Dyslipidemia in Peritoneal Dialysis: Implications for Peritoneal Membrane Function and Patient Outcomes
Abstract
:1. Introduction
2. Defining Dyslipidemia in PD: Is a One-Size-Fits-All Approach Feasible?
3. The Joint Role of CKD and Dialysis in the Development of Dyslipidemia in PD
3.1. CKD: A Major Contributor to Dyslipidemia
3.1.1. Key Mechanisms of Dyslipidemia in CKD
3.1.2. Lipoprotein Modifications in CKD-Induced Dyslipidemia
3.2. PD: A New Layer in Dyslipidemia
4. Introduction to Structural and Functional Dynamics of the Peritoneal Membrane in PD
5. Gut Microbiota as a Key Contributor to Dyslipidemia and Peritoneal Membrane Dysfunction in PD
6. Possible Mechanisms of Dyslipidemia-Mediated Peritoneal Membrane Damage
6.1. Intracellular Lipid Accumulation and Lipotoxicity
6.2. RAAS Activation
6.3. Endothelial Dysfunction and Vascular Damage
6.4. Oxidative Stress and Inflammatory Responses
6.5. Genetic and Epigenetic Factors
6.5.1. Genetic Factors
6.5.2. Epigenetic Modifications
7. Clinical Evidence of Dyslipidemia Impact on PD-Related Patients’ Outcomes
8. Targeting Dyslipidemia in PD: Available Strategies for Enhancing Peritoneal Membrane Function
8.1. Lifestyle and Dietary Modifications
8.2. PD Therapy Optimization
8.3. Hydroxymethylglutaryl-CoA Reductase Inhibitors
8.4. Other Pharmacological Treatments
8.4.1. Omega-3 Polyunsaturated Fatty Acids
8.4.2. Sodium–Glucose Cotransporter 2 Inhibitors
8.4.3. Sevelamer
8.4.4. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors
8.4.5. ApoA-I Mimetic Peptides
8.5. Gut Microbiota Modulation by Pre-, Pro-, and Synbiotics Supplementations
9. Conclusions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Briggs, V.; Davies, S.; Wilkie, M. International Variations in Peritoneal Dialysis Utilization and Implications for Practice. Am. J. Kidney Dis. 2019, 74, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Morelle, J.; Lambie, M.; Öberg, C.M.; Davies, S. The Peritoneal Membrane and Its Role in Peritoneal Dialysis. Clin. J. Am. Soc. Nephrol. 2024, 19, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.K.; Okpechi, I.G.; Osman, M.A.; Cho, Y.; Cullis, B.; Htay, H.; Jha, V.; Makusidi, M.A.; McCulloch, M.; Shah, N.; et al. Epidemiology of Peritoneal Dialysis Outcomes. Nat. Rev. Nephrol. 2022, 18, 779–793. [Google Scholar] [CrossRef] [PubMed]
- Khan, U.; Siddiqui, M.A. Comparative Analysis of Peritoneal Dialysis and Hemodialysis for the Management of Kidney Failure: A Concise Review. J. Pak. Med. Assoc. 2024, 74, 617. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Zhan, X.; Wen, Y.; Peng, F.F.; Wang, X.; Wang, N.; Wu, X.; Wu, J. Hyperlipidemia and Mortality in Patients on Peritoneal Dialysis. BMC Nephrol. 2022, 23, 342. [Google Scholar] [CrossRef]
- Yang, W.L.; Zhu, X.Y.; Zhu, N.; Su, C.Y.; Han, Q.F.; Wang, T.; Zhang, A.H. What’s the Optimal Lipids Level for Dialysis Patients? A Cohort Study from a Chinese Dialysis Center in a University Hospital. PLoS ONE 2016, 11, e0167258. [Google Scholar] [CrossRef]
- Stepanova, N.; Burdeyna, O. Association between Dyslipidemia and Peritoneal Dialysis Technique Survival. Open Access Maced. J. Med. Sci. 2019, 7, 2467–2473. [Google Scholar] [CrossRef]
- Barbagallo, C.M.; Cefalù, A.B.; Giammanco, A.; Noto, D.; Caldarella, R.; Ciaccio, M.; Averna, M.R.; Nardi, E. Lipoprotein Abnormalities in Chronic Kidney Disease and Renal Transplantation. Life 2021, 11, 315. [Google Scholar] [CrossRef]
- Mikolasevic, I.; Žutelija, M.; Mavrinac, V.; Orlic, L. Dyslipidemia in Patients with Chronic Kidney Disease: Etiology and Management. Int. J. Nephrol. Renov. Dis. 2017, 10, 35–45. [Google Scholar] [CrossRef]
- Law, S.; Davenport, A. The Effect of Glucose Absorption from Peritoneal Dialysates on Changes in Lipid Profiles in Prevalent Peritoneal Dialysis Patients. Perit. Dial. Int. 2021, 41, 115–117. [Google Scholar] [CrossRef]
- Kit-Chung Ng, J.; Hlaing Than, W.; Chun Szeto, C.; Yu Peritoneal, R. Obesity, Weight Gain, and Fluid Overload in Peritoneal Dialysis. Front. Nephrol. 2022, 2, 880097. [Google Scholar] [CrossRef]
- Yamagishi, S.I. Role of Advanced Glycation Endproduct (AGE)-Receptor for Advanced Glycation Endproduct (RAGE) Axis in Cardiovascular Disease and Its Therapeutic Intervention. Circ. J. 2019, 83, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Misra, P.S.; Nessim, S.J.; Perl, J. “Biocompatible” Neutral PH Low-GDP Peritoneal Dialysis Solutions: Much Ado About Nothing? Semin. Dial. 2017, 30, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Sun, T.; Tawada, M.; Kinashi, H.; Yamaguchi, M.; Katsuno, T.; Kim, H.; Mizuno, M.; Ishimoto, T. Pathophysiological Mechanisms of Peritoneal Fibrosis and Peritoneal Membrane Dysfunction in Peritoneal Dialysis. Int. J. Mol. Sci. 2024, 25, 8607. [Google Scholar] [CrossRef]
- Krediet, R.T. Aging of the Peritoneal Dialysis Membrane. Front. Physiol. 2022, 13, 885802. [Google Scholar] [CrossRef]
- Krediet, R.T.; Parikova, A. Glucose-Induced Pseudohypoxia and Advanced Glycosylation End Products Explain Peritoneal Damage in Long-Term Peritoneal Dialysis. Perit. Dial. Int. 2024, 44, 6–15. [Google Scholar] [CrossRef]
- Hamada, C.; Tomino, Y. Recent Understanding of Peritoneal Pathology in Peritoneal Dialysis Patients in Japan. Blood Purif. 2021, 50, 719–728. [Google Scholar] [CrossRef]
- Du, Z.; Qin, Y. Dyslipidemia and Cardiovascular Disease: Current Knowledge, Existing Challenges, and New Opportunities for Management Strategies. J. Clin. Med. 2023, 12, 363. [Google Scholar] [CrossRef]
- Noh, H.W.; Jeon, Y.; Kim, J.H.; Lee, G.Y.; Jeon, S.J.; Kim, K.Y.; Lim, J.H.; Jung, H.Y.; Choi, J.Y.; Park, S.H.; et al. Higher Serum Total Cholesterol to High-Density Lipoprotein Cholesterol Ratio Is Associated with Increased Mortality among Incident Peritoneal Dialysis Patients. Nutrients 2021, 14, 144. [Google Scholar] [CrossRef]
- Shifris, I.; Dudar, I. Predictors of Cardiovascular Disease in Peritoneal Dialysis Patients: A Prospective Longitudinal Cohort Study. Ukr. J. Nephrol. Dial. 2022, 76, 26–35. [Google Scholar] [CrossRef]
- Lluesa, J.H.; López-Romero, L.C.; Monzó, J.J.B.; Marugán, M.R.; Boyano, I.V.; Rodríguez-Espinosa, D.; Gómez-Bori, A.; Orient, A.S.; Such, R.D.; Perez, P.S.; et al. Lipidic Profiles of Patients Starting Peritoneal Dialysis Suggest an Increased Cardiovascular Risk beyond Classical Dyslipidemia Biomarkers. Sci. Rep. 2022, 12, 16394. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Tang, X.; Tang, R.; Chen, J.; Guo, H.; Zhou, Q.; Zhan, X.; Long, H.; Peng, F.; Wang, X.; et al. Atherogenic Index Predicts All-Cause and Cardiovascular Mortality in Incident Peritoneal Dialysis Patients. Atherosclerosis 2023, 387, 117389. [Google Scholar] [CrossRef] [PubMed]
- Honda, Y.; Maruyama, Y.; Nakamura, M.; Nakao, M.; Matsuo, N.; Tanno, Y.; Ohkido, I.; Ikeda, M.; Yokoo, T. Association between Lipid Profile and Residual Renal Function in Incident Peritoneal Dialysis Patients. Ther. Apher. Dial. 2022, 26, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Stepanova, N.; Korol, L.; Burdeyna, O.; Snisar, L.; Rysyev, A.; Filonov, V.; Poperechny, I. Oxidative Stress as the Bridge between Dyslipidemia and Peritoneal Ultrafiltration Failure: A Bi-Center Cross-Sectional Cohort Study. Ukr. J. Nephrol. Dial. 2023, 80, 34–45. [Google Scholar] [CrossRef]
