Recent Updates of PET in Lymphoma: FDG and Beyond
Abstract
:1. Introduction
2. FDG PET
2.1. Initial Diagnosis
2.2. Staging
2.3. Pretreatment Prognostication
2.3.1. Standardized Uptake Value
2.3.2. Metabolic Tumor Volume and Total Lesion Glycolysis
2.3.3. Maximum Tumor Dissemination
2.4. Treatment Response Assessment
2.4.1. Response Assessment for Hodgkin Lymphoma
2.4.2. Response Assessment for Non-Hodgkin Lymphoma
2.4.3. Response Assessment in Immunotherapy
2.5. Artificial Intelligence and Radiomics
3. FAPI PET
3.1. Diagnosis
3.2. FAP-Targeted CAR-T Cell Therapy
4. ImmunoPET
4.1. CD20
4.2. CAR-T Cell
4.3. PD-1/PD-L1
4.4. CD30
4.5. CD8
4.6. CXCR4
5. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABVD | doxorubicin, bleomycin, vinblastine, and dacarbazine |
AI | artificial intelligence |
ANN | artificial neural network |
AVD | doxorubicin, vinblastine, and dacarbazine |
BEACOPP-14 | repeated bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone every 14 days |
BM | bone marrow |
BV | brentuximab vedotin |
CAF | cancer-associated fibroblast |
CAR T-cell | chimeric antigen receptor T-cell |
CMR | complete metabolic response |
CNN | convolutional neural network |
CT | computed tomography |
CXCR4 | C-X-C Motif Chemokine Receptor 4 |
DFO | desferrioxamine |
DL | deep learning |
DLBCL | diffuse large B-cell lymphoma |
Dmax | maximum tumor dissemination |
DS | Deauville score |
eBEACOPP | escalated doses of bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone |
EOI | end of induction |
EOT PET | end-of-treatment PET |
FAP | fibroblast activation protein |
FAPI | fibroblast activation protein inhibitor |
FDG PET | 18F-fluorodeoxyglucose positron emission tomography (FDG PET) |
18F-DCFPyL | 2-(3-{1-carboxy-5-[(6-18F-fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acidCRS = cytokine release syndrome |
FL | follicular lymphoma |
GLUT1 | glucose transporter 1 |
HK2 | that hexokinase 2 |
HL | Hodgkin lymphoma |
HR | hazard ratio |
ICI | immune checkpoint inhibitor |
ICOS | inducible T-cell co-stimulator |
IFRT | involved-field radiation therapy |
INRT | involved-node radiotherapy |
iPET | interim PET |
IR | indeterminate response |
LYRIC | lymphoma response to immunomodulatory therapy criteria |
mAb | monoclonal antibody |
MCL | mantle cell lymphoma |
ML | machine learning |
MTV | metabolic tumor volume |
MZL | marginal zone lymphoma |
NHL | non-Hodgkin lymphoma |
NK | natural killer |
NMR | no metabolic response |
NPV | negative predictive value |
OS | overall survival |
PD-1 | programmed cell death protein 1 |
PD-L1 | programmed cell death-1 ligand |
PFS | progression-free survival |
PMD | progressive metabolic disease |
PMR | partial metabolic response |
PPV | positive predictive value |
PTCL | peripheral T-cell lymphoma |
RAPID | Randomized Phase III Trial to Determine the Role of FDG PET Imaging in Clinical Stages IA/IIA Hodgkin’s Disease |
RATHL | Response-Adjusted Therapy for Advanced Hodgkin Lymphoma |
R-CHOP | rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone |
RIT | radioimmunotherapy |
RM | Rituximab maintenance |
ROI | region of interest |
SPD | sum of the product of the diameters |
SUA | standardized uptake value normalized by injected dose of radioactivity with body surface area |
SUL | standardized uptake value normalized by injected dose of radioactivity with lean body mass |
SUV | standardized uptake value |
TLG | total lesion glycolysis |
TME | tumor microenvironment |
References
- Zhang, N.; Wu, J.; Wang, Q.; Liang, Y.; Li, X.; Chen, G.; Ma, L.; Liu, X.; Zhou, F. Global burden of hematologic malignancies and evolution patterns over the past 30 years. Blood Cancer J. 2023, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.A.; Boiron, M.; DeVita, V.T., Jr.; Johnson, R.E.; Lee, B.J.; Ultmann, J.E.; Viamonte, M., Jr. Report of the Committee on Hodgkin’s Disease Staging Procedures. Cancer Res. 1971, 31, 1862–1863. [Google Scholar] [PubMed]
- Lister, T.A.; Crowther, D.; Sutcliffe, S.B.; Glatstein, E.; Canellos, G.P.; Young, R.C.; Rosenberg, S.A.; Coltman, C.A.; Tubiana, M. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J. Clin. Oncol. 1989, 7, 1630–1636. [Google Scholar] [CrossRef] [PubMed]
- Cheson, B.D.; Pfistner, B.; Juweid, M.E.; Gascoyne, R.D.; Specht, L.; Horning, S.J.; Coiffier, B.; Fisher, R.I.; Hagenbeek, A.; Zucca, E.; et al. Revised response criteria for malignant lymphoma. J. Clin. Oncol. 2007, 25, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A.; Alliance, Australasian Leukaemia and Lymphoma Group; Eastern Cooperative Oncology Group; European Mantle Cell Lymphoma Consortium; et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J. Clin. Oncol. 2014, 32, 3059–3068. [Google Scholar] [CrossRef]
- Choy, G.; Khalilzadeh, O.; Michalski, M.; Do, S.; Samir, A.E.; Pianykh, O.S.; Geis, J.R.; Pandharipande, P.V.; Brink, J.A.; Dreyer, K.J. Current Applications and Future Impact of Machine Learning in Radiology. Radiology 2018, 288, 318–328. [Google Scholar] [CrossRef]
