Interactions of Oxytocin and Dopamine—Effects on Behavior in Health and Disease
Abstract
:1. The History and Discovery of Oxytocin and Dopamine
2. Oxytocin and Dopamine in the Brain
2.1. Neurons and Pathways
2.2. Interactions Between Oxytocin and Dopamine
3. Behavioral Effects of Oxytocin and Dopamine
3.1. Parental Behavior
3.2. Feeding Behavior
3.3. Sexual Behavior
3.4. Social Behavior and Pair Bonding
3.5. Addiction/Reward
3.6. Anxiety/Obsessive–Compulsive Disorders
3.7. Depression and Bipolar Disorders
3.8. Autism Spectrum Disorders
3.9. Attention Deficit Hyperactivity Disorder (ADHD)
3.10. Schizophrenia
4. Conclusions
5. Future Directions
Funding
Conflicts of Interest
References
- Oliver, G.; Schäfer, E.A. The physiological action of the suprarenal capsules. J. Physiol. 1894, 16, lP. [Google Scholar]
- Oliver, G.; Schäfer, E.A. On the physiological action of extracts of pituitary body and certain other glandular organs: Preliminary communication. J. Physiol. 1895, 18, 277. [Google Scholar] [CrossRef] [PubMed]
- Dale, H.H. On some physiological actions of ergot. J. Physiol. 1906, 34, 163–206. [Google Scholar] [CrossRef] [PubMed]
- Ott, I.; Scott, J.C. The action of infundibulum upon the mammary secretion. Proc. Soc. Exp. Biol. Med. 1910, 8, 48–49. [Google Scholar] [CrossRef]
- Barger, G.; Dale, H.H. Chemical structure and sympathomimetic action of amines. J. Physiol. 1910, 41, 19–59. [Google Scholar] [CrossRef]
- Montagu, K.A. Catechol compounds in rat tissues and in brains of different animals. Nature 1957, 180, 244–245. [Google Scholar] [CrossRef]
- Carlsson, A.; Lindqvist, M.; Magnusson, T.; Waldebeck, B. On the presence of 3-hydroxytyramine in brain. Science 1958, 127, 471. [Google Scholar] [CrossRef]
- Carlsson, A. The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol. Rev. 1959, 11 Pt 2, 490–493. [Google Scholar]
- Du Vigneaud, V.; Ressler, C.; Swan, J.M.; Roberts, C.W.; Katsoyannis, P.G.; Gordon, S. The synthesis of an octapeptide amide with the hormonal activity of oxytocin. J. Am. Chem. Soc. 1953, 75, 4879–4880. [Google Scholar] [CrossRef]
- Buijs, R.M.; Swaab, D.F.; Dogterom, J.; van Leeuwen, F.W. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res. 1978, 186, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Elde, R.; Hökfelt, T. Localization of hypophysiotropic peptides and other biologically active peptides within the brain. Annu. Rev. Physiol. 1979, 41, 587–602. [Google Scholar] [CrossRef] [PubMed]
- Bridges, T.E.; Hillhouse, E.W.; Jones, M.T. Effect of dopamine on neurohypophyseal hormone-release in vivo and from rat neural lobe and hypothalamus in vitro. J. Physiol. 1976, 260, 647–666. [Google Scholar] [CrossRef] [PubMed]
- Succu, S.; Sanna, F.; Melis, T.; Boi, A.; Argiolas, A.; Melis, M.R. Stimulation of dopamine receptors in the paraventricular nucleus of the hypothalamus of male rats induces penile erection and increases extra-cellular dopamine in the nucleus accumbens: Involvement of central oxytocin. Neuropharmacology 2007, 52, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Sawchenko, P.E.; Swanson, L.W. Relationship of oxytocin pathways to the control of neuroendocrine and autonomic function. J. Steroid Biochem. Mol. Biol. 1984, 20, 87–103. [Google Scholar] [CrossRef]
- Thibonnier, M.; Berti-Mattera, L.N.; Dulin, N.; Conarty, D.M.; Mattera, R. Signal transduction pathways of the human V1-vascular, V2-renal, V3-pituitary vasopressin and oxytocin receptors. Prog. Brain Res. 1998, 119, 147–161. [Google Scholar] [CrossRef]
- Ludwig, M.; Leng, G. Dendritic peptide release and peptide-dependent behaviors. Nat. Rev. Neurosci. 2006, 7, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Dreifuss, J.J.; Tribollet, E.; Dubois-Dauphin, M.; Raggenbass, M. Neurohypophysial hormones: Neuronal effects in autonomic and limbic areas of the rat brain. Arch. Histol. Cytol. 1989, 52, 129–138. [Google Scholar] [CrossRef]
- Harsing, L.G. Dopamine and the Dopaminergic Systems of the Brain. In Handbook of Neurochemistry and Molecular Neurobiology; Lajtha, A., Vizi, E.S., Eds.; Springer: Boston, MA, USA, 2008. [Google Scholar] [CrossRef]
- Björklund, A.; Lindvall, O.; Nobin, A. Evidence of an incertohypothalamic dopamine neurone system in the rat. Brain Res. 1975, 89, 29–42. [Google Scholar] [CrossRef]
- Baskerville, T.A.; Douglas, A.J. Dopamine and Oxytocin Interactions Underlying Behaviors: Potential Contributions to Behavioral Disorders. CNS Neurosci. Ther. 2010, 16, e92–e123. [Google Scholar] [CrossRef]
- Jourdain, P.; Dupouy Bonhomme, R.; Poulain, D.A.; Israel, J.M.; Theodosis, D.T. Visualization of local afferent inputs to magnocellular oxytocin neurons in vitro. Eur. J. Neurosci. 1999, 11, 1960–1972. [Google Scholar] [CrossRef]
- Gimpl, G.; Fahrenholz, F. The oxytocin receptor system: Structure, function and regulation. Physiol. Rev. 2001, 81, 629–683. [Google Scholar] [CrossRef] [PubMed]
- Buijs, R.M.; Geffard, M.; Pool, C.W.; Hoorneman, E.M. The dopaminergic innervation of the supraoptic and paraventricular nucles. A light and electronmicroscopical study. Brain Res. 1984, 323, 65–72. [Google Scholar] [CrossRef]
- Engelmann, M.; Ebner, K.; Landgraf, R.; Holsboer, F.; Wotjak, C.T. Emotional stress triggers intrahypothalamic but not peripheral release of oxytocin in male rats. J. Neuroendocrinol. 1999, 11, 867–872. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K. Oxytocin may mediate the benefits of positive social interactions and emotions. Psychoneuroendocrinology 1998, 23, 819–835. [Google Scholar] [CrossRef] [PubMed]
- Love, T.M. Oxytocin, motivation and the role of dopamine. Pharmacol. Biochem. Behav. 2014, 119, 49–60. [Google Scholar] [CrossRef] [PubMed]
- McGregor, I.S.; Bowen, M.T. Breaking the loop: Oxytocin as a potential treatment for drug addiction. Hormon. Behav. 2012, 61, 331–339. [Google Scholar] [CrossRef]