- Huang, Y.J.; Jiang, Z.P.; Zhou, J.F.; Zhang, X.; Xiong, L.P.; Liang, M.J.; Shi, H.R.; Su, N.; Zhang, R. Hypertriglyceridemia Is a Risk Factor for Treatment Failure in Patients with Peritoneal Dialysis-Related Peritonitis. Int. Urol. Nephrol. 2022, 54, 1583–1589. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, X.; Tang, X.; Tang, L.; Shang, S.; Wang, X.; Wen, Y.; Feng, X.; Zhou, Q.; Su, N.; et al. A Low Prognostic Nutritional Index Is a Risk Factor for High Peritoneal Transport Status in Patients Undergoing Peritoneal Dialysis. J. Ren. Nutr. 2023, 33, 201–207. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, Y.; Zhang, P.; Zhou, H.; Yang, M.; Xiang, L. Predictive Value of Objective Nutritional Indexes in Technique Failure in Peritoneal Dialysis Patients. J. Ren. Nutr. 2022, 32, 605–612. [Google Scholar] [CrossRef]
- Wanner, C.; Tonelli, M. KDIGO Clinical Practice Guideline for Lipid Management in CKD: Summary of Recommendation Statements and Clinical Approach to the Patient. Kidney Int. 2014, 85, 1303–1309. [Google Scholar] [CrossRef]
- Shin, S.K.; Lee, Y.K.; Jo, Y.-I.; Chang, T. ik The Effects of Statins Unrelated to Cholesterol Level on Clinical Outcome of Continuous Ambulatory Peritoneal Dialysis Patients. Kidney Res. Clin. Pract. 2012, 31, A73. [Google Scholar] [CrossRef]
- Kim, J.E.; Park, S.; Kim, M.S.; Kang, S.J.; Lee, J.W.; Kim, K.S.; Kim, Y.C.; Kim, D.K.; Joo, K.W.; Kim, Y.S.; et al. Statin Initiation and All-Cause Mortality in Incident Statin-Naïve Dialysis Patients. Atherosclerosis 2021, 337, 59–65. [Google Scholar] [CrossRef]
- Chang, T.I.; Kang, H.Y.; Kim, K.S.; Lee, S.H.; Nam, B.Y.; Paeng, J.; Kim, S.; Park, J.T.; Yoo, T.H.; Kang, S.W.; et al. The Effect of Statin on Epithelial-Mesenchymal Transition in Peritoneal Mesothelial Cells. PLoS ONE 2014, 9, e109628. [Google Scholar] [CrossRef] [PubMed]
- Duman, S.; Sen, S.; Sözmen, E.Y.; Oreopoulos, D.G. Atorvastatin Improves Peritoneal Sclerosis Induced by Hypertonic PD Solution in Rats. Int. J. Artif. Organs. 2005, 28, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Burdeyna, O. Pleiotropic Effects of Atorvastatin in Peritoneal Dialysis Patients: A Retrospective-Prospective Observational Cohort Study. Ukr. J. Nephrol. Dial. 2022, 73, 70–80. [Google Scholar] [CrossRef]
- Berberich, A.J.; Hegele, R.A. A Modern Approach to Dyslipidemia. Endocr. Rev. 2022, 43, 611–653. [Google Scholar] [CrossRef] [PubMed]
- Chernatska, O.N.; Demikhova, N.V.; Rudenko, T.N.; Demikhov, A.I. Assessment of the Lipid Profile Correction in Patients with Arterial Hypertension and Type 2 Diabetes Mellitus. Azerbaijan Med. J. 2019, 59, 625–627. [Google Scholar]
- Langlois, M.R.; Nordestgaard, B.G.; Langsted, A.; Chapman, M.J.; Aakre, K.M.; Baum, H.; Borén, J.; Bruckert, E.; Catapano, A.; Cobbaert, C.; et al. Quantifying Atherogenic Lipoproteins for Lipid-Lowering Strategies: Consensus-Based Recommendations from EAS and EFLM. Clin. Chem. Lab. Med. 2020, 58, 496–517. [Google Scholar] [CrossRef]
- Cho, Y.; Büchel, J.; Steppan, S.; Passlick-Deetjen, J.; Hawley, C.M.; Dimeski, G.; Clarke, M.; Johnson, D.W. Longitudinal Trend in Lipid Profile of Incident Peritoneal Dialysis Patients Is Not Influenced by the Use of Biocompatible Solutions. Perit. Dial. Int. 2015, 36, 146–153. [Google Scholar] [CrossRef]
- Tang, W.; Li, M.; Lu, X.H.; Liu, H.W.; Wang, T. Phospholipids Profiling and Outcome of Peritoneal Dialysis Patients. Biomarkers 2014, 19, 505–508. [Google Scholar] [CrossRef]
- Kidney Disease Outcomes Quality Initiative (K/DOQI) Group. K/DOQI clinical practice guidelines for management of dyslipidemias in patients with kidney disease. Am. J. Kidney Dis. 2003, 41, I-S91. [Google Scholar]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; De Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, E1046–E1081. [Google Scholar] [CrossRef] [PubMed]
- Calice-Silva, V.; Muenz, D.; Wong, M.M.Y.; McCullough, K.; Charytan, D.; Reichel, H.; Robinson, B.; Stengel, B.; Massy, Z.A.; Pecoits-Filho, R.; et al. International Practice Patterns of Dyslipidemia Management in Patients with Chronic Kidney Disease under Nephrology Care: Is It Time to Review Guideline Recommendations? Lipids Health Dis. 2023, 22, 67. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yang, R.; Wang, X.; Zhan, X.; Wen, Y.; Feng, X.; Wang, N.; Peng, F.; Jian, G.; Wu, X. Total Cholesterol and Mortality in Peritoneal Dialysis: A Retrospective Cohort Study. BMC Nephrol. 2023, 24, 142. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Lin, Y.C.; Peng, C.C.; Chen, K.C.; Chen, H.H.; Fang, T.C.; Sung, S.Y.; Wu, M.S. Effects of Cholesterol Levels on Mortality in Patients with Long-Term Peritoneal Dialysis Based on Residual Renal Function. Nutrients 2018, 10, 300. [Google Scholar] [CrossRef]
- Park, C.H.; Kang, E.W.; Park, J.T.; Han, S.H.; Yoo, T.H.; Kang, S.W.; Chang, T.I. Association of Serum Lipid Levels over Time with Survival in Incident Peritoneal Dialysis Patients. J. Clin. Lipidol. 2017, 11, 945–954.e3. [Google Scholar] [CrossRef]
- Xia, W.; Yao, X.; Chen, Y.; Lin, J.; Vielhauer, V.; Hu, H. Elevated TG/HDL-C and Non-HDL-C/HDL-C Ratios Predict Mortality in Peritoneal Dialysis Patients. BMC Nephrol. 2020, 21, 324. [Google Scholar] [CrossRef]
- Suh, S.H.; Kim, S.W. Dyslipidemia in Patients with Chronic Kidney Disease: An Updated Overview. Diabetes Metab. J. 2023, 47, 612–629. [Google Scholar] [CrossRef]
- Kuznik, A.; Mardekian, J.; Tarasenko, L. Evaluation of Cardiovascular Disease Burden and Therapeutic Goal Attainment in US Adults with Chronic Kidney Disease: An Analysis of National Health and Nutritional Examination Survey Data, 2001–2010. BMC Nephrol. 2013, 14, 132. [Google Scholar] [CrossRef]
- Hobson, S.; de Loor, H.; Kublickiene, K.; Beige, J.; Evenepoel, P.; Stenvinkel, P.; Ebert, T. Lipid Profile Is Negatively Associated with Uremic Toxins in Patients with Kidney Failure—A Tri-National Cohort. Toxins 2022, 14, 412. [Google Scholar] [CrossRef]
- Ceja-Galicia, Z.A.; Aranda-Rivera, A.K.; Amador-Martínez, I.; Aparicio-Trejo, O.E.; Tapia, E.; Trujillo, J.; Ramírez, V.; Pedraza-Chaverri, J. The Development of Dyslipidemia in Chronic Kidney Disease and Associated Cardiovascular Damage, and the Protective Effects of Curcuminoids. Foods 2023, 12, 921. [Google Scholar] [CrossRef]
- Altieri, F.; Vekic, J.; Stromsnes, K.; Mazzalai, S.; Zeljkovic, A.; Rizzo, M.; Gambini, J. Oxidative Stress, Atherogenic Dyslipidemia, and Cardiovascular Risk. Biomedicines 2023, 11, 2897. [Google Scholar] [CrossRef] [PubMed]
- Miljkovic, M.; Stefanovic, A.; Simic-Ogrizovic, S.; Vekic, J.; Bogavac-Stanojevic, N.; Cerne, D.; Kocbek, P.; Marc, J.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V.; et al. Association of Dyslipidemia, Oxidative Stress, and Inflammation With Redox Status in VLDL, LDL, and HDL Lipoproteins in Patients with Renal Disease. Angiology 2018, 69, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Podkowińska, A.; Formanowicz, D. Chronic Kidney Disease as Oxidative Stress- and Inflammatory-Mediated Cardiovascular Disease. Antioxidants 2020, 9, 752. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.G.; Florida, E.; Li, H.; Parel, P.M.; Mehta, N.N.; Sorokin, A.V. Oxidized Low-Density Lipoprotein Associates with Cardiovascular Disease by a Vicious Cycle of Atherosclerosis and Inflammation: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2023, 9, 1023651. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Park, J.T.; Kim, H.W.; Chang, T.I.; Kang, E.W.; Ahn, C.; Oh, K.H.; Lee, J.; Chung, W.; Kim, Y.S.; et al. Inflammation Alters Relationship Between High-Density Lipoprotein Cholesterol and Cardiovascular Risk in Patients With Chronic Kidney Disease: Results From KNOW-CKD. J. Am. Heart Assoc. 2021, 10, e021731. [Google Scholar] [CrossRef]
- Markin, A.M.; Markina, Y.V.; Bogatyreva, A.I.; Tolstik, T.V.; Chakal, D.A.; Breshenkov, D.G.; Charchyan, E.R. The Role of Cytokines in Cholesterol Accumulation in Cells and Atherosclerosis Progression. Int. J. Mol. Sci. 2023, 24, 6426. [Google Scholar] [CrossRef]