- Arneth, B. Tumor Microenvironment. Medicina 2019, 56, 15. [Google Scholar] [CrossRef]
- Mori, Y.; Dendl, K.; Cardinale, J.; Kratochwil, C.; Giesel, F.L.; Haberkorn, U. FAPI PET: Fibroblast Activation Protein Inhibitor Use in Oncologic and Nononcologic Disease. Radiology 2023, 306, e220749. [Google Scholar] [CrossRef]
- Frelaut, M.; Le Tourneau, C.; Borcoman, E. Hyperprogression under Immunotherapy. Int. J. Mol. Sci. 2019, 20, 2674. [Google Scholar] [CrossRef]
- Wei, W.; Rosenkrans, Z.T.; Liu, J.; Huang, G.; Luo, Q.Y.; Cai, W. ImmunoPET: Concept, Design, and Applications. Chem. Rev. 2020, 120, 3787–3851. [Google Scholar] [CrossRef]
- Lee, K.H.; Jung, K.H.; Lee, J.H. Immuno-PET Imaging and Radioimmunotherapy of Lymphomas. Mol. Pharm. 2022, 19, 3484–3491. [Google Scholar] [CrossRef] [PubMed]
- Hehn, S.T.; Grogan, T.M.; Miller, T.P. Utility of fine-needle aspiration as a diagnostic technique in lymphoma. J. Clin. Oncol. 2004, 22, 3046–3052. [Google Scholar] [CrossRef] [PubMed]
- Noy, A.; Schöder, H.; Gönen, M.; Weissler, M.; Ertelt, K.; Cohler, C.; Portlock, C.; Hamlin, P.; Yeung, H.W. The majority of transformed lymphomas have high standardized uptake values (SUVs) on positron emission tomography (PET) scanning similar to diffuse large B-cell lymphoma (DLBCL). Ann. Oncol. 2009, 20, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Broccoli, A.; Nanni, C.; Cappelli, A.; Bacci, F.; Gasbarrini, A.; Tabacchi, E.; Piovani, C.; Argnani, L.; Ghermandi, R.; Sabattini, E.; et al. Diagnostic accuracy of positron emission tomography/computed tomography-driven biopsy for the diagnosis of lymphoma. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 3058–3065. [Google Scholar] [CrossRef] [PubMed]
- Albano, D.; Rizzo, A.; Racca, M.; Muoio, B.; Bertagna, F.; Treglia, G. The Diagnostic Performance of 2-[18F]FDG PET/CT in Identifying Richter Transformation in Chronic Lymphocytic Leukemia: An Updated Systematic Review and Bivariate Meta-Analysis. Cancers 2024, 16, 1778. [Google Scholar] [CrossRef]
- Choi, W.H.; Han, E.J.; O, J.H.; Choi, E.K.; Choi, J.I.; Park, G.; Choi, B.O.; Jeon, Y.W.; Min, G.J.; Cho, S.G.; et al. Prognostic Value of FDG PET/CT in Patients with Nodal Peripheral T-Cell Lymphoma. Diagnostics 2023, 13, 2834. [Google Scholar] [CrossRef]
- Zanoni, L.; Bezzi, D.; Nanni, C.; Paccagnella, A.; Farina, A.; Broccoli, A.; Casadei, B.; Zinzani, P.L.; Fanti, S. PET/CT in Non-Hodgkin Lymphoma: An Update. Semin. Nucl. Med. 2023, 53, 320–351. [Google Scholar] [CrossRef]
- Kagan, K.B.T.; Guz, D.; Buchrits, S.; Gurion, R.; Vaxman, I.; Priss, M.; Groshar, D.; Catalano, O.A.; Sherban, A.; Raanani, P.; et al. Clinical and pathological predictors for FDG-PET/CT avidity in patients with marginal zone lymphoma-a retrospective cohort study. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2290–2299. [Google Scholar] [CrossRef]
- Trotman, J.; Pettitt, A.R. Is it time for PET-guided therapy in follicular lymphoma? Blood 2022, 139, 1631–1641. [Google Scholar] [CrossRef]
- Albano, D.; Treglia, G.; Gazzilli, M.; Cerudelli, E.; Giubbini, R.; Bertagna, F. 18F-FDG PET or PET/CT in Mantle Cell Lymphoma. Clin. Lymphoma Myeloma Leuk. 2020, 20, 422–430. [Google Scholar] [CrossRef]
- Qiu, L.; Tu, G.; Li, J.; Chen, Y. The role of 18F-FDG PET and PET/CT in the evaluation of primary cutaneous lymphoma. Nucl. Med. Commun. 2017, 38, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Alobthani, G.; Romanov, V.; Isohashi, K.; Matsunaga, K.; Watabe, T.; Kato, H.; Tatsumi, M.; Shimosegawa, E.; Hatazawa, J. Value of 18F-FDG PET/CT in discrimination between indolent and aggressive non-Hodgkin’s lymphoma: A study of 328 patients. Hell. J. Nucl. Med. 2018, 21, 7–14. [Google Scholar] [PubMed]
- Metser, U.; Prica, A.; Hodgson, D.C.; Mozuraitis, M.; Eberg, M.; Mak, V.; Green, B.; Singnurkar, A.; Dudebout, J.; MacCrostie, P.; et al. Effect of PET/CT on the Management and Outcomes of Participants with Hodgkin and Aggressive Non-Hodgkin Lymphoma: A Multicenter Registry. Radiology 2019, 290, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Barrington, S.F.; Kirkwood, A.A.; Franceschetto, A.; Fulham, M.J.; Roberts, T.H.; Almquist, H.; Brun, E.; Hjorthaug, K.; Viney, Z.N.; Pike, L.C.; et al. PET-CT for staging and early response: Results from the Response-Adapted Therapy in Advanced Hodgkin Lymphoma study. Blood 2016, 127, 1531–1538. [Google Scholar] [CrossRef]
- Albano, D.; Bosio, G.; Bertoli, M.; Giubbini, R.; Bertagna, F. 18F-FDG PET/CT in primary brain lymphoma. J. Neurooncol. 2018, 136, 577–583. [Google Scholar] [CrossRef]
- Casulo, C.; Schöder, H.; Feeney, J.; Lim, R.; Maragulia, J.; Zelenetz, A.D.; Horwitz, S. 18F-fluorodeoxyglucose positron emission tomography in the staging and prognosis of T cell lymphoma. Leuk. Lymphoma 2013, 54, 2163–2167. [Google Scholar] [CrossRef]