- Field, T.; Hernandez-Reif Diego, M.; Schanberg, S.; Kuhn, C. Cortisol decreases and serotonin and dopamine increase following massage therapy. Int. J. Neurosci. 2005, 115, 1397–1413. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K. Role of efferent and afferent vagal nerve activity during reproduction: Integrating function of oxytocin on metabolism and behavior. Psychoneuroendocrinology 1994, 19, 687–695. [Google Scholar] [CrossRef]
- Chang, H.C.; Lim, R.K.S.; Lu, Y.M.; Wang, C.C.; Wang, K.J. A vago-post-pituitary reflex III. Oxytocin component. Chin. J. Physiol. 1938, 13, 269–284. [Google Scholar]
- Manta, S.; El Mansari, M.; Debonnel, G.; Blier, P. Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Int. J. Neuropsychopharmacol. 2013, 16, 459–470. [Google Scholar] [CrossRef]
- Fernandes, A.B.; Alves da Silva, J.; Almeida, J.; Cui, G.; Gerfen, R.C.; Costa, R.M.; Oliveira-Maia, A. Postingestive modulation of food seeking depends on vagus-mediated dopamine neuron activity. Neuron 2020, 106, 778–788.e6. [Google Scholar] [CrossRef] [PubMed]
- Baskerville, T.A.; Allard, J.; Wayman, C.; Douglas, A.J. Dopamine-oxytocin interactions in penile erection. Eur. J. Neurosci. 2009, 30, 2151–2164. [Google Scholar] [CrossRef]
- Mason, W.T. Excitation by dopamine of putative oxytocinergic neurons in the rat supraoptic nucleus in vitro: Evidence for two classes of continuously firing neurons. Brain Res. 1983, 267, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.R.; Bourque, C.W.; Renaud, L. Dopamine-D2 receptor activation depolarizes rat supraoptic neurons in hypothalamic explants. J. Physiol. 1991, 443, 405–419. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K.; Alster, P.; Svensson, T.H. Amperozide and clozapine but not haloperidol or raclopride increase the secretion of oxytocin in rats. Psychopharmacology 1992, 109, 473–476. [Google Scholar] [CrossRef]
- Roeling, T.A.; Veening, J.G.; Peters, J.P.; Vermelis, M.E.; Nieuwenhuys, R. Efferent connections of the hypothalamic “grooming area” in the rat. Neuroscience 1993, 56, 199–225. [Google Scholar] [CrossRef] [PubMed]
- Melis, M.R.; Succu, S.; Sanna, F.; Boi, A.; Argiolas, A. Oxytocin injected into the ventral subiculum or the posteromedial cortical nucleus of the amygdala induces penile erection and increases extracellular dopamine levels in the nucleus accumbens of male rats. Eur. J. Neurosci. 2009, 30, 1349–1357. [Google Scholar] [CrossRef]
- De La Mora, M.; Perez-Carrera, D.; Crespo-Ramirez, M.; Tarakanov, A.; Fuxe, K.; Borroto-Escuela, D.O. Signaling in dopamine D2 receptor-oxytocin receptor heterocompexes and its relevance for the anxiolytic effects of dopamine and oxytocin interactions in the amygdala of the rat. Biochim. Biophys. Acta 2016, 1862, 2075–2085. [Google Scholar] [CrossRef]
- Borroto-Escuela, D.; Cuesta-Marti, C.; Lopez-Salas, A.; Chruscicka-Smaga, B.; Crespo-Ramirez, M.; Tesoro-Cruz, E.; Palacios-Lagunas, D.A.; Perez de la Mora, M.; Schellekens, H.; Fuxe, K. The oxytocin receptor represents a key hub in the GPCR heteroceptor network: Potential relevance for brain and behavior. Front. Mol. Neurosci. 2022, 15, 1055344. [Google Scholar] [CrossRef]
- Groppe, S.E.; Gossen, A.; Rademacher, L.; Hahn, A.; Westphal, L.; Grunder, G.; Spreckelmeyer, K.N. Oxytocin influences processing of socially relevant cues in the ventral tegmental area of the human brain. Biol. Psychiatry 2013, 74, 172–179. [Google Scholar] [CrossRef]
- Scheele, D.; Wille, A.; Kendrick, K.M.; Stoffel-Wagner, B.; Becker, B.; Gunturkun, O.; Maier, W.; Hurlemann, R. Oxytocin enhances brain reward system reponses in men viewing the face of their female partner. Proc. Natl. Acad. Sci. USA 2013, 110, 20308–20313. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, K.M.; Keverne, E.B.; Baldwin, B.A. Intracerebroventricular oxytocin stimulates maternal behavior in the sheep. Neuroendocrinology 1987, 46, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, C.A.; Prange, A.J., Jr. Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proc. Natl. Acad. Sci. USA 1979, 76, 6661–6665. [Google Scholar] [CrossRef] [PubMed]
- Bystrova, K.; Widström, A.M.; Matthiesen, A.S.; Ransjö-Arvidson, A.B.; Welles-Nyström, B.; Wassberg, C.; Vorontsov, I.; Uvnäs-Moberg, K. Skin-to-skin contact may reduce negative consequences of “the stress of being born”: A study on temperature in newborn infants, subjected to different ward routines in St. Petersburg. Acta Paediatr. 2003, 92, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Cong, X.; Ludington-Hoe, S.M.; Hussain, N.; Cusson, R.M.; Walsh, S.; Vazquez, V.; Briere, C.E.; Vittner, D. Postnatal oxytocin responses during skin-to-skin contact in preterm infants. Early Hum. Dev. 2015, 91, 401–406. [Google Scholar] [CrossRef]
- Kendrick, K.M. Oxytocin, motherhood and bonding. Exp. Physiol. 2000, 85, 111S–124S. [Google Scholar] [CrossRef]
- Sanchez-Andrade, G.; Kendrick, K.M. The main olfactory system and social learning in mammals. Behav. Brain Res. 2009, 200, 323–335. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z. Nucleus Accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience 2003, 121, 537–544. [Google Scholar] [CrossRef]
- Stolzenberg, D.S.; McKenna, J.B.; Keough, S.; Hancock, R.; Numan, M.J.; Numan, M. Dopamin D1 receptor stimulation of the nucleus accumbens or the medial preoptic area promotes the onset of maternal behavior in pregnancy-terminated rats. Behav. Neurosci. 2007, 121, 907–919. [Google Scholar] [CrossRef]
- Numan, M.; Stolzenberg, D.S. Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Front. Neuroendocrinol. 2009, 30, 46–64. [Google Scholar] [CrossRef]