- Zuo, Y.; He, Z.; Chen, Y.; Dai, L. Dual Role of ANGPTL4 in Inflammation. Inflamm. Res. 2023, 72, 1303–1313. [Google Scholar] [CrossRef]
- Zhang, J.; Dai, W.; Chen, Y. Editorial: The Roles of Lipids in Immunometabolism: The Crosstalk Between Lipid Metabolisms and Inflammation. Front. Cardiovasc. Med. 2022, 9, 938535. [Google Scholar] [CrossRef]
- Nakashima, A.; Kato, K.; Ohkido, I.; Yokoo, T. Role and Treatment of Insulin Resistance in Patients with Chronic Kidney Disease: A Review. Nutrients 2021, 13, 4349. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Silverio, D.; Tsomidou, C.; Salcedo, M.D.; Montan, P.D.; Guzman, E. The Impact of Insulin Resistance and Chronic Kidney Disease on Inflammation and Cardiovascular Disease. Clin. Med. Insights Endocrinol. Diabetes 2018, 11, 1179551418792257. [Google Scholar] [CrossRef]
- Choi, S.H.; Ginsberg, H.N. Increased Very Low Density Lipoprotein Secretion, Hepatic Steatosis, and Insulin Resistance. Trends Endocrinol. Metab. 2011, 22, 353. [Google Scholar] [CrossRef] [PubMed]
- Fujino, Y.; Yasuda-Yamahara, M.; Tanaka-Sasaki, Y.; Kuwagata, S.; Yamahara, K.; Tagawa, A.; Chin-Kanasaki, M.; Yanagita, M.; Maegawa, H.; Kume, S. Limited Effects of Systemic or Renal Lipoprotein Lipase Deficiency on Renal Physiology and Diseases. Biochem. Biophys. Res. Commun. 2022, 620, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Schuchardt, M.; Tölle, M.; van der Giet, M. High-Density Lipoprotein: Structural and Functional Changes under Uremic Conditions and the Therapeutic Consequences. Handb. Exp. Pharmacol. 2015, 224, 423–453. [Google Scholar] [CrossRef] [PubMed]
- Noels, H.; Lehrke, M.; Vanholder, R.; Jankowski, J. Lipoproteins and Fatty Acids in Chronic Kidney Disease: Molecular and Metabolic Alterations. Nat. Rev. Nephrol. 2021, 17, 528–542. [Google Scholar] [CrossRef] [PubMed]
- Gliwińska, A.; Ćwiklińska, A.; Czaplińska, M.; Wieczorek-Breitzke, E.; Kortas-Stempak, B.; Kuchta, A.; Dębska-Ślizień, A.; Król, E.; Jankowski, M. Changes in the Size and Electrophoretic Mobility of HDL Subpopulation Particles in Chronic Kidney Disease. J. Nephrol. 2023, 36, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D.; Moradi, H.; Zhao, Y.Y. Altered Lipid Metabolism and Serum Lipids in Chronic Kidney Disease. In Nutritional Management of Renal Disease, 4th ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 43–60. [Google Scholar] [CrossRef]
- Czumaj, A.; Śledziński, T.; Carrero, J.J.; Stepnowski, P.; Sikorska-Wisniewska, M.; Chmielewski, M.; Mika, A. Alterations of Fatty Acid Profile May Contribute to Dyslipidemia in Chronic Kidney Disease by Influencing Hepatocyte Metabolism. Int. J. Mol. Sci. 2019, 20, 2470. [Google Scholar] [CrossRef]
- Kane, J.; Vos, W.G.; Bosmans, L.A.; van Os, B.W.; den Toom, M.; Hoeksema-Hackmann, S.; Moen-de Wit, D.; Gijbels, M.J.; Beckers, L.; Grefhorst, A.; et al. Peritoneal Dialysis Aggravates and Accelerates Atherosclerosis in Uremic ApoE−/− Mice. J. Am. Heart Assoc. 2024, 13, e034066. [Google Scholar] [CrossRef]
- Xu, Y.; Zhong, Z.; Li, Y.; Li, Z.; Zhou, Y.; Li, Z.; Mao, H. Interaction Effect between Fasting Plasma Glucose and Lipid Profiles on Mortality of Peritoneal Dialysis Patients. Clin. Kidney J. 2023, 16, 727–734. [Google Scholar] [CrossRef]
- Kotla, S.K.; Saxena, A.; Saxena, R. A Model To Estimate Glucose Absorption in Peritoneal Dialysis: A Pilot Study. Kidney360 2020, 1, 1373–1379. [Google Scholar] [CrossRef]
- Khan, S.F.; Ronco, C.; Rosner, M.H. Counteracting the Metabolic Effects of Glucose Load in Peritoneal Dialysis Patients; an Exercise-Based Approach. Blood Purif. 2019, 48, 25–31. [Google Scholar] [CrossRef]
- Lambie, M.; Bonomini, M.; Davies, S.J.; Accili, D.; Arduini, A.; Zammit, V. Insulin Resistance in Cardiovascular Disease, Uremia, and Peritoneal Dialysis. Trends Endocrinol. Metab. 2021, 32, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, J.; Li, L.; Lin, X.; Guo, X.; Peng, F.; Zuo, X.; Liu, X.; Ying, C. Association Between Peritoneal Glucose Absorption, Lipid Metabolism, and Cardiovascular Disease Risk in Nondiabetic Patients on Peritoneal Dialysis. J. Ren. Nutr. 2024. [Google Scholar] [CrossRef] [PubMed]
- Li, P.K.T.; Culleton, B.F.; Ariza, A.; Do, J.Y.; Johnson, D.W.; Sanabria, M.; Shockley, T.R.; Story, K.; Vatazin, A.; Verrelli, M.; et al. Randomized, Controlled Trial of Glucose-Sparing Peritoneal Dialysis in Diabetic Patients. J. Am. Soc. Nephrol. 2013, 24, 1889–1900. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.; Petroianu, G.; Adem, A. Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules 2022, 12, 542. [Google Scholar] [CrossRef]
- Basman, C.; Fishman, S.L.; Singh, V.; Poretsky, L. The Association of Coronary Artery Disease and Advanced Glycation End-Products. Interv. Cardiol. 2021, 13, 120–124. [Google Scholar]
- Malho Guedes, A.; Marques, R.C.; Domingos, A.T.; Laranjo, C.; Silva, A.P.; Rodrigues, A.; Krediet, R.T. Peritoneal Protein Loss with Time in Peritoneal Dialysis. Semin. Dial. 2024, 37, 242–248. [Google Scholar] [CrossRef]
- Bontić, A.; Gajić, S.; Bjelić, D.; Pavlović, J.; Stanković-Popović, V.; Radović, M.; Kezić, A. Increased Peritoneal Protein Loss and Diabetes: Is There a Link? J. Clin. Med. 2023, 12, 2670. [Google Scholar] [CrossRef]
- Eibensteiner, F.; Herzog, R.; Vychytil, A.; Aufricht, C.; Kratochwill, K. #5668 Peritoneal dialysis additive reduces transperitoneal loss of blood microparticle and extracellular matrix proteins in a controlled crossover trial. Nephrol. Dial. Transplant. 2023, 38, gfad063a_5668. [Google Scholar] [CrossRef]
- Tang, Y.; Zhong, H.; Diao, Y.; Qin, M.; Zhou, X. Peritoneal Transport Rate, Systemic Inflammation, and Residual Renal Function Determine Peritoneal Protein Clearance in Continuous Ambulatory Peritoneal Dialysis Patients. Int. Urol. Nephrol. 2014, 46, 2215–2219. [Google Scholar] [CrossRef]
- Leal-Escobar, G.; Cano Escobar, K.B.; Madero-Rovalo, M.; Ancira-Moreno, M.; Osuna-Padilla, I.A. Association between Protein Energy Wasting and Peritoneal Membrane Transport in Peritoneal Dialysis. Nutr. Hosp. 2024, 41, 5. [Google Scholar] [CrossRef]
- Li, J.; Yang, M.; Yu, Z.; Tian, J.; Du, S.; Ding, H. Kidney-Secreted Erythropoietin Lowers Lipidemia via Activating JAK2-STAT5 Signaling in Adipose Tissue. EBioMedicine 2019, 50, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.P.; Mao, X.Y.; Wang, C.; Xu, Z.H.; Bu, Z.H.; Xu, M.; Li, B. Roxadustat Treatment for Anemia in Peritoneal Dialysis Patients: A Randomized Controlled Trial. J. Formos. Med. Assoc. 2022, 121, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Al Refaie, A.; Baldassini, L.; Mondillo, C.; De Vita, M.; Giglio, E.; Tarquini, R.; Gonnelli, S.; Caffarelli, C. Vitamin D and Dyslipidemia: Is There Really a Link? A Narrative Review. Nutrients 2024, 16, 1144. [Google Scholar] [CrossRef] [PubMed]
- Milinković, N.; Sarić, M.; Jovičić, S.; Mirković, D.; Lezaić, V.; Ignjatović, S. Lipid Status Association with 25-Hydroxy Vitamin D: Cross Sectional Study of End Stage Renal Disease Patients. J. Med. Biochem. 2020, 39, 309. [Google Scholar] [CrossRef]
- Stepanova, N.; Driianska, V.; Savchenko, S. Dyslipidemia and Intraperitoneal Inflammation Axis in Peritoneal Dialysis Patients: A Cross-Sectional Pilot Study. Kidney Dis. 2020, 6, 35–42. [Google Scholar] [CrossRef]
- Innico, G.; Gobbi, L.; Bertoldi, G.; Rigato, M.; Basso, A.; Bonfante, L.; Calò, L.A. Oxidative Stress, Inflammation, and Peritoneal Dialysis: A Molecular Biology Approach. Artif. Organs 2021, 45, 1202–1207. [Google Scholar] [CrossRef]