- Adams, H.J.; Kwee, T.C.; de Keizer, B.; Fijnheer, R.; de Klerk, J.M.; Nievelstein, R.A. FDG PET/CT for the detection of bone marrow involvement in diffuse large B-cell lymphoma: Systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 565–574. [Google Scholar] [CrossRef]
- Saboo, S.S.; Krajewski, K.M.; O’Regan, K.N.; Giardino, A.; Brown, J.R.; Ramaiya, N.; Jagannathan, J.P. Spleen in haematological malignancies: Spectrum of imaging findings. Br. J. Radiol. 2012, 85, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Alderuccio, J.P.; Kuker, R.A.; Yang, F.; Moskowitz, C.H. Quantitative PET-based biomarkers in lymphoma: Getting ready for primetime. Nat. Rev. Clin. Oncol. 2023, 20, 640–657. [Google Scholar] [CrossRef]
- Könik, A.; O’Donoghue, J.A.; Wahl, R.L.; Graham, M.M.; Van den Abbeele, A.D. Theranostics: The Role of Quantitative Nuclear Medicine Imaging. Semin. Radiat. Oncol. 2021, 31, 28–36. [Google Scholar] [CrossRef]
- Thie, J.A. Understanding the standardized uptake value, its methods, and implications for usage. J. Nucl. Med. 2004, 45, 1431–1434. [Google Scholar] [PubMed]
- Mir, F.; Barrington, S.F.; Brown, H.; Nielsen, T.; Sahin, D.; Meignan, M.; Trotman, J. Baseline SUVmax did not predict histological transformation in follicular lymphoma in the phase 3 GALLIUM study. Blood 2020, 135, 1214–1218. [Google Scholar] [CrossRef]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef] [PubMed]
- Meignan, M.; Cottereau, A.S.; Specht, L.; Mikhaeel, N.G. Total tumor burden in lymphoma—An evolving strong prognostic parameter. Br. J. Radiol. 2021, 94, 20210448. [Google Scholar] [CrossRef]
- Barrington, S.F.; Zwezerijnen, B.G.J.C.; de Vet, H.C.W.; Heymans, M.W.; Mikhaeel, N.G.; Burggraaff, C.N.; Eertink, J.J.; Pike, L.C.; Hoekstra, O.S.; Zijlstra, J.M.; et al. Automated Segmentation of Baseline Metabolic Total Tumor Burden in Diffuse Large B-Cell Lymphoma: Which Method Is Most Successful? A Study on Behalf of the PETRA Consortium. J. Nucl. Med. 2021, 62, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Mikhaeel, N.G.; Smith, D.; Dunn, J.T.; Phillips, M.; Møller, H.; Fields, P.A.; Wrench, D.; Barrington, S.F. Combination of baseline metabolic tumour volume and early response on PET/CT improves progression-free survival prediction in DLBCL. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1209–1219. [Google Scholar] [CrossRef]
- Guo, B.; Tan, X.; Ke, Q.; Cen, H. Prognostic value of baseline metabolic tumor volume and total lesion glycolysis in patients with lymphoma: A meta-analysis. PLoS ONE 2019, 14, e0210224. [Google Scholar] [CrossRef]
- Mikhaeel, N.G.; Heymans, M.W.; Eertink, J.J.; de Vet, H.C.W.; Boellaard, R.; Dührsen, U.; Ceriani, L.; Schmitz, C.; Wiegers, S.E.; Hüttmann, A.; et al. Proposed New Dynamic Prognostic Index for Diffuse Large B-Cell Lymphoma: International Metabolic Prognostic Index. J. Clin. Oncol. 2022, 40, 2352–2360. [Google Scholar] [CrossRef]
- Cottereau, A.S.; Rebaud, L.; Trotman, J.; Feugier, P.; Nastoupil, L.J.; Bachy, E.; Flinn, I.W.; Haioun, C.; Ysebaert, L.; Bartlett, N.L.; et al. Metabolic tumor volume predicts outcome in patients with advanced stage follicular lymphoma from the RELEVANCE trial. Ann. Oncol. 2024, 35, 130–137. [Google Scholar] [CrossRef]
- Nastoupil, L.J.; Jain, M.D.; Feng, L.; Spiegel, J.Y.; Ghobadi, A.; Lin, Y.; Dahiya, S.; Lunning, M.; Lekakis, L.; Reagan, P.; et al. Standard-of-Care Axicabtagene Ciloleucel for Relapsed or Refractory Large B-Cell Lymphoma: Results From the US Lymphoma CAR T Consortium. J. Clin. Oncol. 2020, 38, 3119–3128. [Google Scholar] [CrossRef]
- Dean, E.A.; Mhaskar, R.S.; Lu, H.; Mousa, M.S.; Krivenko, G.S.; Lazaryan, A.; Bachmeier, C.A.; Chavez, J.C.; Nishihori, T.; Davila, M.L.; et al. High metabolic tumor volume is associated with decreased efficacy of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020, 4, 3268–3276. [Google Scholar] [CrossRef]
- Leithner, D.; Flynn, J.R.; Devlin, S.M.; Mauguen, A.; Fei, T.; Zeng, S.; Zheng, J.; Imber, B.S.; Hubbeling, H.; Mayerhoefer, M.E.; et al. Conventional and novel [18F]FDG PET/CT features as predictors of CAR-T cell therapy outcome in large B-cell lymphoma. J. Hematol. Oncol. 2024, 17, 21. [Google Scholar] [CrossRef] [PubMed]
- Voltin, C.A.; Paccagnella, A.; Winkelmann, M.; Heger, J.M.; Casadei, B.; Beckmann, L.; Herrmann, K.; Dekorsy, F.J.; Kutsch, N.; Borchmann, P.; et al. Multicenter development of a PET-based risk assessment tool for product-specific outcome prediction in large B-cell lymphoma patients undergoing CAR T-cell therapy. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Cottereau, A.S.; Meignan, M.; Nioche, C.; Clerc, J.; Chartier, L.; Vercellino, L.; Casasnovas, O.; Thieblemont, C.; Buvat, I. New Approaches in Characterization of Lesions Dissemination in DLBCL Patients on Baseline PET/CT. Cancers 2021, 13, 3998. [Google Scholar] [CrossRef] [PubMed]