- Rincon-Cortes, M.; Grace, A.A. Adaptations in reward-related behaviors and mesolimbic dopamine function during motherhood and the postpartum period. Front. Neuroendocrinol. 2020, 57, 100839. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, C.A.; Caldwell, J.D.; Walker, C.; Ayers, G.; Mason, G.A. Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic areas. Behav. Neurosci. 1994, 108, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- D’Cunha, T.M.; King, S.J.; Fleming, A.S.; Levy, F. Oxytocin receptors in the nucleus accumbens shell are involved in the consolidation of maternal memory in postpartum rats. Horm. Behav. 2011, 59, 14–21. [Google Scholar] [CrossRef]
- Shahrokh, D.K.; Zhang, T.Y.; Diorio, J.; Gratton, A.; Meaney, M.J. Oxytocin-dopamine interactions mediate variations in maternal behavior in the rat. Endocrinology 2010, 151, 2276–2286. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tai, F.; Lai, X. Cocaine withdrawal influences paternal behavior and associated central expression of vasopressin, oxytocin and tyrosine hydroxylase in mandarin voles. Neuropeptides 2014, 48, 29–35. [Google Scholar] [CrossRef]
- Gregory, R.; Cheng, H.; Rupp, H.A.; Sengelaub, D.R.; Helman, J.R. Oxytocin increases VTA activation to infant and sexual stimuli in nulliparous and postpartum women. Horm. Behav. 2015, 69, 82–88. [Google Scholar] [CrossRef]
- Bartels, A.; Zeki, S. The neural correlates of maternal and romantic love. Neuroimage 2004, 21, 1155–1166. [Google Scholar] [CrossRef]
- Strathearn, L. Maternal neglect: Oxytocin, dopamine and the neurobiology of attachment. J. Neuroendocrinol. 2011, 23, 1054–1065. [Google Scholar] [CrossRef] [PubMed]
- Strathearn, L.; Fonagy, P.; Amico, J.; Montague, P.R. Adult attachmentpredicts maternal brain and oxytocin response to infant cues. Neuropsychopharmacology 2009, 34, 2655–2666. [Google Scholar] [CrossRef]
- Atzil, S.; Hendler, T.; Feldman, R. Specifying the neurobiologicalbasis of human attachment: Brain, hormones and behavior insynchronous and intrusive mothers. Neuropsychopharmacology 2011, 36, 2603–2615. [Google Scholar] [CrossRef]
- Li, T.; Chen, X.; Mascaro, J.; Haaron, E.; Rilling, J.K. Intranasal oxytocin, but not vasopressin, augments neural responses to toddlers in human fathers. Horm. Behav. 2017, 93, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Naef, L.; Pitman, K.A.; Borgland, S.L. Mesolimbic Dopamine and Its Neuromodulators in Obesity and Binge Eating. CNS Spectr. 2015, 20, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, L.; Hoebel, B.G. Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci. 1988, 42, 1705–1712. [Google Scholar] [CrossRef] [PubMed]
- Oltmans, G. Norepinephrine and dopamine levels in hypothalamic nuclei of the genetically obese mouse (ob/ob). Brain Res. 1983, 273, 369–373. [Google Scholar] [CrossRef]
- Pothos, E.; Creese, I.; Hoebel, B. Restricted eating with weight loss selectively decreases extracellular dopamine in the nucleus accumbens and alters dopamine response to amphetamine, morphine, and food intake. J. Neurosci. 1995, 15, 6640–6650. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Zhao, W.; Sun, L.; Zhang, R.; Zhu, S.; Xie, K.; Feng, X.; Wu, X.; Sun, Z.; et al. Food reward depends on TLR4 activation in dopaminergic neurons. Pharmacol. Res. 2021, 169, 105659. [Google Scholar] [CrossRef]
- Liu, C.M.; Spaulding, M.O.; Rea, J.J.; Noble, E.E.; Kanoski, S.E. Oxytocin and food intake control: Neural, behavioral, and signaling mechanisms. Int. J. Mol. Sci. 2021, 22, 10859. [Google Scholar] [CrossRef]
- Sabatier, N.; Caquineau, C.; Dayanithi, G.; Bull, P.; Douglas, A.J.; Guan, X.M.M.; Jiang, M.; Van der Ploeg, L.; Leng, G. Alpha-melanocyte-stimulating hormone stimulates oxytocin release from the dendrites of hypothalamic neurons while inhibiting oxytocin release from their terminals in the neurohypophysis. J. Neurosci. 2003, 23, 10351–10358. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K.; Alster, P.; Petersson, M. Dissociation of oxytocin effects on body weight in two variants of female Sprague-Dawley rats. Integr. Physiol. Behav. Sci. 1996, 31, 44–55. [Google Scholar] [CrossRef]
- McCormack, S.E.; Blevins, J.E.; Lawson, E.A. Metabolic Effects of Oxytocin. Endocr. Rev. 2019, 41, 121–145. [Google Scholar] [CrossRef]
- Blevins, J.E.; Schwartz, M.W.; Baskin, D.G. Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size. Am. J. Physiol. 2004, 287, R87–R96. [Google Scholar] [CrossRef] [PubMed]
- Bojanowska, E.; Stempniak, B. Effects of centrally or systemically injected glucagon-like peptide-1 (7–36) amide on release of neurohypophysial hormones and blood pressure in the rat. Regul. Pept. 2000, 91, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Moon, H.; Lee, H.; Oh, Y.; Kim, C.; Lee, Y.H.; Kim, M.S.; NamKoong, C.; Lee, H.W.; Kim, J.H. Antagonistic interaction between central glucagon-like Peptide-1 and oxytocin on diet-induced obesity mice. Heliyon 2020, 6, e05190. [Google Scholar] [CrossRef]
- Altirriba, J.; Poher, A.L.; Caillon, A.; Arsinijevic, D.; Veyrat-Durebex, C.; Lyautey, J.; Dulloo, A.; Rohner-Jeanrenaud, F. Divergent effects of oxytocin treatment of obese diabetic mice on adiposity and diabetes. Endocrinology 2014, 155, 4189–4201. [Google Scholar] [CrossRef] [PubMed]
- Small, D.M.; Jones-Gotman, M.; Dagher, A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 2003, 19, 1709–1715. [Google Scholar] [CrossRef]
- Wang, G.J.; Volkow, N.D.; Logan, J.; Pappas, N.R.; Wong, C.T.; Zhu, W.; Netusil, N.; Fowler, J.S. Dopamine and obesity. Lancet 2001, 357, 354–357. [Google Scholar] [CrossRef]
- Kaye, W. Neurobiology of anorexia and bulimia nervosa. Physiol. Behav. 2008, 94, 121–135. [Google Scholar] [CrossRef]
- Iovino, M.; Messana, T.; Marucci, S.; Triggiani, D.; Giagulli, V.A.; Guastamacchia, E.; Piazzolla, G.; De Pergola, D.; Lisco, G.; Triggiani, V. The neurohypophyseal hormone oxytocin and eating behaviors: A narrative review. Hormones 2024, 23, 15–23. [Google Scholar] [CrossRef]