- Ye, H.; Wu, H.; Peng, Y.; Zhou, Q.; Cao, P.; Guo, Q.; Mao, H.; Yu, X.; Yang, X. Peritonitis Affects the Relationship Between Low-Density Lipoprotein Cholesterol and Cardiovascular Events in Peritoneal Dialysis Patients. Can. J. Cardiol. 2020, 36, 92–99. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, X.; Tang, X.; Tang, L.; Shang, S.; Wang, X.; Wen, Y.; Feng, X.; Zhou, Q.; Su, N.; et al. The Association between Diabetes Coexisting with Low Levels of High-Density Lipoprotein Cholesterol and Peritoneal Dialysis-Related Peritonitis. Diabetol. Metab. Syndr. 2022, 14, 60. [Google Scholar] [CrossRef]
- Tang, J.; Wang, D.; Chen, Y.; Feng, J. The Association between New Inflammation Markers and Frequent Peritoneal Dialysis-Associated Peritonitis. BMC Nephrol. 2024, 25, 81. [Google Scholar] [CrossRef]
- Wan, S.; Tian, H.; Cheng, L.; Ding, Y.; Luo, Q.; Zhang, Y. Baseline Serum Triglyceride Predicts Early-Onset Peritonitis and Prognosis in Incident CAPD Patients. Medicine 2021, 100, e23673. [Google Scholar] [CrossRef]
- Jiang, N.; Zhang, C.; Feng, H.; Yuan, J.; Ding, L.; Fang, W.; Gu, A.; Huang, J.; Li, N.; Gu, L.; et al. Clinical Characteristics Associated with the Properties of Gut Microbiota in Peritoneal Dialysis Patients. Perit. Dial. Int. 2020, 41, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Wu, H.; Ji, J.; Sun, Z.; Xiang, B.; Wu, W.; Ji, J.; Teng, J.; Ding, X.; Yu, X. Association between Gut Microbial Diversity and Technique Failure in Peritoneal Dialysis Patients. Ren. Fail. 2023, 45, 2195014. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Zhao, W.; Lin, Z.; Wu, J.; Lin, H.; Li, Y.; Song, J.; Zhang, J.; Peng, H. The Effects of Hemodialysis and Peritoneal Dialysis on the Gut Microbiota of End-Stage Renal Disease Patients, and the Relationship Between Gut Microbiota and Patient Prognoses. Front. Cell Infect. Microbiol. 2021, 11, 579386. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Shan, Y.; Dai, H.; Yu, M.; Sun, J.; Huang, L.; Wang, F.; Sheng, M. Intercellular Communication in Peritoneal Dialysis. Front. Physiol. 2024, 15, 1331976. [Google Scholar] [CrossRef]
- Suryantoro, S.D.; Thaha, M.; Sutanto, H.; Firdausa, S. Current Insights into Cellular Determinants of Peritoneal Fibrosis in Peritoneal Dialysis: A Narrative Review. J. Clin. Med. 2023, 12, 4401. [Google Scholar] [CrossRef]
- Solass, W.; Horvath, P.; Struller, F.; Königsrainer, I.; Beckert, S.; Königsrainer, A.; Weinreich, F.-J.; Schenk, M. Functional Vascular Anatomy of the Peritoneum in Health and Disease. Pleura Peritoneum 2016, 1, 145–158. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Dounousi, E.; Salmas, M.; Eleftheriadis, T.; Liakopoulos, V. Unfavorable Effects of Peritoneal Dialysis Solutions on the Peritoneal Membrane: The Role of Oxidative Stress. Biomolecules 2020, 10, 768. [Google Scholar] [CrossRef]
- Terri, M.; Trionfetti, F.; Montaldo, C.; Cordani, M.; Tripodi, M.; Lopez-Cabrera, M.; Strippoli, R. Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells–Peritoneal Stroma Interactions. Front. Immunol. 2021, 12, 607204. [Google Scholar] [CrossRef]
- Liu, L.; Sun, Q.; Davis, F.; Mao, J.; Zhao, H.; Ma, D. Epithelial–Mesenchymal Transition in Organ Fibrosis Development: Current Understanding and Treatment Strategies. Burn. Trauma 2022, 10, tkac011. [Google Scholar] [CrossRef]
- Krediet, R.T. Ultrafiltration Failure Is a Reflection of Peritoneal Alterations in Patients Treated With Peritoneal Dialysis. Front. Physiol. 2018, 9, 1815. [Google Scholar] [CrossRef]
- Lamichhane, S.; Sen, P.; Alves, M.A.; Ribeiro, H.C.; Raunioniemi, P.; Hyötyläinen, T.; Orešič, M. Linking Gut Microbiome and Lipid Metabolism: Moving beyond Associations. Metabolites 2021, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Zhao, N.; Zhang, L.; Chen, J.; Liu, X.; Piao, S. Gut Microbiota Is a Potential Goalkeeper of Dyslipidemia. Front. Endocrinol. 2022, 13, 950826. [Google Scholar] [CrossRef] [PubMed]
- Simões-Silva, L.; Araujo, R.; Pestana, M.; Soares-Silva, I.; Sampaio-Maia, B. Peritoneal Microbiome in End-Stage Renal Disease Patients and the Impact of Peritoneal Dialysis Therapy. Microorganisms 2020, 8, 173. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xing, H.; Lin, W.; Yu, H.; Yang, B.; Jiang, C.; Zhang, J.; Wu, R.; Ding, F.; Pei, M.; et al. Specific Gut Microbiome and Metabolome Changes in Patients with Continuous Ambulatory Peritoneal Dialysis and Comparison between Patients with Different Dialysis Vintages. Front. Med. 2023, 10, 1302352. [Google Scholar] [CrossRef]
- Kim, J.E.; Kim, H.E.; Park, J.I.; Cho, H.; Kwak, M.J.; Kim, B.Y.; Yang, S.H.; Lee, J.P.; Kim, D.K.; Joo, K.W.; et al. The Association between Gut Microbiota and Uremia of Chronic Kidney Disease. Microorganisms 2020, 8, 907. [Google Scholar] [CrossRef]
- Martins, M.; Rodrigues, A.; Pedrosa, J.M.; Carvalho, M.J.; Cabrita, A.; Oliveira, R. Update on the Challenging Role of Biofilms in Peritoneal Dialysis. Biofouling 2013, 29, 1015–1027. [Google Scholar] [CrossRef]
- Camerotto, C.; Cupisti, A.; D’Alessandro, C.; Muzio, F.; Gallieni, M. Dietary Fiber and Gut Microbiota in Renal Diets. Nutrients 2019, 11, 2149. [Google Scholar] [CrossRef]
- Brown, E.M.; Clardy, J.; Xavier, R.J. Gut Microbiome Lipid Metabolism and Its Impact on Host Physiology. Cell Host Microbe 2023, 31, 173–186. [Google Scholar] [CrossRef]
- Flaig, B.; Garza, R.; Singh, B.; Hamamah, S.; Covasa, M. Treatment of Dyslipidemia through Targeted Therapy of Gut Microbiota. Nutrients 2023, 15, 228. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Y.Y.; Wang, J.H.; Zhao, H.P.; Yu, Y.; Yan, Y.Z.; Lv, J.; Wang, G.D.; Dai, K.; Yang, Y.J. Associations of Gut Microbiota with Dyslipidemia Based on Sex Differences in Subjects from Northwestern China. World J. Gastroenterol. 2022, 28, 3455–3475. [Google Scholar] [CrossRef]
- Zhou, X.; Lian, P.; Liu, H.; Wang, Y.; Zhou, M.; Feng, Z. Causal Associations between Gut Microbiota and Different Types of Dyslipidemia: A Two-Sample Mendelian Randomization Study. Nutrients 2023, 15, 4445. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, S.; Zhang, J.; Li, Y.; Wu, Y.; Qi, X. Correlation between Gut Microbiome and Cognitive Impairment in Patients Undergoing Peritoneal Dialysis. BMC Nephrol. 2023, 24, 360. [Google Scholar] [CrossRef] [PubMed]
- Stepanova, N.; Tolstanova, G.; Aleksandrova, I.; Korol, L.; Dovbynchuk, T.; Driianska, V.; Savchenko, S. Gut Microbiota’s Oxalate-Degrading Activity and Its Implications on Cardiovascular Health in Patients with Kidney Failure: A Pilot Prospective Study. Medicina 2023, 59, 2189. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, J.; Xing, X.; Xue, C.; Luo, X.; Gao, S.; Mao, Z. P-Cresyl Sulfate Predicts Clinical Outcomes in Sustained Peritoneal Dialysis: A 5-Year Follow-up Cohort Study and Meta-Analysis. Ren. Fail. 2022, 44, 1791. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Wang, M.; Yang, L.; Xin, H.; Bian, F.; Jiang, G.; Zhang, X. Astragaloside IV Alleviates Intestinal Barrier Dysfunction via the AKT-GSK3β-β-Catenin Pathway in Peritoneal Dialysis. Front. Pharmacol. 2022, 13, 873150. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ng, J.K.C.; Chan, G.C.K.; Fung, W.W.S.; Lai, K.B.; Poon, P.Y.K.; Luk, C.C.W.; Chow, K.M.; Szeto, C.C. Gut Permeability, Circulating Bacterial Fragments and Measures of Congestion in Peritoneal Dialysis. Clin. Kidney J. 2024, 17, sfae056. [Google Scholar] [CrossRef]
- Sánchez-Ospina, D.; Mas-Fontao, S.; Gracia-Iguacel, C.; Avello, A.; González de Rivera, M.; Mujika-Marticorena, M.; Gonzalez-Parra, E. Displacing the Burden: A Review of Protein-Bound Uremic Toxin Clearance Strategies in Chronic Kidney Disease. J. Clin. Med. 2024, 13, 1428. [Google Scholar] [CrossRef]