- Albano, D.; Treglia, G.; Dondi, F.; Calabrò, A.; Rizzo, A.; Annunziata, S.; Guerra, L.; Morbelli, S.; Tucci, A.; Bertagna, F. 18F-FDG PET/CT Maximum Tumor Dissemination (Dmax) in Lymphoma: A New Prognostic Factor? Cancers 2023, 15, 2494. [Google Scholar] [CrossRef]
- Cottereau, A.S.; Meignan, M.; Nioche, C.; Capobianco, N.; Clerc, J.; Chartier, L.; Vercellino, L.; Casasnovas, O.; Thieblemont, C.; Buvat, I. Risk stratification in diffuse large B-cell lymphoma using lesion dissemination and metabolic tumor burden calculated from baseline PET/CT. Ann. Oncol. 2021, 32, 404–411. [Google Scholar] [CrossRef]
- Jo, J.H.; Chung, H.W.; Kim, S.Y.; Lee, M.H.; So, Y. FDG PET/CT Maximum Tumor Dissemination to Predict Recurrence in Patients with Diffuse Large B-Cell Lymphoma. Nucl. Med. Mol. Imaging 2023, 57, 26–33. [Google Scholar] [CrossRef]
- Meignan, M.; Gallamini, A.; Meignan, M.; Gallamini, A.; Haioun, C. Report on the First International Workshop on Interim-PET-Scan in Lymphoma. Leuk. Lymphoma 2009, 50, 1257–1260. [Google Scholar] [CrossRef]
- Barrington, S.F.; Mikhaeel, N.G.; Kostakoglu, L.; Meignan, M.; Hutchings, M.; Müeller, S.P.; Schwartz, L.H.; Zucca, E.; Fisher, R.I.; Trotman, J.; et al. Role of imaging in the staging and response assessment of lymphoma: Consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J. Clin. Oncol. 2014, 32, 3048–3058, Erratum in J. Clin. Oncol. 2016, 34, 2562. https://doi.org/10.1200/JCO.2016.68.9265. [Google Scholar] [CrossRef]
- Barrington, S.F.; Trotman, J. The role of PET in the first-line treatment of the most common subtypes of non-Hodgkin lymphoma. Lancet Haematol. 2021, 8, e80–e93. [Google Scholar] [CrossRef]
- Radford, J.; Illidge, T.; Counsell, N.; Hancock, B.; Pettengell, R.; Johnson, P.; Wimperis, J.; Culligan, D.; Popova, B.; Smith, P.; et al. Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N. Engl. J. Med. 2015, 372, 1598–1607. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, M.; Goergen, H.; Kobe, C.; Kuhnert, G.; Lohri, A.; Greil, R.; Sasse, S.; Topp, M.S.; Schäfer, E.; Hertenstein, B.; et al. Positron Emission Tomography-Guided Treatment in Early-Stage Favorable Hodgkin Lymphoma: Final Results of the International, Randomized Phase III HD16 Trial by the German Hodgkin Study Group. J. Clin. Oncol. 2019, 37, 2835–2845. [Google Scholar] [CrossRef]
- André, M.P.E.; Girinsky, T.; Federico, M.; Reman, O.; Fortpied, C.; Gotti, M.; Casasnovas, O.; Brice, P.; van der Maazen, R.; Re, A.; et al. Early Positron Emission Tomography Response-Adapted Treatment in Stage I and II Hodgkin Lymphoma: Final Results of the Randomized EORTC/LYSA/FIL H10 Trial. J. Clin. Oncol. 2017, 35, 1786–1794. [Google Scholar] [CrossRef]
- Borchmann, P.; Plütschow, A.; Kobe, C.; Greil, R.; Meissner, J.; Topp, M.S.; Ostermann, H.; Dierlamm, J.; Mohm, J.; Thiemer, J.; et al. PET-guided omission of radiotherapy in early-stage unfavourable Hodgkin lymphoma (GHSG HD17): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2021, 22, 223–234. [Google Scholar] [CrossRef]
- Johnson, P.; Federico, M.; Kirkwood, A.; Fosså, A.; Berkahn, L.; Carella, A.; d’Amore, F.; Enblad, G.; Franceschetto, A.; Fulham, M.; et al. Adapted Treatment Guided by Interim PET-CT Scan in Advanced Hodgkin’s Lymphoma. N. Engl. J. Med. 2016, 374, 2419–2429. [Google Scholar] [CrossRef] [PubMed]
- Luminari, S.; Fossa, A.; Trotman, J.; Molin, D.; d’Amore, F.; Enblad, G.; Berkahn, L.; Barrington, S.F.; Radford, J.; Federico, M.; et al. Long-Term Follow-Up of the Response-Adjusted Therapy for Advanced Hodgkin Lymphoma Trial. J. Clin. Oncol. 2024, 42, 13–18. [Google Scholar] [CrossRef]
- Ansell, S.M.; Radford, J.; Connors, J.M.; Długosz-Danecka, M.; Kim, W.S.; Gallamini, A.; Ramchandren, R.; Friedberg, J.W.; Advani, R.; Hutchings, M.; et al. Overall Survival with Brentuximab Vedotin in Stage III or IV Hodgkin’s Lymphoma. N. Engl. J. Med. 2022, 387, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Herrera, A.F.; LeBlanc, M.; Castellino, S.M.; Li, H.; Rutherford, S.C.; Evens, A.M.; Davison, K.; Punnett, A.; Hodgson, D.; Parsons, S.K.; et al. Nivolumab (N)-AVD improves progression-free survival compared to Brentuximab Vedotin (BV)-AVD in advanced stage (AS) classic Hodgkin Lymphoma (HL): Results of SWOG S1826. Hematol. Oncol. 2023, 41, 33–35. [Google Scholar] [CrossRef]
- Carr, R.; Fanti, S.; Paez, D.; Cerci, J.; Györke, T.; Redondo, F.; Morris, T.P.; Meneghetti, C.; Auewarakul, C.; Nair, R.; et al. Prospective international cohort study demonstrates inability of interim PET to predict treatment failure in diffuse large B-cell lymphoma. J. Nucl. Med. 2014, 55, 1936–1944. [Google Scholar] [CrossRef]
- Dührsen, U.; Müller, S.; Hertenstein, B.; Thomssen, H.; Kotzerke, J.; Mesters, R.; Berdel, W.E.; Franzius, C.; Kroschinsky, F.; Weckesser, M.; et al. Positron Emission Tomography-Guided Therapy of Aggressive Non-Hodgkin Lymphomas (PETAL): A Multicenter, Randomized Phase III Trial. J. Clin. Oncol. 2018, 36, 2024–2034. [Google Scholar] [CrossRef]