- Petersson, M.; Höybye, C. Is oxytocin a contributor to behavioral and metabolic features in Prader-Willi Syndrome? Curr. Issues Mol. Biol. 2024, 46, 8767–8779. [Google Scholar] [CrossRef]
- Young, L.J.; Wang, Z. The neurobiology of pair bonding. Nat. Neurosci. 2004, 7, 1048–1054. [Google Scholar] [CrossRef]
- Argiolas, A.; Melis, M.R. Central control of penile erection: Role of the paraventricular nucleus of the hypothalamus. Prog. Neurobiol. 2005, 76, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Martino, B.; Hsieh, G.C.; Hollingsworth, P.R.; Mikusa, J.P.; Moreland, R.B.; Bitner, R.S. Central oxytocinergic and dopaminergic mechanisms regulating penile erection in conscious rats. Pharmacol. Biochem. Behav. 2005, 81, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Argiolas, A.; Melis, M.R.; Mauri, A.; Gessa, G.L. Paraventricular nucleus lesion prevents yawning and penile erection induced by apomorphine and oxytocin but not by acth in rats. Brain Res. 1987, 421, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, L.M.; Pfaus, J.G.; Pfaff, D.W.; Mcewen, B.S. Induction of Fos immunoreactivity in oxytocin neurons after sexual-activity in female rats. Neuroendocrinology 1993, 58, 352–358. [Google Scholar] [CrossRef]
- Carmichael, M.S.; Humbert, R.; Dixen, J.; Palmisano, G.; Greenleaf, W.; Davidson, J.M. Plasma oxytocin increases in the human sexual-response. J. Clin. Endocrinol. Metabol. 1987, 64, 27–31. [Google Scholar] [CrossRef]
- Uckert, S.; Becker, A.J.; Ness, B.O.; Stief, C.G.; Scheller, F.; Knapp, W.H.; Jonas, U. Oxytocin plasma levels in the systemic and cavernous blood of healthy males during different penile conditions. World J. Urol. 2003, 20, 323–326. [Google Scholar] [CrossRef]
- Blaicher, W.; Gruber, D.; Bieglmayer, C.; Blaicher, A.M.; Knogler, W.; Huber, J.C. The role of oxytocin in relation to female sexual arousal. Gynecol. Obstetr. Investig. 1999, 47, 125–126. [Google Scholar] [CrossRef]
- Ferguson, J.N.; Young, L.J.; Hearn, E.F.; Matzuk, M.M.; Insel, T.R.; Winslow, J.T. Social amnesia in mice lacking the oxytocin gene. Nat. Genet. 2000, 25, 284–288. [Google Scholar] [CrossRef]
- Crawley, J.N.; Chen, T.; Puri, A.; Washburn, R.; Sullivan, T.L.; Hill, J.M.; Young, N.B.; Nadler, J.J.; Moy, S.S.; Young, L.J. Social approach behaviors in oxytocin knockout mice: Comparison of two independent lines tested in different laboratory environments. Neuropeptides 2007, 41, 145–163. [Google Scholar] [CrossRef]
- Lee, H.J.; Caldwell, H.K.; Macbeth, A.H.; Tolu, S.G.; Young, W.S. A conditional knockout mouse line of the oxytocin receptor. Endocrinology 2008, 149, 3256–3263. [Google Scholar] [CrossRef]
- Ebner, K.; Bosch, O.J.; Kromer, S.A.; Singewald, N.; Neumann, I.D. Release of oxytocin in the rat central amygdala modulates stress-coping behavior and the release of excitatory amino acids. Neuropsychopharmacology 2005, 30, 223–230. [Google Scholar] [CrossRef]
- Hung, L.W.; Neuner, S.; Polepalli, J.S.; Beier, K.T.; Wright, M.; Walsh, J.J.; Lewis, E.M.; Luo, L.; Deisseroth, K.; Döelen, G.; et al. Gating of social reward by oxytocin in the ventral tegmental area. Science 2017, 357, 1406–1411. [Google Scholar] [CrossRef]
- Popik, P.; Van Ree, J.M. Oxytocin but not vasopressin facilities social recognition following injection into the medial preoptic area of the rat brain. Eur. Neuropsychopharmacol. 1991, 1, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Oetti, L.L.; Ravi, N.; Schneider, M.; Scheller, M.F.; Schneider, P.; Mitre, M.; da Silva Gouvela, M.; Froemke, R.C.; Chao, M.V.; Young, W.S.; et al. Oxytocin enhances social recognition by modulating cortical control of early olfactory processing. Neuron 2016, 90, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, Q.; Wen, P.; Zhang, J.; Rao, X.; Zhou, Z.; Zhang, H.; He, X.; Li, J.; Zhou, Z.; et al. Activation of the dopaminergic pathway from VTA to the medial olfactory tubercle generates odor-preference and reward. eLife 2017, 6, e25423. [Google Scholar] [CrossRef] [PubMed]
- Schaller, F.; Watrin, F.; Sturny, R.; Massacrier, A.; Szepetowski, P.; Muscatelli, F.A. single postnatal injection of oxytocin rescues the lethal feeding behavior in mouse newborns deficient for the imprinted Magel2 gene. Hum. Mol. Genet. 2010, 19, 4895–4905. [Google Scholar] [CrossRef] [PubMed]
- Meziane, H.; Schaller, F.; Bauer, S.; Villard, C.; Matarazzo, V.; Riet, F.; Guillon, G.; Lafitte, D.; Desarmenien, M.G.; Tauber, M.; et al. An early postnatal oxytocin treatment prevents social and learning deficits in adult mice deficient for Magel2, a gene involved in Prader-Willi Syndrome and autism. Biol. Psychiatry 2015, 78, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Cabiale, Z.; Olausson, H.; Sohlström, A.; Agnati, L.F.; Narváez, J.A.; Uvnäs-Mobeg, K.; Fuxe, K. Long-term modulation by postnatal oxytocin of the alpha 2-adrenoceptor agonist binding sites in central autonomic regions and the role of prenatal stress. J. Neuroendocrinol. 2004, 16, 183–190. [Google Scholar] [CrossRef]
- Burkett, J.P.; Andari, E.; Johnson, Z.V.; Curry, D.C.; de Waal, F.B.M.; Young, L.J. Oxytocin-dependent consolation behavior in rodents. Science 2016, 351, 375–378. [Google Scholar] [CrossRef]
- Insel TR, Shapiro LE Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc. Natl. Acad. Sci. USA 1992, 89, 5981–5985. [CrossRef]
- Rehn, T.; Handlin, L.; Uvnäs-Mober, K.; Keeling, L.J. Dogs endocrine and behavioural responses are affected by how the human inititates contact. Physiol. Behav. 2014, 124, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Hovey, D.; Martens, L.; Laeng, B.; Leknes, S.; Westberg, L. The effect of intranasal oxytocin on visual processing and salience of human faces. Transl. Psychiatry 2020, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Dolen, G.; Darvishzadeh, A.; Huang, K.W.; Malenka, R.C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 2013, 501, 179–184. [Google Scholar] [CrossRef]