- Zhang, L.E.I.; Xie, F.; Tang, H.A.I.E.; Zhang, X.; Hu, J.; Zhong, X.; Gong, N.; Lai, Y.; Zhou, M.; Tian, J.; et al. Gut Microbial Metabolite TMAO Increases Peritoneal Inflammation and Peritonitis Risk in Peritoneal Dialysis Patients. Transl. Res. 2022, 240, 50–63. [Google Scholar] [CrossRef]
- Henkin, Y.; Neeman, Z.; Zuili, I.; Chaimovitz, C.; Shany, S. The Relationship Between Plasma and Dialysate Lipoproteins and Apoproteins in Patients Treated by Continuous Ambulatory Peritoneal Dialysis. Am. J. Kidney Dis. 1993, 22, 829–834. [Google Scholar] [CrossRef]
- Fang, Y.; Jiang, L.; Chen, L.; Li, X.; Li, X. Low-Density Lipoprotein Promotes Epithelial-Mesenchymal Transition and Extracellular Matrix Accumulation in Human Peritoneal Mesothelial Cells. Chin. J. Nephrol. 2013, 12, 44–49. [Google Scholar]
- Lu, J.; Gao, J.; Sun, J.; Wang, H.; Sun, H.; Huang, Q.; Zhang, Y.; Zhong, S. Apolipoprotein A-I Attenuates Peritoneal Fibrosis Associated with Peritoneal Dialysis by Inhibiting Oxidative Stress and Inflammation. Front. Pharmacol. 2023, 14, 1106339. [Google Scholar] [CrossRef] [PubMed]
- Nishi, H.; Higashihara, T.; Inagi, R. Lipotoxicity in Kidney, Heart, and Skeletal Muscle Dysfunction. Nutrients 2019, 11, 1664. [Google Scholar] [CrossRef] [PubMed]
- Lipke, K.; Kubis-Kubiak, A.; Piwowar, A. Molecular Mechanism of Lipotoxicity as an Interesting Aspect in the Development of Pathological States—Current View of Knowledge. Cells 2022, 11, 844. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wang, J.; Xiang, S.; Chen, Z.; Zhang, X.; Chen, J. Dialysate Cell-Free Mitochondrial DNA Fragments as a Marker of Intraperitoneal Inflammation and Peritoneal Solute Transport Rate in Peritoneal Dialysis. BMC Nephrol. 2019, 20, 128. [Google Scholar] [CrossRef] [PubMed]
- Ramil-Gómez, O.; Rodríguez-Carmona, A.; Fernández-Rodríguez, J.A.; Pérez-Fontán, M.; Ferreiro-Hermida, T.; López-Pardo, M.; Pérez-López, T.; López-Armada, M.J. Mitochondrial Dysfunction Plays a Relevant Role in Pathophysiology of Peritoneal Membrane Damage Induced by Peritoneal Dialysis. Antioxidants 2021, 10, 447. [Google Scholar] [CrossRef]
- Bhattacharjee, S. ROS and Oxidative Modification of Cellular Components. In Reactive Oxygen Species in Plant Biology; Springer: New Delhi, India, 2019; pp. 81–105. [Google Scholar] [CrossRef]
- Oberacker, T.; Fritz, P.; Schanz, M.; Alscher, M.D.; Ketteler, M.; Schricker, S. Enhanced Oxidative DNA-Damage in Peritoneal Dialysis Patients via the TXNIP/TRX Axis. Antioxidants 2022, 11, 1124. [Google Scholar] [CrossRef]
- Patergnani, S.; Bouhamida, E.; Leo, S.; Pinton, P.; Rimessi, A. Mitochondrial Oxidative Stress and “Mito-Inflammation”: Actors in the Diseases. Biomedicines 2021, 9, 216. [Google Scholar] [CrossRef]
- Marchi, S.; Guilbaud, E.; Tait, S.W.G.; Yamazaki, T.; Galluzzi, L. Mitochondrial Control of Inflammation. Nat. Rev. Immunol. 2022, 23, 159–173. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, C.-M.; Feng, Y.; Zhu, W.; Jin, B.; Xia, Y.-Y.; Zhang, Q.-Y.; Xu, P.-F.; Zhang, M. Rapamycin Inhibits Peritoneal Fibrosis by Modifying Lipid Homeostasis in the Peritoneum. Am. J. Transl. Res. 2019, 11, 1473–1485. [Google Scholar]
- Tain, Y.L.; Hsu, C.N. The Renin–Angiotensin System and Cardiovascular–Kidney–Metabolic Syndrome: Focus on Early-Life Programming. Int. J. Mol. Sci. 2024, 25, 3298. [Google Scholar] [CrossRef]
- Ma, K.L.; Ni, J.; Wang, C.X.; Liu, J.; Zhang, Y.; Wu, Y.; Lv, L.L.; Ruan, X.Z.; Liu, B.C. Interaction of RAS Activation and Lipid Disorders Accelerates the Progression of Glomerulosclerosis. Int. J. Med. Sci. 2013, 10, 1615–1624. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Feng, Y.; Li, N.; Shao, Q.Y.; Zhang, Q.Y.; Sun, C.; Xu, P.F.; Jiang, C.M. Activation of the RAS Contributes to Peritoneal Fibrosis via Dysregulation of Lowdensity Lipoprotein Receptor. Am. J. Physiol. Renal Physiol. 2021, 320, F273–F284. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jin, B.; Lu, J.; Feng, Y.; Li, N.; Wan, C.; Zhang, Q.Y.; Jiang, C.M. Angiotensin II Type 2 Receptor Prevents Extracellular Matrix Accumulation in Human Peritoneal Mesothelial Cell by Ameliorating Lipid Disorder via LOX-1 Suppression. Ren. Fail. 2022, 44, 1687–1697. [Google Scholar] [CrossRef] [PubMed]
- Morinelli, T.A.; Luttrell, L.M.; Strungs, E.G.; Ullian, M.E. Angiotensin II Receptors and Peritoneal Dialysis-Induced Peritoneal Fibrosis. Int. J. Biochem. Cell Biol. 2016, 77, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Nessim, S.J.; Perl, J.; Bargman, J.M. The Renin-Angiotensin-Aldosterone System in Peritoneal Dialysis: Is What Is Good for the Kidney Also Good for the Peritoneum. Kidney Int. 2010, 78, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Klar, A.; Lin, Y.; Higashi, Y. Endothelial Function in Dyslipidemia: Roles of LDL-Cholesterol, HDL-Cholesterol and Triglycerides. Cells 2023, 12, 1293. [Google Scholar] [CrossRef]
- Gallo, G.; Savoia, C. New Insights into Endothelial Dysfunction in Cardiometabolic Diseases: Potential Mechanisms and Clinical Implications. Int. J. Mol. Sci. 2024, 25, 2973. [Google Scholar] [CrossRef]
- Combet, S.; Miyata, T.; Moulin, P.; Pouthier, D.; Coffin, E.; Devuyst, O. Vascular Proliferation and Enhanced Expression of Endothelial Nitric Oxide Synthase in Human Peritoneum Exposed to Long-Term Peritoneal Dialysis. J. Am. Soc. Nephrol. 2000, 11, 717–728. [Google Scholar] [CrossRef]
- Devuyst, O.; Combet, S.; Cnops, Y.; Stoenoiu, M.S. Regulation of NO Synthase Isoforms in the Peritoneum: Implications for Ultrafiltration Failure in Peritoneal Dialysis. Nephrol. Dial. Transplant. 2001, 16, 675–678. [Google Scholar] [CrossRef]
- Shaik, F.; Cuthbert, G.A.; Homer-Vanniasinkam, S.; Muench, S.P.; Ponnambalam, S.; Harrison, M.A. Structural Basis for Vascular Endothelial Growth Factor Receptor Activation and Implications for Disease Therapy. Biomolecules 2020, 10, 1673. [Google Scholar] [CrossRef]
- Shi, Y.; Hu, Y.; Cui, B.; Zhuang, S.; Liu, N. Vascular Endothelial Growth Factor-Mediated Peritoneal Neoangiogenesis in Peritoneal Dialysis. Perit. Dial. Int. 2022, 42, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Kariya, T.; Nishimura, H.; Mizuno, M.; Suzuki, Y.; Matsukawa, Y.; Sakata, F.; Maruyama, S.; Takei, Y.; Ito, Y. TGF-Β1-VEGF-A Pathway Induces Neoangiogenesis with Peritoneal Fibrosis in Patients Undergoing Peritoneal Dialysis. Am. J. Physiol. Renal Physiol. 2018, 314, F167–F180. [Google Scholar] [CrossRef] [PubMed]
- Davies, S.S.; Guo, L. Lipid Peroxidation Generates Biologically Active Phospholipids Including Oxidatively N-Modified Phospholipids. Chem. Phys. Lipids 2014, 181, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Liakopoulos, V.; Roumeliotis, S.; Gorny, X.; Eleftheriadis, T.; Mertens, P.R. Oxidative Stress in Patients Undergoing Peritoneal Dialysis: A Current Review of the Literature. Oxid. Med. Cell Longev. 2017, 2017, 3494867. [Google Scholar] [CrossRef] [PubMed]
- Papadea, P.; Kalaitzopoulou, E.; Skipitari, M.; Varemmenou, A.; Papasotiriou, M.; Papachristou, E.; Goumenos, D.; Grune, T.; Georgiou, C.D. Novel Oxidized LDL-Based Clinical Markers in Peritoneal Dialysis Patients for Atherosclerosis Risk Assessment. Redox Biol. 2023, 64, 102762. [Google Scholar] [CrossRef]
- Latcha, S.; Hong, S.; Gibbons, N.; Kohn, N.; Mattana, J. Relationship between Dialysate Oxidized Protein and Peritoneal Membrane Transport Properties in Patients on Peritoneal Dialysis. Nephrol. Dial. Transplant. 2008, 23, 3295–3301. [Google Scholar] [CrossRef]
