Prognostic Value of Speckle Tracking Echocardiography-Derived Strain in Unmasking Risk for Arrhythmias in Children with Myocarditis
Abstract
:1. Introduction
- serves as an accurate diagnostic parameter for assessing myocardial systolic dysfunction;
- provides additional prognostic value, especially in patients with preserved LVEF.
2. Materials and Methods
2.1. Inclusion Criteria
- (a)
- Diagnosis of myocarditis confirmed by EMB and/or cMRI;
- (b)
- Transthoracic echocardiography with apical 4-chamber view (CV) of sufficient quality to assess STE-derived LV LS.
2.2. Data Monitoring
2.3. Conventional and Speckle Tracking Echocardiography
- Preserved LVEF ≥ 50% (pEF)
- Mildy reduced LVEF 41–49% (mrEF)
- Reduced EF ≤ 40% (rEF) [15].
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Conventional and STE-Derived Strain Analyses
3.3. Predictive Value of STE-Derived Strain
3.4. Reproducibility
4. Discussion
4.1. STE-Derived Strain and MACE
4.2. STE-Derived Strain and Arrhythmias
4.3. STE-Derived Strain as a Tool for Clinical Decision Making
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arola, A.; Pikkarainen, E.; Sipila, J.O.; Pykari, J.; Rautava, P.; Kyto, V. Occurrence and Features of Childhood Myocarditis: A Nationwide Study in Finland. J. Am. Heart Assoc. 2017, 6, e005306. [Google Scholar] [CrossRef] [PubMed]
- Schubert, S.; Opgen-Rhein, B.; Boehne, M.; Weigelt, A.; Wagner, R.; Müller, G.; Rentzsch, A.; zu Knyphausen, E.; Fischer, M.; Papakostas, K.; et al. Severe heart failure and the need for mechanical circulatory support and heart transplantation in pediatric patients with myocarditis: Results from the prospective multicenter registry "MYKKE". Pediatr. Transplant. 2019, 23, e13548. [Google Scholar] [CrossRef] [PubMed]
- Law, Y.M.; Lal, A.K.; Chen, S.; Cihakova, D.; Cooper, L.T., Jr.; Deshpande, S.; Godown, J.; Grosse-Wortmann, L.; Robinson, J.D.; Towbin, J.A.; et al. Diagnosis and Management of Myocarditis in Children: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e123–e135. [Google Scholar] [CrossRef]
- Messroghli, D.R.; Pickardt, T.; Fischer, M.; Opgen-Rhein, B.; Papakostas, K.; Böcker, D.; Jakob, A.; Khalil, M.; Mueller, G.C.; Schmidt, F.; et al. Toward evidence-based diagnosis of myocarditis in children and adolescents: Rationale, design, and first baseline data of MYKKE, a multicenter registry and study platform. Am. Heart J. 2017, 187, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Putschoegl, A.; Auerbach, S. Diagnosis, Evaluation, and Treatment of Myocarditis in Children. Pediatr. Clin. N. Am. 2020, 67, 855–874. [Google Scholar] [CrossRef]
- Gräni, C.; Eichhorn, C.; Bière, L.; Murthy, V.L.; Agarwal, V.; Kaneko, K.; Cuddy, S.; Aghayev, A.; Steigner, M.; Blankstein, R.; et al. Prognostic Value of Cardiac Magnetic Resonance Tissue Characterization in Risk Stratifying Patients with Suspected Myocarditis. J. Am. Coll. Cardiol. 2017, 70, 1964–1976. [Google Scholar] [CrossRef]