- Grewen, K.; Girdler, S.; Amico, J.; Light, K. Effects of partner support of resting oxytocin, cortisol, norepinephrine and blood pressure before and after warm partner contact. Psychosom. Med. 2005, 67, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Kosfeld, M.; Heinrichs, M.; Zak, P.J.; Fischbacher, U.; Fehr, E. Oxytocin increases trust in humans. Nature 2005, 435, 673–676. [Google Scholar] [CrossRef] [PubMed]
- Zebhauser, P.T.; Macchia, A.; Gold, E.; Salcedo, S.; Burum, B.; Alons-Alonso, M.; Gilbert, D.T.; Pascual-Leone, A.; Brem, A.K. Intranasal Oxytocin Modulates Decision-Making Depending on Outcome Predictability—A Randomized Within-Subject Controlled Trial in Healthy Males. Biomedicines 2022, 10, 3230. [Google Scholar] [CrossRef]
- Leng, G.; Ludwig, M. Intranasal oxytocin: Myths and delusion. Rev. Biol. Psychiatry 2016, 79, 243–250. [Google Scholar] [CrossRef]
- Domes, G.; Heinrichs, M.; Gläscher, J.; Buchel, C.; Braus, D.F.; Herpertz, S.C. Oxytocin attenuates amygdala reponses to emotional faces regardless of valence. Biol. Psychiatry 2007, 62, 1187–1190. [Google Scholar] [CrossRef]
- Rilling, J.K.; Chen, X.; Chen, X.; Haroon, E. Intranasal oxytocin modulates neural functional connectivity during human social interactions. Am. J. Primatol. 2018, 80, e22740. [Google Scholar] [CrossRef]
- Joffe, M.E.; Grueter, C.A.; Grueter, B.A. Biological substrates of addiction. Wiley Interdiscip. Rev. Cogn. Sci. 2014, 5, 151–171. [Google Scholar] [CrossRef]
- Sarnyai, Z.; Vecsernyes, M.; Laczi, F.; Biro, E.; Szabo, G.; Kovacs, G.L. Effects of cocaine on the contents of neurohypophyseal hormones in the plasma and In different brain structures in rats. Neuropeptides 1992, 23, 27–31. [Google Scholar] [CrossRef]
- Friedman, J.H. Punding on levodopa. Biol. Psychiatry 1994, 36, 350–351. [Google Scholar] [CrossRef] [PubMed]
- Blood, A.J.; Zatorre, R.J. Intensely pleasurable reponses to music correlate with activity in brain regions implicated in reward and emotions. Proc. Natl. Acad. Sci. USA 2001, 98, 11818–11823. [Google Scholar] [CrossRef] [PubMed]
- Ooishi, Y.; Mukai, H.; Watanabe, K.; Kawato, S.; Kashino, M. Increase in salivary oxytocin and decrease in salivary cortisol after listening to relaxing slow-tempo and exciting fast-tempo music. PLoS ONE 2017, 12, e0189075. [Google Scholar] [CrossRef]
- Koepp, M.J.; Gunn, R.N.; Lawrence, A.D.; Cunningham, V.J.; Dagher, A.; Jones, T.; Brooks, D.J.; Bench, C.J.; Grasby, P.M. Evidence for striatal dopamine release during a video game. Nature 1998, 393, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, A.; Lejoyeux, M. Neurobiological mechanisms underlying internet gaming disorder. Dialogues Clin. Neurosci. 2020, 22, 113–126. [Google Scholar] [CrossRef]
- Baik, J.H. Stress and the dopaminergic reward system. Exp. Mol. Med. 2020, 52, 1879–1890. [Google Scholar] [CrossRef]
- Dremencov, E.; Lapshin, M.; Komelkova, M.; Alliluev, A.; Tseilikman, O.; Karpenko, M.; Pestereva, N.; Manukhina, E.; Downey, H.F.; Tseilikman, V. Chronic predator scent stress alters serotonin and dopamine levels in the rat thalamus and hypothalamus, respectively. Gen. Physiol. Biophys. 2019, 38, 187–190. [Google Scholar] [CrossRef]
- Chang, C.H.; Grace, A.A. Amygdala-ventral pallidum pathway decreases dopamine activity after chronic mild stress in rats. Biol. Psychiatry 2014, 76, 223–230. [Google Scholar] [CrossRef]
- Petersson, M.; Ahlenius, S.; Wiberg, U.; Alster, P.; Uvnäs-Moberg, K. Steroid dependent effects of oxytocin on spontaneous motor activity in female rats. Brain Res. Bull. 1998, 45, 301–305. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K.; Ahlenius, S.; Hillegaart, V.; Alster, P. High doses of oxytocin cause sedation and low doses cause an anxiolytic-like effect in male rats. Pharmacol. Biochem. Behav. 1994, 49, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Petersson, M.; Uvnäs-Moberg, K. Postnatal oxytocin treatment of spontaneously hypertensive male rats decreases blood pressure and body weight in adulthood. Neurosci. Lett. 2008, 440, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Uvnäs-Moberg, K.; Alster, P.; Petersson, M.; Sohlsröm, A.; Björkstrand, E. Postnatal oxytocin injections cause sustained weight gain and increased nociceptive thresholds in male and female rats. Pediatr Res. 1998, 43, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Rault, J.L.; Carter, C.S.; Garner, J.P.; Marchant, J.N.; Richert, B.T.; Lay, D.C., Jr. Repeated intranasal oxytocin administration in early life dysregulates the HPA-axis and alters social behavior. Physiol. Behav. 2013, 112–113, 40–48. [Google Scholar] [CrossRef]
- Bahi, A.; Dreyer, J.L. Dopamine transporter (DAT) knockdown in the nucleus accumbens improves anxiety- and depression-related behaviors in adult mice. Behav. Brain Res. 2019, 359, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.; Ellenbogen, M.A.; Orlando, M.A.; Bacon, S.L.; Joober, R. Intranasal oxytocin attenuates the cortisol response to physical stress: A dose-response study. Psychoneuroendocrinology. 2013, 38, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Guastella, A.J.; Howard, A.L.; Dadds, M.R.; Mitchell, P.; Carson, D.S. A randomized controlled trial of intranasal oxytocin as an adjunct to exposure therapy for social anxiety disorder. Psychoneuroendocrinology 2009, 34, 917–923. [Google Scholar] [CrossRef]
- Bey, K.; Campos-Martin, R.; Klawohn, J.; Reuter, B.; Grutzmann, R.; Riesel, A.; Wagner, M.; Ramirez, A.; Kathmann, N. Hypermethylation of the oxytocin receptor gene (OXTR) in obsessive-compulsive disorder: Further evidence for a biomarker of disease and treatment response. Epigenetics 2022, 17, 642–652. [Google Scholar] [CrossRef]