- Luminari, S.; Manni, M.; Galimberti, S.; Versari, A.; Tucci, A.; Boccomini, C.; Farina, L.; Olivieri, J.; Marcheselli, L.; Guerra, L.; et al. Response-Adapted Postinduction Strategy in Patients With Advanced-Stage Follicular Lymphoma: The FOLL12 Study. J. Clin. Oncol. 2022, 40, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Guerra, L.; Chauvie, S.; Fallanca, F.; Bergesio, F.; Marcheselli, L.; Durmo, R.; Peano, S.; Franceschetto, A.; Monaco, L.; Barbieri, E.; et al. End of induction [18F]FDG PET is prognostic for progression-free survival and overall survival in follicular lymphoma patients enrolled in the FOLL12 trial. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 3311–3321. [Google Scholar] [CrossRef] [PubMed]
- Eertink, J.J.; Burggraaff, C.N.; Heymans, M.W.; Dührsen, U.; Hüttmann, A.; Schmitz, C.; Müller, S.; Lugtenburg, P.J.; Barrington, S.F.; Mikhaeel, N.G.; et al. Optimal timing and criteria of interim PET in DLBCL: A comparative study of 1692 patients. Blood Adv. 2021, 5, 2375–2384. [Google Scholar] [CrossRef]
- Borcoman, E.; Kanjanapan, Y.; Champiat, S.; Kato, S.; Servois, V.; Kurzrock, R.; Goel, S.; Bedard, P.; Le Tourneau, C. Novel patterns of response under immunotherapy. Ann. Oncol. 2019, 30, 385–396. [Google Scholar] [CrossRef]
- Corazzelli, G.; De Filippi, R.; Capobianco, G.; Frigeri, F.; De Rosa, V.; Iaccarino, G.; Russo, F.; Arcamone, M.; Becchimanzi, C.; Crisci, S.; et al. Tumor flare reactions and response to lenalidomide in patients with refractory classic Hodgkin lymphoma. Am. J. Hematol. 2010, 85, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Goy, A.; Sinha, R.; Williams, M.E.; Kalayoglu Besisik, S.; Drach, J.; Ramchandren, R.; Zhang, L.; Cicero, S.; Fu, T.; Witzig, T.E. Single-agent lenalidomide in patients with mantle-cell lymphoma who relapsed or progressed after or were refractory to bortezomib: Phase II MCL-001 (EMERGE) study. J. Clin. Oncol. 2013, 31, 3688–3695. [Google Scholar] [CrossRef]
- Bröckelmann, P.J.; Goergen, H.; Keller, U.; Meissner, J.; Ordemann, R.; Halbsguth, T.V.; Sasse, S.; Sökler, M.; Kerkhoff, A.; Mathas, S.; et al. Efficacy of Nivolumab and AVD in Early-Stage Unfavorable Classic Hodgkin Lymphoma: The Randomized Phase 2 German Hodgkin Study Group NIVAHL Trial. JAMA Oncol. 2020, 6, 872–880. [Google Scholar] [CrossRef]
- Cheson, B.D.; Ansell, S.; Schwartz, L.; Gordon, L.I.; Advani, R.; Jacene, H.A.; Hoos, A.; Barrington, S.F.; Armand, P. Refinement of the Lugano Classification lymphoma response criteria in the era of immunomodulatory therapy. Blood 2016, 128, 2489–2496. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Mokrane, F.Z.; Schwartz, L.H.; Morschhauser, F.; Stamatoullas, A.; Schiano de Colella, J.M.; Vercellino, L.; Casasnovas, O.; Chauchet, A.; Delmer, A.; et al. Early 18F-FDG PET/CT Response Predicts Survival in Relapsed or Refractory Hodgkin Lymphoma Treated with Nivolumab. J. Nucl. Med. 2020, 61, 649–654. [Google Scholar] [CrossRef]
- Galtier, J.; Vercellino, L.; Chartier, L.; Olivier, P.; Tabouret-Viaud, C.; Mesguich, C.; Di Blasi, R.; Durand, A.; Raffy, L.; Gros, F.X.; et al. Positron emission tomography-imaging assessment for guiding strategy in patients with relapsed/refractory large B-cell lymphoma receiving CAR T cells. Haematologica 2023, 108, 171–180. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Shiyam Sundar, L.K.; Beyer, T. Is Automatic Tumor Segmentation on Whole-Body 18F-FDG PET Images a Clinical Reality? J. Nucl. Med. 2024, 65, 995–997. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kang, S.K.; Hwang, D.; Choi, H.; Ha, S.; Seo, J.M.; Eo, J.S.; Lee, J.S. Automatic Lung Cancer Segmentation in [18F]FDG PET/CT Using a Two-Stage Deep Learning Approach. Nucl. Med. Mol. Imaging 2023, 57, 86–93. [Google Scholar] [CrossRef]
- Veziroglu, E.M.; Farhadi, F.; Hasani, N.; Nikpanah, M.; Roschewski, M.; Summers, R.M.; Saboury, B. Role of Artificial Intelligence in PET/CT Imaging for Management of Lymphoma. Semin. Nucl. Med. 2023, 53, 426–448. [Google Scholar] [CrossRef] [PubMed]
- Capobianco, N.; Meignan, M.; Cottereau, A.S.; Vercellino, L.; Sibille, L.; Spottiswoode, B.; Zuehlsdorff, S.; Casasnovas, O.; Thieblemont, C.; Buvat, I. Deep-Learning 18F-FDG Uptake Classification Enables Total Metabolic Tumor Volume Estimation in Diffuse Large B-Cell Lymphoma. J. Nucl. Med. 2021, 62, 30–36. [Google Scholar] [CrossRef]
- Shiyam Sundar, L.K.; Yu, J.; Muzik, O.; Kulterer, O.C.; Fueger, B.; Kifjak, D.; Nakuz, T.; Shin, H.M.; Sima, A.K.; Kitzmantl, D.; et al. Fully Automated, Semantic Segmentation of Whole-Body 18F-FDG PET/CT Images Based on Data-Centric Artificial Intelligence. J. Nucl. Med. 2022, 63, 1941–1948. [Google Scholar] [CrossRef]