- Grun, S.; Schumm, J.; Greulich, S.; Wagner, A.; Schneider, S.; Bruder, O.; Kispert, E.M.; Hill, S.; Ong, P.; Klingel, K.; et al. Long-term follow-up of biopsy-proven viral myocarditis: Predictors of mortality and incomplete recovery. J. Am. Coll. Cardiol. 2012, 59, 1604–1615. [Google Scholar] [CrossRef]
- Wisotzkey, B.L.; Soriano, B.D.; Albers, E.L.; Ferguson, M.; Buddhe, S. Diagnostic role of strain imaging in atypical myocarditis by echocardiography and cardiac MRI. Pediatr. Radiol. 2018, 48, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Meindl, C.; Paulus, M.; Poschenrieder, F.; Zeman, F.; Maier, L.S.; Debl, K. Patients with acute myocarditis and preserved systolic left ventricular function: Comparison of global and regional longitudinal strain imaging by echocardiography with quantification of late gadolinium enhancement by CMR. Clin. Res. Cardiol. 2021, 110, 1792–1800. [Google Scholar] [CrossRef]
- Vos, J.L.; Raafs, A.G.; van der Velde, N.; Germans, T.; Biesbroek, P.S.; Roes, K.; Hirsch, A.; Heymans, S.R.; Nijveldt, R. Comprehensive Cardiovascular Magnetic Resonance-Derived Myocardial Strain Analysis Provides Independent Prognostic Value in Acute Myocarditis. J. Am. Heart Assoc. 2022, 11, e025106. [Google Scholar] [CrossRef]
- Maisch, B.; Portig, I.; Ristic, A.; Hufnagel, G.; Pankuweit, S. Definition of inflammatory cardiomyopathy (myocarditis): On the way to consensus. A status report. Herz 2000, 25, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.; McKenna, W.; Bristow, M.; Maisch, B.; Mautner, B.; O’Connell, J.; Olsen, E.; Thiene, G.; Goodwin, J.; Gyarfas, I.; et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation 1996, 93, 841–842. [Google Scholar] [PubMed]
- Kampmann, C.; Wiethoff, C.M.; Wenzel, A.; Stolz, G.; Betancor, M.; Wippermann, C.F.; Huth, R.G.; Habermehl, P.; Knuf, M.; Emschermann, T.; et al. Normal values of M mode echocardiographic measurements of more than 2000 healthy infants and children in central Europe. Heart 2000, 83, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- Oeing, C.U.; Tschope, C.; Pieske, B. The new ESC Guidelines for acute and chronic heart failure 2016. Herz 2016, 41, 655–663. [Google Scholar] [CrossRef]
- Bernhard, B.; Tanner, G.; Garachemani, D.; Schnyder, A.; Fischer, K.; Huber, A.T.; Safarkhanlo, Y.; Stark, A.W.; Guensch, D.P.; Schütze, J.; et al. Predictive value of cardiac magnetic resonance right ventricular longitudinal strain in patients with suspected myocarditis. J. Cardiovasc. Magn. Reson. 2023, 25, 49. [Google Scholar] [CrossRef]