- Morinaga, H.; Sugiyama, H.; Inoue, T.; Takiue, K.; Kikumoto, Y.; Kitagawa, M.; Akagi, S.; Nakao, K.; Maeshima, Y.; Miyazaki, I.; et al. Effluent Free Radicals Are Associated with Residual Renal Function and Predict Technique Failure in Peritoneal Dialysis Patients. Perit. Dial. Int. 2012, 32, 453. [Google Scholar] [CrossRef]
- Kong, P.; Cui, Z.Y.; Huang, X.F.; Zhang, D.D.; Guo, R.J.; Han, M. Inflammation and Atherosclerosis: Signaling Pathways and Therapeutic Intervention. Signal Transduct. Target. Ther. 2022, 7, 131. [Google Scholar] [CrossRef]
- Malekmohammad, K.; Bezsonov, E.E.; Rafieian-Kopaei, M. Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Front. Cardiovasc. Med. 2021, 8, 707529. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, H.L.; Jia, L. High Glucose Dialysate-Induced Peritoneal Fibrosis: Pathophysiology, Underlying Mechanisms and Potential Therapeutic Strategies. Biomed. Pharmacother. 2023, 165, 115246. [Google Scholar] [CrossRef]
- Delgado-Córdova, M.; Coronel, F.; Hadah, F.; Cigarrán, S.; Herrero-Calvo, J.A. Influence of Glucose Solutions on the Development of Hyperglycaemia in Peritoneal Dialysis. Behaviour of Glycated Haemoglobin and the Lipid Profile. Nefrol. (Engl. Ed.) 2014, 34, 530–531. [Google Scholar] [CrossRef]
- Sayols-Baixeras, S.; Irvin, M.R.; Elosua, R.; Arnett, D.K.; Aslibekyan, S.W. Epigenetics of Lipid Phenotypes. Curr. Cardiovasc. Risk Rep. 2016, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Barkas, F.; Sener, Y.Z.; Golforoush, P.A.; Kheirkhah, A.; Rodriguez-Sanchez, E.; Novak, J.; Apellaniz-Ruiz, M.; Akyea, R.K.; Bianconi, V.; Ceasovschih, A.; et al. Advancements in Risk Stratification and Management Strategies in Primary Cardiovascular Prevention. Atherosclerosis 2024, 395, 117579. [Google Scholar] [CrossRef] [PubMed]
- Siddique, I.; Brimble, K.S.; Walkin, L.; Summers, A.; Brenchley, P.; Herrick, S.; Margetts, P.J. Genetic Polymorphisms and Peritoneal Membrane Function. Perit. Dial. Int. 2015, 35, 517–529. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Y.; Tao, M.; Zhuang, S.; Liu, N. Peritoneal Fibrosis and Epigenetic Modulation. Perit. Dial. Int. 2021, 41, 168–178. [Google Scholar] [CrossRef]
- Wu, Y.L.; Lin, Z.J.; Li, C.C.; Lin, X.; Shan, S.K.; Guo, B.; Zheng, M.H.; Li, F.; Yuan, L.Q.; Li, Z.H. Epigenetic Regulation in Metabolic Diseases: Mechanisms and Advances in Clinical Study. Signal Transduct. Target. Ther. 2023, 8, 98. [Google Scholar] [CrossRef]
- Ding, L.; Shao, X.; Cao, L.; Fang, W.; Yan, H.; Huang, J.; Gu, A.; Yu, Z.; Qi, C.; Chang, X.; et al. Possible Role of IL-6 and TIE2 Gene Polymorphisms in Predicting the Initial High Transport Status in Patients with Peritoneal Dialysis: An Observational Study. BMJ Open 2016, 6, e012967. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Son, M.J.; Yang, J.; Kim, K.; Chung, W.; Joo, K.W.; Kim, Y.; Ahn, C.; Oh, K.H. Effects of Interleukin-6 T15A Single Nucleotide Polymorphism on Baseline Peritoneal Solute Transport Rate in Incident Peritoneal Dialysis Patients. Perit. Dial. Int. 2009, 29, 81–88. [Google Scholar] [CrossRef]
- Qian, Y.; Ding, L.; Cao, L.; Yu, Z.; Shao, X.; Wang, L.; Zhang, M.; Wang, Q.; Che, X.; Jiang, N.; et al. Gene Polymorphisms of VEGF and KDR Are Associated with Initial Fast Peritoneal Solute Transfer Rate in Peritoneal Dialysis. BMC Nephrol. 2022, 23, 365. [Google Scholar] [CrossRef]
- Rupnik, A.T.; Kovač, D.; Pajek, J.; Osredkar, J.; Marc, J.; Lindič, J. The Impact of Gene Polymorphisms in Angiotensin Receptor 1 and Aldosterone Synthase in Peritoneal Dialysis Patients. Clin. Nephrol. 2017, 88, S73–S77. [Google Scholar] [CrossRef]
- Shu, K.H.; Chuang, Y.W.; Huang, S.T.; Cheng, C.H.; Wu, M.J.; Chen, C.H.; Yu, T.M. Association of Interleukin-1β Gene Polymorphism and Peritonitis in Uremic Patients Undergoing Peritoneal Dialysis. Blood Purif. 2011, 32, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Bora, F.; Aslan, B.; Sarı, F.; Yılmaz, F.; Ersoy, F.F.; Köksoy, S.; Özdem, S.; Küçükçetin, İ.Ö.; Sipahioğlu, M.; Karakaya, İ.; et al. C Allele in Transforming Growth Factor-Β1 Rs1800471 Gene Polymorphisms Might Indicate a Protective Feature in Encapsulating Peritoneal Sclerosis Development. Ther. Apher. Dial. 2023, 27, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Bea, A.M.; Larrea-Sebal, A.; Marco-Benedi, V.; Uribe, K.B.; Galicia-Garcia, U.; Lamiquiz-Moneo, I.; Laclaustra, M.; Moreno-Franco, B.; Fernandez-Corredoira, P.; Olmos, S.; et al. Contribution of APOE Genetic Variants to Dyslipidemia. Arter. Thromb. Vasc. Biol. 2023, 43, 1066–1077. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, J.; Wang, R.; Sun, J. Inhibition of EZH2 Mitigates Peritoneal Fibrosis and Lipid Precipitation in Peritoneal Mesothelial Cells Mediated by Klotho. Ren. Fail. 2023, 45, 2149411. [Google Scholar] [CrossRef] [PubMed]
- Butnariu, L.I.; Gorduza, E.V.; Țarcă, E.; Pânzaru, M.C.; Popa, S.; Stoleriu, S.; Lupu, V.V.; Lupu, A.; Cojocaru, E.; Trandafir, L.M.; et al. Current Data and New Insights into the Genetic Factors of Atherogenic Dyslipidemia Associated with Metabolic Syndrome. Diagnostics 2023, 13, 2348. [Google Scholar] [CrossRef]
- Jin, K.; Park, B.S.; Kim, Y.W.; Vaziri, N.D. Plasma PCSK9 in Nephrotic Syndrome and in Peritoneal Dialysis: A Cross-Sectional Study. Am. J. Kidney Dis. 2014, 63, 584–589. [Google Scholar] [CrossRef]
- Hedman, Å.K.; Mendelson, M.M.; Marioni, R.E.; Gustafsson, S.; Joehanes, R.; Irvin, M.R.; Zhi, D.; Sandling, J.K.; Yao, C.; Liu, C.; et al. Epigenetic Patterns in Blood Associated with Lipid Traits Predict Incident Coronary Heart Disease Events and Are Enriched for Results from Genome-Wide Association Studies. Circ. Cardiovasc. Genet. 2017, 10, e001487. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Liu, J. A Review of Research Progress on Mechanisms of Peritoneal Fibrosis Related to Peritoneal Dialysis. Front. Physiol. 2023, 14, 1220450. [Google Scholar] [CrossRef]
- Luo, Q.; Xia, X.; Lin, Z.; Lin, J.; Yang, X.; Huang, F.; Yu, X. Very Early Withdrawal from Treatment in Patients Starting Peritoneal Dialysis. Ren. Fail. 2018, 40, 8–14. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, L.; Ma, S.; Xiao, J.; Liu, D.; Ding, R.; Li, Z.; Zhao, Z. Kt/V Reach Rate Is Associated with Clinical Outcome in Incident Peritoneal Dialysis Patients. Ren. Fail. 2022, 44, 482–489. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, L.; Zhan, X.; Wen, Y.; Wang, X.; Feng, X.; Wang, N.; Peng, F.; Wu, J. Low-Density Lipoprotein Cholesterol and Mortality in Peritoneal Dialysis. Front. Nutr. 2022, 9, 910348. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Feng, X.; Gao, Y.; Zhan, X.; Peng, F.; Zhou, Q.; Wu, X.; Wang, X.; Tian, N.; Xu, Q.; et al. Association of Albumin to Non-High-Density Lipoprotein Cholesterol Ratio with Mortality in Peritoneal Dialysis Patients. Ren. Fail. 2024, 46, 2299601. [Google Scholar] [CrossRef] [PubMed]
- Saglimbene, V.; Palmer, S.C.; Strippoli, G.F.M. Management of Dyslipidemia in Long-Term Dialysis Patients. In Handbook of Dialysis Therapy, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 430–433. [Google Scholar] [CrossRef]
- Gluba-Brzozka, A.; Franczyk, B.; Rysz, J. Cholesterol Disturbances and the Role of Proper Nutrition in CKD Patients. Nutrients 2019, 11, 2820. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Liebman, S.E.; Joshi, S. Plant-Based Diets and Peritoneal Dialysis: A Review. Nutrients 2022, 14, 1304. [Google Scholar] [CrossRef]
- Zhao, S.; Zhong, J.; Sun, C.; Zhang, J. Effects of Aerobic Exercise on TC, HDL-C, LDL-C and TG in Patients with Hyperlipidemia: A Protocol of Systematic Review and Meta-Analysis. Medicine 2021, 100, e25103. [Google Scholar] [CrossRef]