- Leung, K.H.; Rowe, S.P.; Sadaghiani, M.S.; Leal, J.P.; Mena, E.; Choyke, P.L.; Du, Y.; Pomper, M.G. Deep Semisupervised Transfer Learning for Fully Automated Whole-Body Tumor Quantification and Prognosis of Cancer on PET/CT. J. Nucl. Med. 2024, 65, 643–650. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef]
- Shur, J.D.; Doran, S.J.; Kumar, S.; Ap Dafydd, D.; Downey, K.; O’Connor, J.P.B.; Papanikolaou, N.; Messiou, C.; Koh, D.M.; Orton, M.R. Radiomics in Oncology: A Practical Guide. Radiographics 2021, 41, 1717–1732. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- de Jesus, F.M.; Yin, Y.; Mantzorou-Kyriaki, E.; Kahle, X.U.; de Haas, R.J.; Yakar, D.; Glaudemans, A.W.J.M.; Noordzij, W.; Kwee, T.C.; Nijland, M. Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [18F]FDG PET/CT features. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1535–1543. [Google Scholar] [CrossRef] [PubMed]
- Lippi, M.; Gianotti, S.; Fama, A.; Casali, M.; Barbolini, E.; Ferrari, A.; Fioroni, F.; Iori, M.; Luminari, S.; Menga, M.; et al. Texture analysis and multiple-instance learning for the classification of malignant lymphomas. Comput. Methods Programs Biomed. 2020, 185, 105153. [Google Scholar] [CrossRef] [PubMed]
- Kostakoglu, L.; Dalmasso, F.; Berchialla, P.; Pierce, L.A.; Vitolo, U.; Martelli, M.; Sehn, L.H.; Trněný, M.; Nielsen, T.G.; Bolen, C.R.; et al. A prognostic model integrating PET-derived metrics and image texture analyses with clinical risk factors from GOYA. EJHaem 2022, 3, 406–414. [Google Scholar] [CrossRef]
- Huang, E.P.; O’Connor, J.P.B.; McShane, L.M.; Giger, M.L.; Lambin, P.; Kinahan, P.E.; Siegel, E.L.; Shankar, L.K. Criteria for the translation of radiomics into clinically useful tests. Nat. Rev. Clin. Oncol. 2023, 20, 69–82. [Google Scholar] [CrossRef]
- Chandekar, K.R.; Prashanth, A.; Vinjamuri, S.; Kumar, R. FAPI PET/CT Imaging-An Updated Review. Diagnostics 2023, 13, 2018. [Google Scholar] [CrossRef]
- Hirmas, N.; Hamacher, R.; Sraieb, M.; Kessler, L.; Pabst, K.M.; Barbato, F.; Lanzafame, H.; Kasper, S.; Nader, M.; Kesch, C.; et al. Diagnostic Accuracy of 68Ga-FAPI versus 18F-FDG PET in Patients with Various Malignancies. J. Nucl. Med. 2024, 65, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, S.; Lai, Y.; Wang, G.; Wei, M.; Jin, X.; Ding, J.; Zhang, Y.; Shi, Y.; Wang, F.; et al. Fibroblast Activation Protein and Glycolysis in Lymphoma Diagnosis: Comparison of 68Ga-FAPI PET/CT and 18F-FDG PET/CT. J. Nucl. Med. 2023, 64, 1399–1405. [Google Scholar] [CrossRef]
- Chen, N.; Li, X.; Chintala, N.K.; Tano, Z.E.; Adusumilli, P.S. Driving CARs on the uneven road of antigen heterogeneity in solid tumors. Curr. Opin. Immunol. 2018, 51, 103–110. [Google Scholar] [CrossRef]
- Bughda, R.; Dimou, P.; D’Souza, R.R.; Klampatsa, A. Fibroblast Activation Protein (FAP)-Targeted CAR-T Cells: Launching an Attack on Tumor Stroma. Immunotargets Ther. 2021, 10, 313–323. [Google Scholar] [CrossRef]
- Lee, I.K.; Noguera-Ortega, E.; Xiao, Z.; Todd, L.; Scholler, J.; Song, D.; Liousia, M.; Lohith, K.; Xu, K.; Edwards, K.J.; et al. Monitoring Therapeutic Response to Anti-FAP CAR T Cells Using [18F]AlF-FAPI-74. Clin. Cancer Res. 2022, 28, 5330–5342. [Google Scholar] [CrossRef]
- Guglielmo, P.; Evangelista, L. [18F]FDG and Lymphomas: Still a Winning Golden Couple in the Era of FAPI-Based Radiotracers. J. Nucl. Med. 2024, 65, 495–496. [Google Scholar] [CrossRef] [PubMed]
- Cheson, B.D.; Leonard, J.P. Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N. Engl. J. Med. 2008, 359, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Jauw, Y.W.; Zijlstra, J.M.; de Jong, D.; Vugts, D.J.; Zweegman, S.; Hoekstra, O.S.; van Dongen, G.A.; Huisman, M.C. Performance of 89Zr-Labeled-Rituximab-PET as an Imaging Biomarker to Assess CD20 Targeting: A Pilot Study in Patients with Relapsed/Refractory Diffuse Large B Cell Lymphoma. PLoS ONE 2017, 12, e0169828. [Google Scholar] [CrossRef] [PubMed]
- Muylle, K.; Flamen, P.; Vugts, D.J.; Guiot, T.; Ghanem, G.; Meuleman, N.; Bourgeois, P.; Vanderlinden, B.; van Dongen, G.A.; Everaert, H.; et al. Tumour targeting and radiation dose of radioimmunotherapy with (90)Y-rituximab in CD20+ B-cell lymphoma as predicted by (89)Zr-rituximab immuno-PET: Impact of preloading with unlabelled rituximab. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1304–1314. [Google Scholar] [CrossRef]
- Cicone, F.; Santo, G.; Bodet-Milin, C.; Cascini, G.L.; Kraeber-Bodéré, F.; Stokke, C.; Kolstad, A. Radioimmunotherapy of Non-Hodgkin B-cell Lymphoma: An update. Semin. Nucl. Med. 2023, 53, 413–425. [Google Scholar] [CrossRef]
- Jurczak, W.; Zinzani, P.L.; Gaidano, G.; Goy, A.; Provencio, M.; Nagy, Z.; Robak, T.; Maddocks, K.; Buske, C.; Ambarkhane, S.; et al. Phase IIa study of the CD19 antibody MOR208 in patients with relapsed or refractory B-cell non-Hodgkin’s lymphoma. Ann. Oncol. 2018, 29, 1266–1272. [Google Scholar] [CrossRef]