- Fischer, K.; Obrist, S.J.; Erne, S.A.; Stark, A.W.; Marggraf, M.; Kaneko, K.; Guensch, D.P.; Huber, A.T.; Greulich, S.; Aghayev, A.; et al. Feature Tracking Myocardial Strain Incrementally Improves Prognostication in Myocarditis Beyond Traditional CMR Imaging Features. JACC Cardiovasc. Imaging 2020, 13, 1891–1901. [Google Scholar] [CrossRef]
- Hsiao, J.F.; Koshino, Y.; Bonnichsen, C.R.; Yu, Y.; Miller, F.A., Jr.; Pellikka, P.A.; Cooper, L.T., Jr.; Villarraga, H.R. Speckle tracking echocardiography in acute myocarditis. Int. J. Cardiovasc. Imaging 2013, 29, 275–284. [Google Scholar] [CrossRef]
- Porcari, A.; Merlo, M.; Baggio, C.; Gagno, G.; Cittar, M.; Barbati, G.; Paldino, A.; Castrichini, M.; Vitrella, G.; Pagnan, L.; et al. Global longitudinal strain by CMR improves prognostic stratification in acute myocarditis presenting with normal LVEF. Eur. J. Clin. Investig. 2022, 52, e13815. [Google Scholar] [CrossRef]
- Pruitt, C.R.; Menon, S.; Lal, A.K.; Eckhauser, A.W.; Ou, Z.; Presson, A.; Miller, T.; Niu, M. Usefulness of Left Ventricular Myocardial Deformation in Children Hospitalized for Acute Myocarditis who Develop Arrhythmias. Am. J. Cardiol. 2021, 152, 113–119. [Google Scholar] [CrossRef]
- Miyake, C.Y.; Teele, S.A.; Chen, L.; Motonaga, K.S.; Dubin, A.M.; Balasubramanian, S.; Balise, R.R.; Rosenthal, D.N.; Alexander, M.E.; Walsh, E.P.; et al. In-hospital arrhythmia development and outcomes in pediatric patients with acute myocarditis. Am. J. Cardiol. 2014, 113, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Corrado, D.; Basso, C.; Thiene, G. Sudden cardiac death in young people with apparently normal heart. Cardiovasc. Res. 2001, 50, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Adegbala, O.; Olagoke, O.; Akintoye, E.; Adejumo, A.C.; Oluwole, A.; Jara, C.; Williams, K.; Briasoulis, A.; Afonso, L. Predictors, Burden, and the Impact of Arrhythmia on Patients Admitted for Acute Myocarditis. Am. J. Cardiol. 2019, 123, 139–144. [Google Scholar] [CrossRef]
- Tschöpe, C.; Bock, C.-T.; Kasner, M.; Noutsias, M.; Westermann, D.; Schwimmbeck, P.-L.; Pauschinger, M.; Poller, W.-C.; Kühl, U.; Kandolf, R.; et al. High prevalence of cardiac parvovirus B19 infection in patients with isolated left ventricular diastolic dysfunction. Circulation 2005, 111, 879–886. [Google Scholar] [CrossRef]
- Escher, F.; Westermann, D.; Gaub, R.; Pronk, J.; Bock, T.; Al-Saadi, N.; Kühl, U.; Schultheiss, H.-P.; Tschöpe, C. Development of diastolic heart failure in a 6-year follow-up study in patients after acute myocarditis. Heart 2011, 97, 709–714. [Google Scholar] [CrossRef]
- Escher, F.; Kühl, U.; Lassner, D.; Poller, W.; Westermann, D.; Pieske, B.; Tschöpe, C.; Schultheiss, H.-P. Long-term outcome of patients with virus-negative chronic myocarditis or inflammatory cardiomyopathy after immunosuppressive therapy. Clin. Res. Cardiol. 2016, 105, 1011–1020. [Google Scholar] [CrossRef]