- Bennett, P.N.; Bohm, C.; Harasemiw, O.; Brown, L.; Gabrys, I.; Jegatheesan, D.; Johnson, D.W.; Lambert, K.; Lightfoot, C.J.; MacRae, J.; et al. Physical Activity and Exercise in Peritoneal Dialysis: International Society for Peritoneal Dialysis and the Global Renal Exercise Network Practice Recommendations. Peritl Dial. Int. 2022, 42, 8–24. [Google Scholar] [CrossRef]
- Thangarasa, T.; Imtiaz, R.; Hiremath, S.; Zimmerman, D. Physical Activity in Patients Treated with Peritoneal Dialysis: A Review and Meta-Analysis. Can. J. Kidney Health Dis. 2018, 5, 2054358118779821. [Google Scholar] [CrossRef]
- Bonomini, M.; Masola, V.; Procino, G.; Zammit, V.; Divino-Filho, J.C.; Arduini, A.; Gambaro, G. How to Improve the Biocompatibility of Peritoneal Dialysis Solutions (without Jeopardizing the Patient’s Health). Int. J. Mol. Sci. 2021, 22, 7955. [Google Scholar] [CrossRef]
- Bonomini, M.; Masola, V.; Monaco, M.P.; Sirolli, V.; Di Liberato, L.; Prosdocimi, T.; Arduini, A. Coupling Osmotic Efficacy with Biocompatibility in Peritoneal Dialysis: A Stiff Challenge. Int. J. Mol. Sci. 2024, 25, 3532. [Google Scholar] [CrossRef]
- Schmitt, C.P.; Aufricht, C. Is There Such a Thing as Biocompatible Peritoneal Dialysis Fluid? Pediatr. Nephrol. 2017, 32, 1835–1843. [Google Scholar] [CrossRef] [PubMed]
- Kanno, A.; Tsujimoto, Y.; Fujii, T.; Fujikura, E.; Watanabe, K.; Yuasa, H.; Ryuzaki, M.; Ito, Y.; Nakamoto, H. Comparison of Clinical Effects between Icodextrin and Glucose Solutions on Outcomes of Peritoneal Dialysis: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Ren. Replace. Ther. 2020, 6, 7. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Liu, Y.; Xu, Y.; Zhao, X.; Qian, J.; Sun, B.; Xing, C. Fluvastatin Inhibits the Expression of Fibronectin in Human Peritoneal Mesothelial Cells Induced by High-Glucose Peritoneal Dialysis Solution via SGK1 Pathway. Clin. Exp. Nephrol. 2015, 19, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Haslinger, B.; Goedde, M.F.; Toet, K.H.; Kooistra, T. Simvastatin Increases Fibrinolytic Activity in Human Peritoneal Mesothelial Cells Independent of Cholesterol Lowering. Kidney Int. 2002, 62, 1611–1619. [Google Scholar] [CrossRef]
- Carrión, B.; Pérez-Martínez, F.C.; Monteagudo, S.; Pérez-Carrión, M.D.; Gómez-Roldán, C.; Ceña, V.; Pérez-Martínez, J. Atorvastatin Reduces High Glucose Toxicity in Rat Peritoneal Mesothelial Cells. Perit. Dial. Int. 2011, 31, 325–331. [Google Scholar] [CrossRef]
- Yeniçerioglu, Y.; Üzelce, Ö.; Akar, H.; Kolatan, E.; Yilmaz, O.; Yenisey, Ç.; Sarioglu, S.; Meteoglu, I. Effects of Atorvastatin on Development of Peritoneal Fibrosis in Rats on Peritoneal Dialysis. Ren. Fail. 2010, 32, 1095–1102. [Google Scholar] [CrossRef]
- Han, S.H.; Kang, E.W.; Yoon, S.J.; Yoon, H.S.; Lee, H.C.; Yoo, T.H.; Choi, K.H.; Han, D.S.; Kang, S.W. Combined Vascular Effects of HMG-CoA Reductase Inhibitor and Angiotensin Receptor Blocker in Non-Diabetic Patients Undergoing Peritoneal Dialysis. Nephrol. Dial. Transplant. 2011, 26, 3722–3728. [Google Scholar] [CrossRef]
- Lee, D.Y.; Huang, C.J.; Yeh, W.Y.; Sung, S.H.; Chen, C.H.; Cheng, H.M. Improvement of Clinical Outcomes in Patients Undergoing Peritoneal Dialysis Using Hydroxymethylglutaryl-CoA Reductase Inhibitors: A Systematic Review and Meta-Analysis. J. Chin. Med. Assoc. 2023, 86, 155–165. [Google Scholar] [CrossRef]
- Liu, R.; Jiang, J.; Fu, Z.; Liu, C.; Yao, L.; Quan, H. Effects of Omega-3 Fatty Acid Intake in Patients Undergoing Dialysis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Nutr. Assoc. 2022, 41, 697–712. [Google Scholar] [CrossRef]
- Gholipur-Shahraki, T.; Vahdat, S.; Seirafian, S.; Pourfarzam, M.; Badri, S. Effect of Omega-3 Fatty Acids Supplementation on Homocysteine Level in Patients Undergoing Continuous Ambulatory Peritoneal Dialysis. J. Res. Pharm. Pract. 2022, 11, 80–86. [Google Scholar] [CrossRef]
- Tang, H.; Zhu, X.; Gong, C.; Liu, H.; Liu, F. Protective Effects and Mechanisms of Omega-3 Polyunsaturated Fatty Acid on Intestinal Injury and Macrophage Polarization in Peritoneal Dialysis Rats. Nephrology 2019, 24, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, H.; Zhong, H.; Chen, X.; Hu, Z. xue Omega-3 Polyunsaturated Fatty Acids Protect Peritoneal Mesothelial Cells from Hyperglycolysis and Mesothelial-Mesenchymal Transition through the FFAR4/CaMKKβ/AMPK/MTOR Signaling Pathway. Int. Immunopharmacol. 2024, 128, 111561. [Google Scholar] [CrossRef] [PubMed]
- Bechmann, L.E.; Emanuelsson, F.; Nordestgaard, B.G.; Benn, M. SGLT2-Inhibition Increases Total, LDL, and HDL Cholesterol and Lowers Triglycerides: Meta-Analyses of 60 Randomized Trials, Overall and by Dose, Ethnicity, and Drug Type. Atherosclerosis 2024, 394, 117236. [Google Scholar] [CrossRef] [PubMed]
- Szekeres, Z.; Toth, K.; Szabados, E. The Effects of SGLT2 Inhibitors on Lipid Metabolism. Metabolites 2021, 11, 87. [Google Scholar] [CrossRef] [PubMed]
- Schricker, S.; Oberacker, T.; Fritz, P.; Ketteler, M.; Alscher, M.D.; Schanz, M. Peritoneal Expression of SGLT-2, GLUT1, and GLUT3 in Peritoneal Dialysis Patients. Kidney Blood Press. Res. 2022, 47, 125–134. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, J.; Zheng, C.; Yin, P.; Wu, H.; Li, X.; Luo, N.; Yu, X.; Chen, C. SGLT-2 Inhibitors Reduce Glucose Absorption from Peritoneal Dialysis Solution by Suppressing the Activity of SGLT-2. Biomed. Pharmacother. 2019, 109, 1327–1338. [Google Scholar] [CrossRef]
- Wang, J.; Lv, X.; A-Ni-Wan, A.S.J.; Tian, S.S.; Wang, J.M.; Liu, H.Y.; Fan, X.G.; Zhou, S.J.; Yu, P. Canagliflozin Alleviates High Glucose-Induced Peritoneal Fibrosis via HIF-1α Inhibition. Front. Pharmacol. 2023, 14, 1152611. [Google Scholar] [CrossRef]
- Shentu, Y.; Li, Y.; Xie, S.; Jiang, H.; Sun, S.; Lin, R.; Chen, C.; Bai, Y.; Zhang, Y.; Zheng, C.; et al. Empagliflozin, a Sodium Glucose Cotransporter-2 Inhibitor, Ameliorates Peritoneal Fibrosis via Suppressing TGF-β/Smad Signaling. Int. Immunopharmacol. 2021, 93, 107374. [Google Scholar] [CrossRef]
- Alhwiesh, A.K.; Abdul-Rahman, I.S.; Nasreldin, M.A.; Mohammed, A.M.; Al-Oudah, S.; Al-Thwainy, R.; AyatAlAwal; Alsenpisi, Z.; Abdulrahman, A.; Al-Wa, S. The Use of SGLT2 Inhibitors in Peritoneal Dialysis Patients: A Shade of Light on Dapagliflozin. Arch. Nephrol. Urol. 2022, 5, 1–8. [Google Scholar] [CrossRef]
- Rodríguez-Osorio, L.; Pazmiño Zambrano, D.; Gracia-Iguacel, C.; Rojas-Rivera, J.; Ortiz, A.; Egido, J.; González Parra, E. Use of Sevelamer in Chronic Kidney Disease: Beyond Phosphorus Control. Nefrol. (Engl. Ed.) 2015, 35, 207–217. [Google Scholar] [CrossRef]
- Basutkar, R.S.; Varghese, R.; Mathew, N.K.; Sankar Indira, P.; Viswanathan, B.; Sivasankaran, P. Systematic Review and Meta-Analysis of Potential Pleiotropic Effects of Sevelamer in Chronic Kidney Disease: Beyond Phosphate Control. Nephrology 2022, 27, 337–354. [Google Scholar] [CrossRef] [PubMed]
- Guida, B.; Cataldi, M.; Riccio, E.; Grumetto, L.; Pota, A.; Borrelli, S.; Memoli, A.; Barbato, F.; Argentino, G.; Salerno, G.; et al. Plasma P-Cresol Lowering Effect of Sevelamer in Peritoneal Dialysis Patients: Evidence from a Cross-Sectional Observational Study. PLoS ONE 2013, 8, e73558. [Google Scholar] [CrossRef] [PubMed]