- Simonetta, F.; Alam, I.S.; Lohmeyer, J.K.; Sahaf, B.; Good, Z.; Chen, W.; Xiao, Z.; Hirai, T.; Scheller, L.; Engels, P.; et al. Molecular Imaging of Chimeric Antigen Receptor T Cells by ICOS-ImmunoPET. Clin. Cancer Res. 2021, 27, 1058–1068. [Google Scholar] [CrossRef]
- Minn, I.; Huss, D.J.; Ahn, H.H.; Chinn, T.M.; Park, A.; Jones, J.; Brummet, M.; Rowe, S.P.; Sysa-Shah, P.; Du, Y.; et al. Imaging CAR T cell therapy with PSMA-targeted positron emission tomography. Sci. Adv. 2019, 5, eaaw5096. [Google Scholar] [CrossRef]
- Paver, E.C.; Cooper, W.A.; Colebatch, A.J.; Ferguson, P.M.; Hill, S.K.; Lum, T.; Shin, J.S.; O’Toole, S.; Anderson, L.; Scolyer, R.A.; et al. Programmed death ligand-1 (PD-L1) as a predictive marker for immunotherapy in solid tumours: A guide to immunohistochemistry implementation and interpretation. Pathology 2021, 53, 141–156. [Google Scholar] [CrossRef]
- Niemeijer, A.N.; Leung, D.; Huisman, M.C.; Bahce, I.; Hoekstra, O.S.; van Dongen, G.A.M.S.; Boellaard, R.; Du, S.; Hayes, W.; Smith, R.; et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat. Commun. 2018, 9, 4664. [Google Scholar] [CrossRef]
- Nienhuis, P.H.; Antunes, I.F.; Glaudemans, A.W.J.M.; Jalving, M.; Leung, D.; Noordzij, W.; Slart, R.H.J.A.; de Vries, E.F.J.; Hospers, G.A.P. 18F-BMS986192 PET Imaging of PD-L1 in Metastatic Melanoma Patients with Brain Metastases Treated with Immune Checkpoint Inhibitors: A Pilot Study. J. Nucl. Med. 2022, 63, 899–905. [Google Scholar] [CrossRef]
- Bensch, F.; van der Veen, E.L.; Lub-de Hooge, M.N.; Jorritsma-Smit, A.; Boellaard, R.; Kok, I.C.; Oosting, S.F.; Schröder, C.P.; Hiltermann, T.J.N.; van der Wekken, A.J.; et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat. Med. 2018, 24, 1852–1858. [Google Scholar] [CrossRef]
- Hatic, H.; Sampat, D.; Goyal, G. Immune checkpoint inhibitors in lymphoma: Challenges and opportunities. Ann. Transl. Med. 2021, 9, 1037. [Google Scholar] [CrossRef]
- van der Weyden, C.A.; Pileri, S.A.; Feldman, A.L.; Whisstock, J.; Prince, H.M. Understanding CD30 biology and therapeutic targeting: A historical perspective providing insight into future directions. Blood Cancer J. 2017, 7, e603. [Google Scholar] [CrossRef]
- Prince, H.M.; Hutchings, M.; Domingo-Domenech, E.; Eichenauer, D.A.; Advani, R. Anti-CD30 antibody-drug conjugate therapy in lymphoma: Current knowledge, remaining controversies, and future perspectives. Ann. Hematol. 2023, 102, 13–29. [Google Scholar] [CrossRef]
- Rylova, S.N.; Del Pozzo, L.; Klingeberg, C.; Tönnesmann, R.; Illert, A.L.; Meyer, P.T.; Maecke, H.R.; Holland, J.P. Immuno-PET Imaging of CD30-Positive Lymphoma Using 89Zr-Desferrioxamine-Labeled CD30-Specific AC-10 Antibody. J. Nucl. Med. 2016, 57, 96–102. [Google Scholar] [CrossRef]
- Li, F.; Li, C.; Cai, X.; Xie, Z.; Zhou, L.; Cheng, B.; Zhong, R.; Xiong, S.; Li, J.; Chen, Z.; et al. The association between CD8+ tumor-infiltrating lymphocytes and the clinical outcome of cancer immunotherapy: A systematic review and meta-analysis. EClinicalMedicine 2021, 41, 101134. [Google Scholar] [CrossRef]
- Farwell, M.D.; Gamache, R.F.; Babazada, H.; Hellmann, M.D.; Harding, J.J.; Korn, R.; Mascioni, A.; Le, W.; Wilson, I.; Gordon, M.S.; et al. CD8-Targeted PET Imaging of Tumor-Infiltrating T Cells in Patients with Cancer: A Phase I First-in-Humans Study of 89Zr-Df-IAB22M2C, a Radiolabeled Anti-CD8 Minibody. J. Nucl. Med. 2022, 63, 720–726. [Google Scholar] [CrossRef]
- Albano, D.; Dondi, F.; Bertagna, F.; Treglia, G. The Role of [68Ga]Ga-Pentixafor PET/CT or PET/MRI in Lymphoma: A Systematic Review. Cancers 2022, 14, 3814. [Google Scholar] [CrossRef]
- Dreher, N.; Dörrler, A.L.; Kraus, S.; Higuchi, T.; Serfling, S.E.; Samnick, S.; Einsele, H.; Grigoleit, G.U.; Buck, A.K.; Werner, R.A. C-X-C Motif Chemokine Receptor 4-Targeted Radioligand Therapy in Hematological Malignancies-Myeloablative Effects, Antilymphoma Activity, and Safety Profile. Clin. Nucl. Med. 2024, 49, 146–151. [Google Scholar] [CrossRef]
- Buck, A.K.; Haug, A.; Dreher, N.; Lambertini, A.; Higuchi, T.; Lapa, C.; Weich, A.; Pomper, M.G.; Wester, H.J.; Zehndner, A.; et al. Imaging of C-X-C Motif Chemokine Receptor 4 Expression in 690 Patients with Solid or Hematologic Neoplasms Using 68Ga-Pentixafor PET. J. Nucl. Med. 2022, 63, 1687–1692. [Google Scholar] [CrossRef] [PubMed]
Histology | FDG Uptake |
---|---|
Hodgkin lymphoma | High |
Diffuse large B-cell lymphoma | High |
Follicular lymphoma | |
Grade III | High |
Grade I and II | Moderate |
Marginal zone lymphoma | |
Gastric mucosa-associated lymphoid tissue | Low |
Non-gastric mucosa-associated lymphoid tissue | Moderate |
Primary cutaneous marginal zone lymphoma | Very low |
Nodal marginal zone lymphoma | Moderate |
Splenic marginal zone lymphoma | Low to high |
Mantle cell lymphoma | |
Nodal | High |
Gastrointestinal or bone marrow | Low |
Chronic lymphocytic leukemia/small lymphocytic lymphoma | Low to moderate |