- Koo, M.S.; Kim, E.J.; Roh, D.; Kim, C.H. Role of dopamine in the pathophysiology and treatment of obsessive–compulsive disorder. Expert Rev. Neurother. 2010, 10, 275–290. [Google Scholar] [CrossRef]
- Kaufling, J. Alterations and adaption of ventral tegmental area dopaminergic neurons in animal models of depression. Cell Tissue Res. 2019, 377, 59–71. [Google Scholar] [CrossRef]
- Arletti, R.; Bertolini, A. Oxytocin acts as an antidepressant in two animal models of depression. Life Sci. 1987, 41, 1725–1730. [Google Scholar] [CrossRef] [PubMed]
- Uvnäs-Moberg, K.; Björkstrand, E.; Hillegaart, V.; Ahlenius, S. Oxytocin as a possible mediator of SSRI-induced antidepressant effects. Psychopharmacology 1999, 142, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Humble, M.B.; Uvnäs-Moberg, K.; Engström, I.; Bejerot, S. Plasma oxytocin changes and anti-obsessive response during serotonin reuptake inhibitor treatment: A placebo controlled study. BMC Psychiatry 2013, 13, 344. [Google Scholar] [CrossRef]
- Kim, S.; Webster, M.J. The Stanley neuropathology consortium integrative database: A novel, web-based tool for exploring neuropathological markers in psychiatric disorders and the biological processes associated with abnormalities of those markers. Neuropsychopharmacology 2010, 35, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, Y.; Ashok, A.H.; Bhat, B.B.; Jauhar, S.; Howes, O.D. Dopamine in major depressive disorder: A systematic review and meta-analysis of in vivo imaging studies. J. Psychopharmacol. 2023, 37, 1058–1069. [Google Scholar] [CrossRef]
- D’Haenen, H.A.; Bossuyt, A. Dopamine D2 receptors in depression measured with single photon emission computed tomography. Biol. Psychiatry 1994, 35, 128–132. [Google Scholar] [CrossRef]
- Tundo, A.; de Filippis, R.; De Crescenzo, F. Pramipexole in the treatment of unipolar and bipolar depression. A systematic review and meta-analysis. Acta. Psychiatr. Scand 2019, 140, 116–125. [Google Scholar] [CrossRef]
- Ozsoy, S.; Esel, E.; Kula, M. Serum oxytocin levels in patients with depression and the effects of gender and antidepressant treatment. Psychiatry Res. 2009, 169, 249–252. [Google Scholar] [CrossRef]
- Slattery, D.A.; Neumann, I.D. Oxytocin and Major Depressive Disorder: Experimental and Clinical Evidence for Links to Aetiology and Possible Treatment. Pharmaceuticals 2010, 3, 702–724. [Google Scholar] [CrossRef]
- Scantamburlo, G.; Ansseau, M.; Geenen, V.; Legros, J.J. Intranasal oxytocin as an adjunct to escitalopram in major depression. J. Neuropsychiatry Clin. Neurosci. 2011, 23, E5. [Google Scholar] [CrossRef]
- McQuaid, R.J.; McInnis, O.A.; Abizaid, A.; Anisman, H. Making room for oxytocin in understanding depression. Neurosci. Biobehav. Rev. 2014, 45, 305–322. [Google Scholar] [CrossRef] [PubMed]
- Baron-Cohen, K.L.; Feldman, R.; Fearon, P.; Fonagy, P. Intranasal oxytocin administration improves mood in new mothers with moderate low mood but not in mothers with elevated symptoms of postnatal depression: A randomised controlled trial. J. Affect. Disord. 2022, 300, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Kim, Y.K. The Role of the Oxytocin System in Anxiety Disorders. Adv. Exp. Med. Biol. 2020, 1191, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Brune, C.W.; Carter, C.S.; Leventhal, B.L.; Lord, C.; Cook, E.H. Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neurosci. Lett. 2007, 417, 6–9. [Google Scholar] [CrossRef]
- Yrigollen, C.M.; Han, S.S.; Kochetkova, A.; Babitz, T.; Chang, J.T.; Volkmar, F.R.; Leckman, J.F.; Grigorenko, E.L. Genes controlling affiliative behavior as candidate genes for autism. Biol. Psychiatry 2008, 63, 911–916. [Google Scholar] [CrossRef]
- Sgritta, M.; Dooling, S.W.; Buffington, S.A.; Momin, E.N.; Francis, M.B.; Britton, R.A.; Costa-Mattioli, M. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorders. Neuron 2019, 101, 246–259. [Google Scholar] [CrossRef]
- Bertoni, A.; Schaller, F.; Tyzio, R.; Gaillard, S.; Santini, F.; Xolin, M.; Diabira, D.; Vaidyanathan, R.; Matarzzo, V.; Medina, I.; et al. Oxytocin administration in neonates shapes hippocampal circuitry and restores social behavior in a mouse model of autism. Mol. Psychiatry 2021, 26, 7582–7595. [Google Scholar] [CrossRef]
- Moerkerke, M.; Peeters, M.; de Vries, L.; Daniels, N.; Steyaert, J.; Alaerts, K.; Boets, B. Endogenous Oxytocin Levels in Autism-A Meta-Analysis. Brain Sci. 2021, 11, 1545. [Google Scholar] [CrossRef] [PubMed]
- Hollander, E.; Novotny, S.; Hanratty, M.; Yaffe, R.; DeCaria, C.M.; Aronowitz, B.R.; Mosovich, S. Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger’s disorders. Neuropsychopharmacology 2003, 28, 193–198. [Google Scholar] [CrossRef]
- Jeung-Maarse, H.; Schmitgen, M.M.; Schmitt, R.; Bertsch, K.; Herpertz, S.C. Oxytocin effects on amygdala reactivity to angry faces in males and females with antisocial personality disorder. Neuropsychopharmacology 2023, 48, 946–953. [Google Scholar] [CrossRef]
- Kruppa, J.A.; Gossen, A.; Oberwelland, E.W.; Kohls, G.; Grosheinrich, N.; Cholemkery, H.; Freitag, C.M.; Karges, W.; Wölfle, E.; Sinzig, J.; et al. Neural modulation of social reinforcement learning by intranasal oxytocin in male adults with high-functioning autism spectrum disorder: A randomized trial. Neuropsychopharmacology 2019, 44, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Gadow, K.D.; Roohi, J.; De Vincent, C.J.; Hatchwell, E. Association of ADHD, tics, and anxiety with dopamine transporter (DAT1) genotype in autism spectrum disorder. J. Child Psychol. Psychiatry 2008, 49, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Alabdali, A.; Al-Ayadhi, L.; El-Ansary, A. Association of social and cognitive impairment and biomarkers in autism spectrum disorders. J. Neuroinflamm. 2014, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- El-Ansary, A.K.; Bacha, A.B.; Al-Ayahdi, L. Relationship between chronic lead toxicity and plasma neurotransmitters in autistic patients from Saudi Arabia. Clin. Biochem. 2011, 44, 1116–1120. [Google Scholar] [CrossRef]