- Baksi, A.J.; Kanaganayagam, G.S.; Prasad, S.K. Arrhythmias in viral myocarditis and pericarditis. Card. Electrophysiol. Clin. 2015, 7, 269–281. [Google Scholar] [CrossRef]
- Kasner, M.; Aleksandrov, A.; Escher, F.; Al-Saadi, N.; Makowski, M.; Spillmann, F.; Genger, M.; Schultheiss, H.-P.; Kühl, U.; Pieske, B.; et al. Multimodality imaging approach in the diagnosis of chronic myocarditis with preserved left ventricular ejection fraction (MCpEF): The role of 2D speckle-tracking echocardiography. Int. J. Cardiol. 2017, 243, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Chinali, M.; Franceschini, A.; Ciancarella, P.; Lisignoli, V.; Curione, D.; Ciliberti, P.; Esposito, C.; Del Pasqua, A.; Rinelli, G.; Secinaro, A. Echocardiographic two-dimensional speckle tracking identifies acute regional myocardial edema and sub-acute fibrosis in pediatric focal myocarditis with normal ejection fraction: Comparison with cardiac magnetic resonance. Sci. Rep. 2020, 10, 11321. [Google Scholar] [CrossRef]
- Levy, P.T.; Machefsky, A.; Sanchez, A.A.; Patel, M.D.; Rogal, S.; Fowler, S.; Yaeger, L.; Hardi, A.; Holland, M.R.; Hamvas, A.; et al. Reference Ranges of Left Ventricular Strain Measures by Two-Dimensional Speckle-Tracking Echocardiography in Children: A Systematic Review and Meta-Analysis. J. Am. Soc. Echocardiogr. 2016, 29, 209–225.e6. [Google Scholar] [CrossRef]
- Matsubara, D.; Kauffman, H.L.; Wang, Y.; Calderon-Anyosa, R.; Nadaraj, S.; Elias, M.D.; White, T.J.; Torowicz, D.L.; Yubbu, P.; Giglia, T.M.; et al. Echocardiographic Findings in Pediatric Multisystem Inflammatory Syndrome Associated With COVID-19 in the United States. J. Am. Coll. Cardiol. 2020, 76, 1947–1961. [Google Scholar] [CrossRef] [PubMed]
- Lakdawala, N.K.; Thune, J.J.; Colan, S.D.; Cirino, A.L.; Farrohi, F.; Rivero, J.; McDonough, B.; Sparks, E.; Orav, E.J.; Seidman, J.G.; et al. Subtle abnormalities in contractile function are an early manifestation of sarcomere mutations in dilated cardiomyopathy. Circ. Cardiovasc. Genet. 2012, 5, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Maher, E.; Elshehaby, W.; El Amrousy, D.; El Razaky, O. Left Ventricular Layer-Specific Myocardial Strains in Children with Recovered Primary Dilated Cardiomyopathy: What Lies Beneath the Iceberg? Pediatr. Cardiol. 2020, 41, 101–107. [Google Scholar] [CrossRef]
- Haugaa, K.H.; Goebel, B.; Dahlslett, T.; Meyer, K.; Jung, C.; Lauten, A.; Figulla, H.R.; Poerner, T.C.; Edvardsen, T. Risk assessment of ventricular arrhythmias in patients with nonischemic dilated cardiomyopathy by strain echocardiography. J. Am. Soc. Echocardiogr. 2012, 25, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Novo, G.; Di Lisi, D.; La Franca, E.; Carmina, M.G.; Trovato, R.L.; Romano, G.; Novo, S.; Clemenza, F.; Di Bella, G.; Bellavia, D. Usefulness of longitudinal systolic strain and delayed enhancement cardiac magnetic resonance in depicting risk of supraventricular arrythmias in patients with acute myocarditis and preserved left ventricular function. Echocardiography 2022, 39, 294–301. [Google Scholar] [CrossRef]