Peripheral T-cell lymphoma | Low to high |
Cutaneous T-cell lymphoma | |
Mycosis fungoides | Low to moderate |
Sezary syndrome | Low to moderate |
ID | Title | Summary | Study Start |
---|---|---|---|
NCT06125028 | 68Ga-Pentixafor PET Imaging for Staging of Marginal Zone Lymphoma (LYMFOR) | A pivotal phase 3 clinical trial to assess the diagnostic performance and safety of 68Ga-Pentixafor vs. FDG PET/CT for staging of patients with confirmed MZL, exemplary for CXCR4-positive malignant lymphomas | 2024-6 |
NCT06148220 | A Study of the Clinical Application of 18F-RCCB6 and 68Ga-NOTA-RCCB6 PET/CT Imaging in the Diagnosis of CD70-expressing Multiple Tumors | To establish and optimize the imaging method, physiological and pathological distributions, and diagnostic accuracy in renal cell cancer (especially clear cell carcinoma) and lymphoma | 2023-10-1 |
NCT05390814 | 18F-Fludarabine PET/MRI in Primary CNS Lymphoma (FLUDALOC) | To characterize the cerebral distribution and 18F-Fludarabine uptake in newly diagnosed primary CNS lymphomas before surgery, chemotherapy or radiotherapy, using PET/MRI | 2023-12-18 |
NCT06461182 | 68Ga-CXCR4 PET/CT in Indolent B-cell Lymphoma (PentixaFor) | To explore the efficacy of 68Ga-PentixaFor PET/CT in detecting, assessing treatment response, and monitoring the risk of aggressiveness in indolent B-cell lymphoma | 2024-4-29 |
NCT05371132 | Study to Evaluate CD8 PET Imaging as a Marker of Immune Response to Stereotactic Body Radiation Therapy (ELIXR) | Phase I trial to investigate the effect of radiation therapy on the immune system, specifically CD8-positive T cells, in lymphoma patients receiving bridging radiation therapy before CAR T-cell infusion, and metastatic patients with solid tumor malignancies receiving SBRT | 2022-6-20 |
NCT06522932 | PET Imaging Study of 64Cu-GRIP B for Patients Receiving CD19-directed CAR-T Therapy | To establish the feasibility of granzyme B detection with 64Cu-GRIP B PET in participants with relapsed/refractory NHL receiving CD19-directed CAR-T cell therapy | 2024-8-30 |
NCT05096234 | 18F-F-AraG PET Imaging to Evaluate Immunological Response to CAR T Cell Therapy in Lymphoma | To explore the relationship of change in 18F-AraG PET signal following CAR T cell treatment with changes in T cell infiltration in tumor biopsies | 2021-9-28 |
NCT05404048 | PD-L1 PET-imaging During CAR T-cell Therapy | A single-center, single-arm pilot trial designed to evaluate the expression of PD-L1 in patients with Large B-cell lymphoma and its role in non-responsiveness to CAR T-cell therapy in a non-invasive manner. Moreover, within this trial, 89Zr-atezolizumab PET/CT as a tool to distinguish lymphoma activity from a treatment-related inflammatory activity in patients with an end-of-treatment positive FDG PET/CT | 2022-5-18 |
NCT06636175 | 64Cu-LLP2A for Imaging Hematologic Malignancies | Early phase I evaluation of 64Cu-LLP2A for imaging hematologic malignancies including multiple myeloma and low-grand lymphoma | 2024-11-30 |
NCT06224309 | Preliminary Assessment of 18F-BL40 in PET/CT scans | To evaluate the diagnostic utility of 18F-BL40 PET/CT to stage patients with CXCR4-expressing tumors | 2024-5 |
NCT04169321 | Granzyme B PET Imaging Drug as a Predictor of Immunotherapy Response to Checkpoint Inhibitors | First in Human study of 68Ga-NOTA-hGZP PET imaging to test the safety and effectiveness in subjects with cancer undergoing treatment with a checkpoint inhibitor | 2020-6-16 |
NCT05627115 | Response Adapted Incorporation of Tislelizumab into the Front-line Treatment of Older Patients With Hodgkin lYmphoma (RATiFY) | To test the effect of initial treatment of tislelizumab (PD-1 antibody) for Hodgkin lymphoma in patients aged 60 years and older guided by PET-response assessment | 2024-3-1 |
NCT05004961 | The Performance of Multi-tracer Multimodality PET in Lymphoma | To evaluate nodal and extranodal lymphoma lesions uptake by different molecular probes such as FDG, FAPI-04 via multimodality PET (PET/CT and PET/MR) | 2019-9-15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-Y.; Chung, H.W.; So, Y.; Lee, M.H.; Lee, E.J. Recent Updates of PET in Lymphoma: FDG and Beyond. Biomedicines 2024, 12, 2485. https://doi.org/10.3390/biomedicines12112485
Kim S-Y, Chung HW, So Y, Lee MH, Lee EJ. Recent Updates of PET in Lymphoma: FDG and Beyond. Biomedicines. 2024; 12(11):2485. https://doi.org/10.3390/biomedicines12112485
Chicago/Turabian StyleKim, Sung-Yong, Hyun Woo Chung, Young So, Mark Hong Lee, and Eun Jeong Lee. 2024. "Recent Updates of PET in Lymphoma: FDG and Beyond" Biomedicines 12, no. 11: 2485. https://doi.org/10.3390/biomedicines12112485
APA StyleKim, S.-Y., Chung, H. W., So, Y., Lee, M. H., & Lee, E. J. (2024). Recent Updates of PET in Lymphoma: FDG and Beyond. Biomedicines, 12(11), 2485. https://doi.org/10.3390/biomedicines12112485