- Gregorio, P.C.; Favretto, G.; Sassaki, G.L.; Cunha, R.S.; Becker-Finco, A.; Pecoits-Filho, R.; Souza, W.M.; Barreto, F.C.; Stinghen, A.E.M. Sevelamer Reduces Endothelial Inflammatory Response to Advanced Glycation End Products. Clin. Kidney J. 2018, 11, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Igweonu-Nwakile, E.O.; Ali, S.; Paul, S.; Yakkali, S.; Selvin, S.T.; Thomas, S.; Bikeyeva, V.; Abdullah, A.; Radivojevic, A.; Jad, A.A.A.; et al. A Systematic Review on the Safety and Efficacy of PCSK9 Inhibitors in Lowering Cardiovascular Risks in Patients With Chronic Kidney Disease. Cureus 2022, 14, e29140. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, J.; Chen, H.; Zhang, T.; He, D.; Luo, Q.; Chi, J.; Hong, Z.; Liao, Y.; Zhang, S.; et al. PCSK9 Inhibition: From Current Advances to Evolving Future. Cells 2022, 11, 2972. [Google Scholar] [CrossRef]
- East, C.; Bass, K.; Mehta, A.; Rahimighazikalayed, G.; Zurawski, S.; Bottiglieri, T. Alirocumab and Lipid Levels, Inflammatory Biomarkers, Metabolomics, and Safety in Patients Receiving Maintenance Dialysis: The ALIrocumab in DIALysis Study (A Phase 3 Trial to Evaluate the Efficacy and Safety of Biweekly Alirocumab in Patients on a Stable Dialysis Regimen). Kidney Med. 2022, 4, 100483. [Google Scholar] [CrossRef]
- Bao, X.; Liang, Y.; Chang, H.; Cai, T.; Feng, B.; Gordon, K.; Zhu, Y.; Shi, H.; He, Y.; Xie, L. Targeting Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9): From Bench to Bedside. Signal Transduct. Target. Ther. 2024, 9, 13. [Google Scholar] [CrossRef]
- Wolska, A.; Reimund, M.; Sviridov, D.O.; Amar, M.J.; Remaley, A.T. Apolipoprotein Mimetic Peptides: Potential New Therapies for Cardiovascular Diseases. Cells 2021, 10, 597. [Google Scholar] [CrossRef]
- Wolkowicz, P.; Roger White, C.; Anantharamaiah, G.M. Apolipoprotein Mimetic Peptides: An Emerging Therapy against Diabetic Inflammation and Dyslipidemia. Biomolecules 2021, 11, 627. [Google Scholar] [CrossRef]
- Lambert, K.; Rinninella, E.; Biruete, A.; Sumida, K.; Stanford, J.; Raoul, P.; Mele, M.C.; Wang, A.Y.M.; Mafra, D. Targeting the Gut Microbiota in Kidney Disease: The Future in Renal Nutrition and Metabolism. J. Ren. Nutr. 2023, 33, S30–S39. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Li, J.; Zhang, W.; Ou, S. Probiotics, Prebiotics, and Synbiotics for Patients on Dialysis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Ren. Nutr. 2023, 33, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhao, J.; Qin, Y.; Wang, Y.; Zhang, Y.; Sun, S. Probiotics, Prebiotics, and Synbiotics Improve Uremic, Inflammatory, and Gastrointestinal Symptoms in End-Stage Renal Disease with Dialysis: A Network Meta-Analysis of Randomized Controlled Trials. Front. Nutr. 2022, 9, 850425. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Yang, L.; Dai, B.; Lin, B.; Lin, S.; Lin, E. Effects of Probiotics on Malnutrition and Health-Related Quality of Life in Patients Undergoing Peritoneal Dialysis: A Randomized Controlled Trial. J. Ren. Nutr. 2021, 31, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.K.; Wu, Y.Y.; Yang, Y.F.; Ting, I.W.; Lin, C.C.; Yen, T.H.; Chen, J.H.; Wang, C.H.; Huang, C.C.; Lin, H.C. The Effect of Probiotics on Serum Levels of Cytokine and Endotoxin in Peritoneal Dialysis Patients: A Randomised, Double-Blind, Placebo-Controlled Trial. Benef. Microbes 2015, 6, 423–430. [Google Scholar] [CrossRef]
Study | Study Design and Patients | Associated Lipid Profile Markers | Key Findings |
---|---|---|---|
Lin et al., 2018 [44] | Retrospective, nationwide population-based study of 8022 patients | TC | Patients with preserved RKF (renal CrCl > 2 mL/min/1.73 m2) had significantly lower triglyceride levels compared with anuric patients. A U-shaped mortality curve was observed when TC was lower than 150 mg/dL and higher than 250 mg/dL in PD patients without RKF. |
Luo et al., 2018 [171] | Retrospective, single-center study, 1444 patients | HDL | Low HDL predicted very early PD withdrawal (during the first 90 days). |
Stepanova et al., 2019 [7] | Prospective single-center study, 40 patients | Atherogenic dyslipidemia | HDL levels were directly associated with peritoneal Kt/V and weekly CrCl; TG had an inverse correlation. Atherogenic dyslipidemia was significantly associated with a higher risk of three-year technique failure. |
Stepanova et al., 2020 [86] | Cross-sectional, single-center study, 40 patients | Atherogenic dyslipidemia | An atherogenic lipid profile was significantly associated with a high concentration of MCP-1 in PDE. |
Wan et al., 2021 [91] | Retrospective study of 291 patients | TG | Serum TG ≥ 1.4 mmol/L at the initiation of PD was associated with early-onset peritonitis, technical failure, and overall mortality risk. |
Liu et al., 2022 [172] | Retrospective cohort study, 210 patients | HDL | Time-averaged HDL was an independent protective factor for technique failure and all-cause mortality. |
Wu et al., 2022 [173] | Retrospective, multi-center real-world cohort study, 3565 patients | LDL | Both higher levels of LDL (>2.60 mmol/L) and lower levels of LDL (<2.26 mmol/L) were associated with increased risks of all-cause mortality. |
Feng et al., 2022 [5] | Retrospective cohort study, 2939 patients | Atherogenic dyslipidemia | Hyperlipidemia at the beginning of CAPD was associated with a high risk of long-term mortality. |
Yang et al., 2022 [27] | Retrospective cohort study, 276 patients | TG, HDL | Higher TG and lower HDL levels were correlated with technique failure risk, and TG level is an independent predictor of technique failure in the adjusted model. |
Huang et al., 2022 [25] | Retrospective cohort study, 66 patients | TG | TG level ≥ 1.7 mmol/L was significantly associated with treatment failure of PD-related peritonitis. |
Honda et al., 2022 [23] | Retrospective cohort study, 113 patients | HDL | HDL at PD initiation was independently associated with a change in renal Kt/V during the first year after PD initiation. |
Xu et al., 2022 [69] | Retrospective single-center study, 2384 patients | TC, LDL, TG | TC, TG, and LDL levels were significantly associated with baseline fasting plasma glucose > 7 mmol/L, total Kt/V, RKF, and glucose load. |
Zhang et al., 2022 [89] | Retrospective cohort study, 1013 patients | HDL | Patients with both diabetes and low HDL levels were at higher risk for PD-related peritonitis. |
Deng et al., 2023 [22] | Retrospective cohort study, 2682 patients | AIP | Gradually increased AIP was independently associated with all-cause mortality. |
Lu et al., 2023 [122] | Retrospective cohort study, 81 patients | ApoA/HDL ratio | A decreased ApoA/HDL ratio is significantly associated with a rapid decline in peritoneal function. |
Stepanova et al., 2023 [24] | Cross-sectional, bi-center cohort study, 114 patients | Atherogenic dyslipidemia | Dyslipidemia was significantly associated with increased intensity of oxidative stress and UFF. |
Xie et al., 2024 [174] | Retrospective cohort study, 1954 patients | Non-HDL | A decreased albumin to non-HDL ratio is an independent risk factor for all-cause mortality. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepanova, N. Dyslipidemia in Peritoneal Dialysis: Implications for Peritoneal Membrane Function and Patient Outcomes. Biomedicines 2024, 12, 2377. https://doi.org/10.3390/biomedicines12102377
Stepanova N. Dyslipidemia in Peritoneal Dialysis: Implications for Peritoneal Membrane Function and Patient Outcomes. Biomedicines. 2024; 12(10):2377. https://doi.org/10.3390/biomedicines12102377
Chicago/Turabian StyleStepanova, Natalia. 2024. "Dyslipidemia in Peritoneal Dialysis: Implications for Peritoneal Membrane Function and Patient Outcomes" Biomedicines 12, no. 10: 2377. https://doi.org/10.3390/biomedicines12102377
APA StyleStepanova, N. (2024). Dyslipidemia in Peritoneal Dialysis: Implications for Peritoneal Membrane Function and Patient Outcomes. Biomedicines, 12(10), 2377. https://doi.org/10.3390/biomedicines12102377