- Aljohani, O.A.; Arcilla, L.; Kaushik, N.; Cresalia, N.M.; Li, B.; Edwell, A.A.; Ramirez, A.M.; Anwar, S. Myocarditis in children after COVID-19 vaccine. Ann. Pediatr. Cardiol. 2022, 15, 280–283. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Nicolosi, G.L.; Granato, A.; Bonanomi, A.; Rigamonti, E.; Lombardo, M. Influence of chest wall conformation on reproducibility of main echocardiographic indices of left ventricular systolic function. Minerva Cardiol. Angiol. 2024, 72, 111–124. [Google Scholar] [CrossRef]
Characteristics | Overall, N = 175 | pEF (LVEF ≥ 50%), N = 93 | mrEF (LVEF 41–49%), N = 23 | rEF (LVEF ≤ 40%), N = 59 | p-Value |
---|---|---|---|---|---|
Age (years) | 15.0 (7.9, 16.5) | 16.1 (14.6, 17.0) | 14.6 (9.6, 16.7) | 2.8 (1.2, 12.9) | <0.001 |
Height (cm) | 168 (126, 178) | 175 (167, 181) | 167 (136, 176) | 95 (78, 156) | <0.001 |
(Missing) | 2 | 1 | 0 | 1 | |
Weight (kg) | 59 (24, 75) | 67 (57, 78) | 65 (35, 77) | 14 (9, 46) | <0.001 |
Sex, n (%) | <0.001 | ||||
Male | 123 (70%) | 77 (83%) | 15 (65%) | 31 (53%) | |
Female | 52 (30%) | 16 (17%) | 8 (35%) | 28 (47%) | |
Symptoms, n (%) | |||||
Fever | 79 (45%) | 47 (51%) | 8 (35%) | 24 (41%) | 0.3 |
Shortness of breath | 83 (47%) | 21 (23%) | 13 (57%) | 49 (83%) | <0.001 |
Angina Pectoris | 94 (54%) | 76 (82%) | 12 (52%) | 6 (10%) | <0.001 |
Fatigue | 125 (71%) | 53 (57%) | 16 (70%) | 56 (95%) | <0.001 |
NYHA classification | <0.001 | ||||
NYHA I | 92 (53%) | 78 (84%) | 9 (39%) | 5 (8.5%) | |
NYHA II | 24 (14%) | 12 (13%) | 9 (39%) | 3 (5.1%) | |
NYHA III | 19 (11%) | 2 (2.2%) | 2 (8.7%) | 15 (25%) | |
NYHA IV | 35 (20%) | 1 (1.1%) | 3 (13%) | 31 (53%) | |
n.a. | 5 (2.9%) | 0 (0%) | 0 (0%) | 5 (8.5%) | |
Electrocardiogram, n (%) | |||||
ST-elevation | 65 (37%) | 44 (47%) | 11 (48%) | 10 (17%) | <0.001 |
(Missing) | 1 | 0 | 0 | 1 | |
ST-depression | 24 (14%) | 11 (12%) | 5 (22%) | 8 (14%) | 0.5 |
(Missing) | 1 | 0 | 0 | 1 | |
T-wave inversion | 67 (39%) | 27 (29%) | 13 (57%) | 27 (47%) | 0.019 |
(Missing) | 2 | 1 | 0 | 1 | |
Laboratory Analysis, n (%) | |||||
Leukocytosis | 44 (25%) | 19 (20%) | 5 (22%) | 20 (34%) | 0.4 |
(Missing) | 1 | 1 | 0 | 0 | |
Elevated C-reactive protein | 107 (61%) | 71 (76%) | 14 (61%) | 22 (37%) | <0.001 |
(Missing) | 3 | 2 | 0 | 1 | |
Elevated BNP/NT-proBNP | 128 (73%) | 57 (61%) | 15 (65%) | 56 (95%) | <0.001 |
(Missing) | 15 | 11 | 3 | 1 | |
Elevated troponins | 151 (86%) | 81 (87%) | 20 (87%) | 50 (85%) | 0.5 |
(Missing) | 2 | 1 | 1 | 0 | |