- MErnst, A.J.; Zametkin, J.A.; Matochik, D.; Pascualvaca, R.M. Cohen. Low medial prefrontal dopaminergic activity in autistic children. Lancet 1997, 350, 638. [Google Scholar] [CrossRef]
- DiCarlo, G.E.; Wallace, M.T. Modeling dopamine dysfunction in autism spectrum disorder: From invertebrates to vertebrates. Neurosci. Biobehav. Rev. 2022, 133, 104494. [Google Scholar] [CrossRef]
- Li, Q.; Lu, G.; Antonio, G.; Mak, Y.; Rudd, J.A.; Fan, M.; Yew, D.T. The usefulness of the spontaneously hypertensive rat to model attention-deficit/hyperactivity disorder (ADHD) may be explained by the differential expression of dopamine-related genes in the brain. Neurochem. Int. 2007, 50, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Leffa, D.T.; Panzenhagen, A.C.; Rovaris, D.L.; Bau, C.H.D.; Rohde, L.A.; Grevet, E.H.; Pires, G.N. Systematic review and meta-analysis of the behavioral effects of methylphenidate in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Neurosci. Biobehav. Rev. 2019, 100, 166–179. [Google Scholar] [CrossRef]
- Kim, D.; Yaday, D.; Song, M. An updated review on animal models to study attention-deficit hyperactivity disorder. Transl. Psychiatry 2024, 14, 187. [Google Scholar] [CrossRef]
- Van Tol, H.H.; van den Buuse, M.; de Jong, W.; Burbach, J.P. Vasopressin and oxytocin gene expression in the supraoptic and paraventricular nucleus of the spontaneously hypertensive rat (SHR) during development of hypertension. Brain Res 1988, 464, 303–311. [Google Scholar] [CrossRef]
- Hersey, M.; Bacon, A.K.; Bailey, L.G.; Lee, M.R.; Chen, A.Y.; Leggio, L.; Tanda, G. Oxytocin receptors mediate oxytocin potentiation of methylphenidate-induced stimulation of accumbens dopamine in rats. J. Neurochem. 2023, 164, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Del Campo, N.; Fryer, T.D.; Hong, Y.T.; Smith, R.; Brichard, L.; Acosta-Cabronero, J.; Chamberlain, S.R.; Tait, R.; Izquierdo, D.; Regenthal, R.; et al. A positrion emission tomography study of nigrostriatal dopaminergic mechansisms underlying attention: Implications for ADHD and its treatment. Brain 2013, 136 Pt 11, 3252–3270. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xiao, H.; Sun, H.; Zou, L.; Zhu, L.Q. Role of dopamine receptors in ADHD: A systematic meta-analysis. Mol. Neurobiol. 2012, 45, 605–620. [Google Scholar] [CrossRef] [PubMed]
- Schachar, O.L.; Gvirts, H.Z.; Goldwin, Y.; Bloch, Y.; Sharnay-Tsoory, S.; Zagoory-Sharon, O.; Feldman, R.; Maoz, H. The effect of methylphenidate on social cogniditon and oxytocin in children with attention deficit hyperactivity disorder. Neuropsychopharmacology 2020, 45, 367–373. [Google Scholar] [CrossRef]
- Sasaki, T.; Hashimoto, K.; Oda, Y.; Ishima, T.; Kurata, T.; Takahashi, J.; Kamata, Y.; Kimura, H.; Niitsu, T.; Komatsu, H.; et al. Decreased levels of serum oxytocin in pediatric patients with attention deficit/hyperactivity disorder. Psychiatry Res. 2015, 228, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Wernicke, J.; Zhang, Y.; Felten, A.; Du, J.; Yao, S.; Kou, J.; Chen, Y.; Kendrick, K.M.; Becker, B.; Reuter, M.; et al. Blood oxytocin levels are not associated with ADHD tendencies and emotionality in healthy controls. Neurosci. Lett. 2020, 738, 135312. [Google Scholar] [CrossRef]
- Stokholm, L.; Juhl, M.; Talge, N.M.; Gissler, M.; Obel, C.; Strandberg-Larsen, K. Obstetric oxytocin exposure and ADHD and ASD among Danish and Finnish children. Int. J. Epidemiol. 2021, 50, 446–456. [Google Scholar] [CrossRef]
- Jallow, J.; Hurtig, T.; Kerkelä, M.; Miettunen, J.; Halt, A.H. Prenatal maternal stress,, breastfeeding and offspring ADHD symptoms. Eur. Child Adolesc. Psychiatry 2024. [Google Scholar] [CrossRef]
- Buckley, S.; Uvnäs-Moberg, K.; Pajalic, Z.; Luegmair, K.; Ekström-Bergström, A.; Dencker, A.; Massarotti, C.; Kotlowska, A.; Callaway, L.; Morano, S.; et al. Maternal and newborn plasma oxytocin levels in response to maternal synthetic oxytocin administration during labour, birth and postpartum—A systematic review with implications for the function of the oxytocinergic system. BMC Pregnancy Childbirth 2023, 23, 137. [Google Scholar] [CrossRef]
- Knable, M.B.; Weinberger, D.R. Dopamine, the prefrontal cortex and schizophrenia. J. Psychopharmacol. 1997, 11, 123–131. [Google Scholar] [CrossRef]
- Schulz, J.; Zimmerman, J.; Sorg, C.; Menegaux, A.; Brandt, F. Magnetic resonance imaging of the dopamine system in schizophrenia—A scoping review. Front. Psychiatry 2022, 13, 925476. [Google Scholar] [CrossRef] [PubMed]
- Brisch, R.; Saniotis, A.; Wolf, R.; Bielau, H.; Bernstein, H.G.; Steiner, J.; Bogerts, B.; Braun, K.; Jankowski, Z.; Kumaratilake, J.; et al. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: Old fashioned, but still in vogue. Front. Psychiatry 2014, 5, 47. [Google Scholar] [CrossRef]
- Goh, K.K.; Chen, C.H.; Lanr, H.Y. Oxytocin in schizophrenia: Pathophysiology and implications for future treatment. Int. J. Mol. Sci. 2021, 22, 2146. [Google Scholar] [CrossRef]
- Jones, C.A.; Watson, D.J.G.; Fone, K.C.R. Animal models of schizophrenia. Br. J. Pharmacol. 2011, 164, 1162–1194. [Google Scholar] [CrossRef] [PubMed]
- Rubin, L.H.; Carter, C.S.; Drogos, L.; Pournajafi-Nazarloo, H.; Sweeney, J.A.; Maki, P.M. Peripheral oxytocin is associated with reduced symptom severity in schizophrenia. Schizophr. Res. 2010, 124, 13–21. [Google Scholar] [CrossRef]
