 |
BMI (kg/m2) | 46.99 | 42.97–51.90 |
Waist circumference (cm) | 131.46 | ±12.52 |
Hip circumference (cm) | 142.50 | 136.1–152.25 |
Ratio Waist circumference/Hip | 0.90 | ±0.07 |
Fatty Acids (% by area) | ||
Saturated (SFA) | ||
TOTAL | 56.19 | ±5.63 |
C14:0 | 4.26 | ±1.45 |
C16:0 | 15.61 | ±4.75 |
C20:0 | 0.55 | ±0.14 |
C22:0 | 0.20 | 0–0.25 |
Monounsaturated (MUFA) | ||
TOTAL | 17.15 | ±2.99 |
C14:1C | 3.17 | ±1.01 |
C16:1n7 | 0.82 | 0.72–1.08 |
C18:1n9 | 11.23 | ±3.92 |
C18:1n7 | 1.11 | ±0.35 |
C20:1n9 | 0.75 | ±0.22 |
TOTAL | 17.15 | +2.99 |
Polyunsaturated (PUFA) | ||
TOTAL | 26.64 | +4.04 |
Omega-6 | ||
TOTAL | 21.68 | +4.41 |
C18:2n6 | 14.47 | ±5.16 |
C18:3n6 | 3.45 | ±1.05 |
C20:2n6 | 1.73 | ±0.69 |
C20:3n6 | 0.32 | ±0.99 |
C20:4n6 | 0.23 | 0–0.30 |
C22:2n6 | 1.15 | 0.87–1.44 |
Omega-3 | ||
TOTAL | 4.93 | 3.35–6.80 |
C18:3n3 | 2.53 | 1.82–3.46 |
C18:4n3 | 0.46 | 0.36–0.57 |
C20:3n3 | 0.48 | 0.37–0.78 |
C20:4n3 | 0.29 | 0.23–0.35 |
C20:5n3 | 0.08 | ±0.32 |
C22:6n3 | 0.45 | 0.29–0.56 |
Ratio SFA/PUFA | 2.02 | 1.80–2.41 |
Ratio SFA/MUFA | 3.41 | ±0.89 |
Ratio n3/n6 | 0.18 | 0.13–0.33 |
Ratio n6/n3 | 5.39 | 3.02–7.38 |
Inflammatory Markers | ||
CRP | 0.95 | 0.42–1.44 |
Adiponectin (µg/dL) | 7.67 | 5.76–11.42 |
Leptin (ng/dL) | 32.23 | 28–44.71 |
Ratio Adiponectin/Leptin | 0.21 | 0.14–0.29 |
Ratio Leptin/Adiponectin | 4.78 | 3.41–6.92 |
β | p-Value | OR (95% IC) | ||
---|---|---|---|---|
Step 1 | Age | 0.021 | 0.010 | 1.021 (0.02–3.27) |
BMI | −0.010 | 0.609 | 0.989 (0.95–1.03) | |
WC | 0.001 | 0.837 | 1 (0.988–1.01) | |
HC | 0.005 | 0.569 | 1 (0.98–1.02) | |
NC | −0.005 | 0.781 | 0.994 (0.95–1.03) | |
C22:6n3 | 0.755 | 0.000 | 2.129 (1.740–2.604) | |
Step 2 | Age | 0.022 | 0.006 | 1 (1.007–1.037) |
BMI | −0.009 | 0.633 | 0.991 (0.954–1.028) | |
HC | 0.005 | 0.545 | 1 (0.987–1.024) | |
NC | −0.005 | 0.793 | 0.994 (0.956–1.034) | |
C22:6n3 | 0.754 | 0.000 | 2.127 (1.744–2.594) | |
Step 3 | Age | 0.022 | 0.004 | 1 (1.007–1.037) |
BMI | −0.010 | 0.551 | 0.989 (0.955–1.024) | |
HC | 0.006 | 0.517 | 1 (0.988–1.024) | |
C22:6n3 | 0.755 | 0.000 | 2.129 (1.750–2.589) | |
Step 4 | Age | 0.021 | 0.004 | 1 (1.007–1.036) |
HC | 0.001 | 0.790 | 1 (0.992–1.010) | |
C22:6n3 | 0.761 | 0.000 | 2.142 (1.766–2.598) | |
Step 5 | Age | 0.020 | 0.003 | 1.020 (1.007–1.034) |
C22:6n3 | 0.760 | 0.000 | 2.139 (1.768–2.588) |
β | p-Value | OR (95% IC) | ||
---|---|---|---|---|
Step 1 | Age | −0.166 | 0.328 | 0.847 (0.698–1.176) |
BMI | −0.116 | 0.786 | 0.890 (0.384–2.058) | |
WC | 0.043 | 0.777 | 1 (0.774–1.408) | |
HC | −0.052 | 0.795 | 0.949 (0.641–1.405) | |
NC | 0.700 | 0.120 | 2 (0.850–4.774) | |
C20:3n6 | 5.215 | 0.000 | 184.053 (113.090–298.966) | |
Step 2 | Age | −0.149 | 0.335 | 0.861 (0.630–1.162) |
BMI | −0.201 | 0.469 | 0.817 (0.476–1.402) | |
WC | 0.716 | 0.104 | 1 (0.775–1.393) | |
NC | 0.038 | 0.796 | 2 (0.881–4.756) | |
C20:3n6 | 5,232 | 0.000 | 187.243 (120.015–292.130) | |
Step 3 | Age | −0.143 | 0.343 | 0.866 (0.646–1.160) |
BMI | −0.157 | 0.465 | 0.854 (0.563–1.297) | |
NC | 0.735 | 0.087 | 2 (0.918–4.736) | |
C20:3n6 | 5.364 | 0.000 | 213.575 (170.462–267.592) | |
Step 4 | Age | −0.122 | 0.343 | 0.885 (0.665–1.177) |
NC | 0.592 | 0.087 | 1.809 (0.877–3.728) | |
C20:3n6 | 5.021 | 0.000 | 151.640 (145.542–157.994) | |
Step 5 | NC | 0.648 | 0.081 | 1.911 (0.941–3.883) |
C20:3n6 | 4.848 | 0.000 | 127.495 (12.791–1270.826) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, G.B.; Figueiredo, N.; Kattah, F.M.; Oliveira, E.S.; Horst, M.A.; Dâmaso, A.R.; Oyama, L.M.; Whitton, R.G.M.; de Souza, G.I.M.H.; Lima, G.C.; et al. Serum Fatty Acids and Inflammatory Patterns in Severe Obesity: A Preliminary Investigation in Women. Biomedicines 2024, 12, 2248. https://doi.org/10.3390/biomedicines12102248
Lima GB, Figueiredo N, Kattah FM, Oliveira ES, Horst MA, Dâmaso AR, Oyama LM, Whitton RGM, de Souza GIMH, Lima GC, et al. Serum Fatty Acids and Inflammatory Patterns in Severe Obesity: A Preliminary Investigation in Women. Biomedicines. 2024; 12(10):2248. https://doi.org/10.3390/biomedicines12102248
Chicago/Turabian StyleLima, Gislene B., Nayra Figueiredo, Fabiana M. Kattah, Emilly S. Oliveira, Maria A. Horst, Ana R. Dâmaso, Lila M. Oyama, Renata G. M. Whitton, Gabriel I. M. H. de Souza, Glaucia C. Lima, and et al. 2024. "Serum Fatty Acids and Inflammatory Patterns in Severe Obesity: A Preliminary Investigation in Women" Biomedicines 12, no. 10: 2248. https://doi.org/10.3390/biomedicines12102248