Cardiac MRI, n (%) | N = 132 | N = 86 | N = 16 | N = 30 | |
LGE | 102 (77%) | 72 (84%) | 12 (75%) | 18 (60%) | 0.012 |
Edema | 74 (58%) | 48 (57%) | 12 (80%) | 14 (50%) | 0.052 |
(Missing) | 5 | 2 | 1 | 2 | |
MRI confirmed myocarditis | 105 (80%) | 73 (85%) | 14 (88%) | 18 (60%) | 0.064 |
EMB, n (%) | N = 125 | N = 47 | N = 21 | N = 57 | |
EMB confirmed myocarditis | 122 (98%) | 45 (96%) | 20 (95%) | 57 (100%) | 0.100 |
Virus detection | 51 (41%) | 10 (21%) | 8 (38%) | 33 (58%) | <0.001 |
Complications, n (%) | |||||
MACE overall | 28 (16%) | 1 (1.1%) | 2 (9%) | 25 (42%) | <0.001 |
MCS | 27 (15%) | 0 (0%) | 2 (9%) | 25 (42%) | <0.001 |
Heart transplantation | 11 (6%) | 0 | 0 | 11 (19%) | <0.001 |
Mortality | 6 (3%) | 1 (1%) | 2 (9%) | 3 (5%) | 0.110 |
Cardiac arrhythmias, n (%) | 36 (21%) | 16 (17%) | 3 (13%) | 17 (29%) | 0.2 |
Ventricular tachycardia | 30 (17%) * | 14 (14%) * | 2 (9%) | 14 (24%) | |
Ventricular fibrillation | 5 (3%) * | 2 (2%) * | 1 (4%) | 2 (3%) | |
AVB III° | 2 (1%) | 1 (1%) | 0 (0%) | 1 (2%) |
Indices | Overall, N = 175 | pEF (LVEF ≥ 50%), N = 93 | mrEF (LVEF 41–49%), N = 23 | rEF (LVEF ≤ 40%), N = 59 | p-Value |
---|---|---|---|---|---|
Z-score LVEDd | 1.3 (−0.2–4.2) | 0.3 (−0.6–1.1) | 0.8 (−0.4–2.5) | 6.1 (3.8–7.9) | <0.001 |
Z-score IVSd | 1.6 (0.6–2.5) | 1.4 (0.5–2.4) | 2.2 (1–3.3) | 1.6 (1–2.6) | 0.033 |
Z-score LVPWd | 1.3 (0.6–2.6) | 1.1 (0.6–1.9) | 1.9 (0.8–2.9) | 1.6 (0.5–2.9) | 0.018 |
LVEF (%) | 52 (30–59) | 59 (55–64) | 44 (42–48) | 26 (19–30) | <0.001 |
FS (%) | 27 (14–32) | 31 (29–35) | 22 (21–24) | 12 (8–14) | <0.001 |
LVM/BSA | 103 (80–135) | 88 (76–103) | 115 (88–124) | 153 (120–178) | <0.001 |
Indices | Overall, N = 175 | pEF (LVEF ≥ 50%), N = 93 | mrEF (LVEF 41–49%), N = 23 | rEF (LVEF ≤ 40%), N = 59 | p-Value |
---|---|---|---|---|---|
Endocardial LV LS (%) | −18 (−10, −23) | −23 (−20, −24) | −15 (−13, −20) | −9 (−7, −11) | <0.001 |
Endocardial maxOWD (ms) | 61 (39, 94) | 58 (39, 81) | 45 (31, 78) | 81 (40, 129) | 0.025 |
Midmyocardial LV LS (%) | −15.3 (−7.9, −19) | −18.6 (−16.3, −20.1) | −12.4 (−10.5, −15.6) | −7.2 (−5.9, −8.2) | <0.001 |
Midmyocardial maxOWD (ms) | 62 (37, 95) | 58 (36, 80) | 66 (42, 92) | 80 (41, 125) | 0.024 |
Epicardial LV LS (%) | −11.6 (−6.8, −15.7) | −15.4 (−13.7, −17.3) | −9.2 (−7.9, −12.9) | −5.7 (−4.7, −6.9) | <0.001 |
Missing (n) | 1 | 1 | 0 | 0 | |
Epicardial maxOWD (ms) | 81 (53, 124) | 74 (53, 102) | 84 (60, 107) | 102 (46, 161) | 0.074 |
Missing (n) | 2 | 1 | 1 | 0 |
Indices | OR | 95% CI | p-Value |
---|---|---|---|
Endocardial LV LS | 0.74 | 0.63, 0.83 | <0.001 |
Endocardial maxOWD | 1.00 | 1.00, 1.01 | 0.10 |
Midmyocardial LV LS | 0.69 | 0.57, 0.80 | <0.001 |
Midmyocardial maxOWD | 1.00 | 1.00, 1.01 | 0.2 |
Epicardial LV LS | 0.69 | 0.56, 0.81 | <0.001 |
Epicardial maxOWD | 1.00 | 1.00, 1.01 | 0.044 |