- Bradley, E.R.; Seitz, A.; Niles ANRankin, K.P.; Mathalon, D.H.; O’Donovan, A.; Woolley, J.D. Oxytocin increases eye gaze in schizophrenia. Schizophr. Res. 2019, 212, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Sasayama, D.; Hattori, K.; Teraishi, T.; Hori, H.; Ota, M.; Yoshida, S.; Arima, K.; Higuchi, T.; Amano, N.; Kuugi, H. Negative correlation between cerebrospinal fluid oxytocin levels and negative symptoms of male patients with schizophrenia. Schizophr. Res. 2012, 139, 201–206. [Google Scholar] [CrossRef]
- Cochran, D.; Fallon, D.; Hill, M.; Frazier, J.A. The role of oxytocin in psychiatric disorders: A review of biological and therapeutic research findings. Harv. Rev. Psychiatry 2013, 21, 219–247. [Google Scholar] [CrossRef]
- Procyshyn, T.L.; Dupertuys, J.; Bartz, J.A. Neuroimaging and behavioral evidence of sex-specific effects of oxytocin on human sociality. Trends Cogn. Sci. 2024, 28, 948–961. [Google Scholar] [CrossRef]
- Gedeon, T.; Parry, J.; Völlm, B. The role of oxytocin in antisocial personality disorders: A systematic review of the literature. Front. Psychiatry 2019, 10, 76. [Google Scholar] [CrossRef]
- Love, T.M.; Enoch, M.A.; Hodgkinson, C.A.; Pecina, M.; Mickey, B.; Koeppe, R.A.; Stohler, C.S.; Goldman, D.; Zubieta, J.K. Oxytocin gene polymorphisms influence human dopaminergic function in a sex-dependent manner. Biol. Psychiatry 2012, 72, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Makmanb, M.H.; Costaina, W.J.; Naira, V.D.; Johnson, R.L. Modulation of agonist stimulated adenylyl cyclase and GTPase activity by L-pro-L-leu-glycinamide and its peptidomimetic analogue in rat striatal membranes. Neurosci. Lett. 1999, 269, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Petersson, M.; Uvnäs-Moberg, K. Prolyl-leucyl-glycine amide shares some effects with oxytocin, but decreases oxytocin levels. Physiol. Behav. 2004, 83, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Moy, S.S.; Teng, B.L.; Nikolova, V.D.; Riddick, N.V.; Simpson, C.D.; Van Deusen, A.; Janzen, W.P.; Sassano, M.F.; Pedersen, C.A.; Jarstfer, M.B. Prosocial effects on an oxytocin metabolite, but not synthetic oxytocin receptor agonists, in a mouse model of autism. Neuropharmacology 2019, 144, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Rae, M.; Duarte, M.L.; Gomes, I.; Camarini, R.; Devi, L.A. Oxytocin and vasopressin: Signalling, behavioral modulation and potential therapeutic effects. Br. J. Pharmacol. 2022, 179, 1544–1564. [Google Scholar] [CrossRef]
- Kim, S.; Kwok, S.; Mayes, L.C.; Potenza, M.C.; Rutherford, H.J.; Strathearn, L. Early adverse experience and substance addiction: Dopamine, oxytocin, and glucocorticoid pathways. Ann. N. Y. Acad. Sci. 2017, 1394, 74–91. [Google Scholar] [CrossRef]
- Roof, E.; Deal, C.L.; McCandless, S.E.; Cowan, R.L.; Miller, J.L.; Hamilton, J.K.; Roeder, E.R.; McCormack, S.E.; Roshan Lal, T.R.; Abdul-Latif, H.D.; et al. Intranasal carbetocin reduces hyperphagia, anxiousness, and distress in Prader-Willi Syndrome: Care-PWS Phase 3 Trial. J. Clin. Endocrinol. Metab. 2023, 108, 1696–1708. [Google Scholar] [CrossRef]
- Frantz, M.C.; Pellissier, L.P.; Pflimlin, E.; Loison, S.; Gandia, J.; Marsol, C.; Durroux, T.; Mouillac, B.; Becker, J.A.J.; Le Merrer, J.; et al. LIT-001, the first nonpeptide oxytocin receptor agonist that improves social interaction in a mouse model of autism. J. Med. Chem. 2018, 61, 8670–8692. [Google Scholar] [CrossRef]
- Ford, C.L.; McDonough, A.A.; Horie, K.; Young, L.J. Melanocortin agonism in a social conttex selectively activates nucleus accumbens in an oxytocin-dependent manner. Neuropharmacology 2024, 247, 109848. [Google Scholar] [CrossRef]
- Andreasson, O.A. Intranasal Oxytocin in Youth with Autism 2024 ClinicalTrials.gov NCT05934812. Available online: https://clinicaltrials.gov/study/NCT05934812 (accessed on 17 September 2024).
- Adanson, J. Interest of Oxytocin as an Adjuvant Treatment of Psycho-Educational Measures in Challenging Behaviors in Children with Autism Spectrum Disorders and Moderate to Severe Intellectual Disability: Feasibility and Safety Study. 2023 ClinicalTrials.gov NCT05864508. Available online: https://clinicaltrials.gov/study/NCT05864508 (accessed on 17 September 2024).
Oxytocin | Dopamine | |
---|---|---|
Chemical structure | Nonapeptide | Monoamine |
Receptors | One main receptor | Two main types divided into five subtypes (D1–D5) |
Main production sites within the brain | Hypothalamus | Substantia nigra, ventral tegmental area |
Main behavioral effects | Maternal, sexual, and social behavior | Rewarding and sexual behavior |
Typical emotional effects | Anxiolytic, calming, and relaxing | Pleasure, motivation, and alertness |
Parental behavior | OXT ↑ → DA ↑ |
Sexual behavior | OXT ↑ → DA ↑ |
Social behavior/pair bonding | OXT ↑ → DA ↑ |
Feeding behavior | OXT ↑ → DA ↑ |
Addiction/Reward | OXT ↓↑ ↔ DA ↑ |
Anxiety | OXT ↓ ↔ DA ↑↓ |
Depression | OXT ↓ ↔ DA ↓ |
ASD | OXT ↓ → DA ↓ |
ADHD | OXT ↓ ↔ DA ↓ |
Schizophrenia | OXT ↓ ↔ DA ↑↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petersson, M.; Uvnäs-Moberg, K. Interactions of Oxytocin and Dopamine—Effects on Behavior in Health and Disease. Biomedicines 2024, 12, 2440. https://doi.org/10.3390/biomedicines12112440
Petersson M, Uvnäs-Moberg K. Interactions of Oxytocin and Dopamine—Effects on Behavior in Health and Disease. Biomedicines. 2024; 12(11):2440. https://doi.org/10.3390/biomedicines12112440
Chicago/Turabian StylePetersson, Maria, and Kerstin Uvnäs-Moberg. 2024. "Interactions of Oxytocin and Dopamine—Effects on Behavior in Health and Disease" Biomedicines 12, no. 11: 2440. https://doi.org/10.3390/biomedicines12112440
APA StylePetersson, M., & Uvnäs-Moberg, K. (2024). Interactions of Oxytocin and Dopamine—Effects on Behavior in Health and Disease. Biomedicines, 12(11), 2440. https://doi.org/10.3390/biomedicines12112440