LVEF | 0.89 | 0.83, 0.93 | <0.001 |
Z-score LVEDd | 1.24 | 1.08, 1.45 | 0.004 |
LVM/BSA | 1.02 | 1.01, 1.03 | 0.006 |
Indices | Overall Cohort, N = 175 | pEF (LVEF ≥ 50%), N = 93 | rEF (LVEF ≤ 40%), N = 59 | ||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Endocardial LV LS | 0.81 | 0.74, 0.88 | <0.001 | 0.60 | 0.46, 0.74 | <0.001 | 0.76 | 0.55, 0.99 | 0.074 |
Endocardial maxOWD | 1.01 | 1.00, 1.02 | 0.027 | 1.01 | 1.00, 1.02 | 0.3 | 1.00 | 0.99, 1.02 | 0.4 |
Midmyocardial LV LS | 0.78 | 0.70, 0.86 | <0.001 | 0.78 | 0.70, 0.86 | <0.001 | 0.78 | 0.70, 0.86 | <0.001 |
Midmyocardial maxOWD | 1.01 | 1.00, 1.01 | 0.083 | 1.01 | 1.00, 1.03 | 0.2 | 1.00 | 0.99, 1.01 | 0.6 |
Epicardial LV LS | 0.76 | 0.67, 0.85 | <0.001 | 0.60 | 0.44, 0.77 | <0.001 | 0.74 | 0.48, 1.03 | 0.11 |
Epicardial maxOWD | 1.01 | 1.00, 1.01 | 0.030 | 1.01 | 1.00, 1.02 | 0.2 | 1.00 | 0.99, 1.01 | 0.8 |
LVEF | 0.96 | 0.93, 0.99 | 0.008 | 0.95 | 0.86, 1.04 | 0.3 | 1.06 | 0.99, 1.16 | 0.11 |
Z-score LVEDd | 1.18 | 1.05, 1.34 | 0.008 | 0.69 | 0.41, 1.13 | 0.2 | 1.14 | 0.97, 1.34 | 0.10 |
LVM/BSA | 1.02 | 1.01, 1.03 | <0.001 | 1.03 | 1.00, 1.06 | 0.092 | 1.01 | 1.00, 1.03 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolfs, N.; Huber, C.; Opgen-Rhein, B.; Altmann, I.; Anderheiden, F.; Hecht, T.; Fischer, M.; Wiegand, G.; Reineker, K.; Voges, I.; et al. Prognostic Value of Speckle Tracking Echocardiography-Derived Strain in Unmasking Risk for Arrhythmias in Children with Myocarditis. Biomedicines 2024, 12, 2369. https://doi.org/10.3390/biomedicines12102369
Rolfs N, Huber C, Opgen-Rhein B, Altmann I, Anderheiden F, Hecht T, Fischer M, Wiegand G, Reineker K, Voges I, et al. Prognostic Value of Speckle Tracking Echocardiography-Derived Strain in Unmasking Risk for Arrhythmias in Children with Myocarditis. Biomedicines. 2024; 12(10):2369. https://doi.org/10.3390/biomedicines12102369
Chicago/Turabian StyleRolfs, Nele, Cynthia Huber, Bernd Opgen-Rhein, Isabell Altmann, Felix Anderheiden, Tobias Hecht, Marcus Fischer, Gesa Wiegand, Katja Reineker, Inga Voges, and et al. 2024. "Prognostic Value of Speckle Tracking Echocardiography-Derived Strain in Unmasking Risk for Arrhythmias in Children with Myocarditis" Biomedicines 12, no. 10: 2369. https://doi.org/10.3390/biomedicines12102369
APA StyleRolfs, N., Huber, C., Opgen-Rhein, B., Altmann, I., Anderheiden, F., Hecht, T., Fischer, M., Wiegand, G., Reineker, K., Voges, I., Kiski, D., Frede, W., Boehne, M., Khedim, M., Messroghli, D., Klingel, K., Schwarzkopf, E., Pickardt, T., Schubert, S., ... Seidel, F., on behalf of the MYKKE Consortium. (2024). Prognostic Value of Speckle Tracking Echocardiography-Derived Strain in Unmasking Risk for Arrhythmias in Children with Myocarditis. Biomedicines, 12(10), 2369. https://doi.org/10.3390/biomedicines12102369