Untangling Depression in Schizophrenia: The Role of Disorganized and Obsessive-Compulsive Symptoms and the Duration of Untreated Psychosis
Abstract
:1. Introduction
2. Materials and Methods
- A series of psychotic episodes;
- Prospective observation for at least 12 weeks;
- Administration of at least two trials of antipsychotic drugs at a dose equivalent to or greater than 600 mg chlorpromazine equivalents to achieve remission and assess resistance.
- Mental retardation;
- Abuse of psychoactive substances;
- Presence of organic brain damage;
- Accompanying progressive neurological or severe somatic diseases;
- First psychotic episode.
Statistical Analyses
3. Results
3.1. Descriptive Statistics of the Sample
3.2. Correlations Between Clinical Scales
- PANSS Disorganized Symptoms: The strong positive impact of disorganized symptoms on depression highlights the significant role of cognitive and perceptual disorganization in contributing to depressive symptoms. This may reflect the distress and impairment that disorganized thinking and behavior impose, potentially fostering feelings of depressive complaints.
- Duration of Untreated Symptoms: The negative relationship here suggests that individuals who experienced shorter periods of untreated psychosis report higher depressive symptoms. This finding could imply that early intervention mitigates long-term depressive symptoms, or that those who seek help sooner may be more likely to experience depression due to increased insight of their symptoms.
- Obsessive-Compulsive Symptoms (OCS): The positive correlation between OCS scores and depressive symptoms implies that the presence of obsessive-compulsive symptoms may aggravate depressive symptoms, possibly due to the distress and mental strain associated with them.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’sullivan, P.F.; Kendler, K.S.; Neale, M.C. Schizophrenia as a Complex Trait: Evidence from a Meta-Analysis of Twin Studies. Arch. Gen. Psychiatry 2003, 60, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, S.; Nestler, E.J. Epigenetic Mechanisms in Psychiatry. Neuron 2016, 89, 683–686. [Google Scholar] [CrossRef]
- Jouroukhin, Y.; McFarland, R.; Ayhan, Y.; Pletnikov, M.V. Modeling gene-environment interaction in schizophrenia. In Modeling the Psychopathological Dimensions of Schizophrenia: From Molecules to Behavior; Pletnikov, M.V., Waddington, J., Eds.; Elsevier Academic Press: Amsterdam, The Netherlands, 2016; pp. 345–360. [Google Scholar] [CrossRef]
- Mill, J.; Tang, T.; Kaminsky, Z.; Khare, T.; Yazdanpanah, S.; Bouchard, L.; Jia, P.; Assadzadeh, A.; Flanagan, J.; Schumacher, A.; et al. Epigenomic Profiling Reveals DNA-Methylation Changes Associated with Major Psychosis. Am. J. Hum. Genet. 2008, 82, 696–711. [Google Scholar] [CrossRef]
- Föcking, M.; Doyle, B.; Munawar, N.; Dillon, E.T.; Cotter, D.; Cagney, G. Epigenetic Factors in Schizophrenia: Mechanisms and Experimental Approaches. Mol. Neuropsychiatry 2019, 5, 6–12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amadeo, M.B.; Esposito, D.; Escelsior, A.; Claudio Claudio Campus; Inuggi, A.; Da Silva, B.P.; Serafini, G.; Amore, M.; Gori, M. Time in schizophrenia: A link between psychopathology, psychophysics and technology. Transl. Psychiatry 2022, 12, 331. [Google Scholar] [CrossRef]
- Tanaka, M.; Vécsei, L. Editorial of special issue crosstalk between depression, anxiety, and dementia: Comorbidity in behavioral neurology and neuropsychiatry. Biomedicine 2021, 9, 517. [Google Scholar] [CrossRef]
- Tanaka, M.; Tóth, F.; Polyák, H.; Szabó, Á.; Mándi, Y.; Vécsei, L. Immune influencers in action: Metabolites and enzymes of the tryptophan-kynurenine metabolic pathway. Biomedicine 2021, 9, 734. [Google Scholar] [CrossRef] [PubMed]
- Correia, B.S.B.; Nani, J.V.; Waladares Ricardo, R.; Stanisic, D.; Costa, T.B.B.C.; Hayashi, M.A.F.; Tasic, L. Effects of psychostimulants and antipsychotics on serum lipids in an animal model for schizophrenia. Biomedicines 2021, 9, 235. [Google Scholar] [CrossRef]
- Robertson, G.S.; Hori, S.E.; Powell, K.J. Schizophrenia: An integrative approach to modelling a complex disorder. J. Psychiatry Neurosci. 2006, 31, 157–167. [Google Scholar]
- Tanaka, M.; Szabó, Á.; Vécsei, L. Integrating armchair, bench, and bedside research for behavioral neurology and neuropsychiatry: Editorial. Biomedicine 2022, 10, 2999. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Vécsei, L. Editorial of special issue ‘dissecting neurological and neuropsychiatric diseases: Neurodegeneration and neuroprotection’. Int. J. Mol. Sci. 2022, 23, 6991. [Google Scholar] [CrossRef] [PubMed]
- Schmaal, L.; Hibar, D.P.; Sämann, P.G.; Hall, G.B.; Baune, B.T.; Jahanshad, N.; Cheung, J.W.; van Erp, T.G.M.; Bos, D.; Ikram, M.A.; et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 2017, 22, 900–909. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murphy, M.L.; Frodl, T. Meta-analysis of diffusion tensor imaging studies shows altered fractional anisotropy occurring in distinct brain areas in association with depression. Biol. Mood Anxiety Disord. 2011, 1, 3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Erp, T.G.; Hibar, D.P.; Rasmussen, J.M.; Glahn, D.C.; Pearlson, G.D.; Andreassen, O.A.; Agartz, I.; Westlye, L.T.; Haukvik, U.K.; Dale, A.M.; et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry 2016, 21, 547–553, Erratum in Mol. Psychiatry 2016, 21, 585. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Adriano, F.; Caltagirone, C.; Spalletta, G. Hippocampal Volume Reduction in First-Episode and Chronic Schizophrenia: A Review and Meta-Analysis. Neuroscientist 2012, 18, 180–200. [Google Scholar] [CrossRef]
- Sheline, Y.I.; Price, J.L.; Yan, Z.; Mintun, M.A. Resting-State Functional MRI in Depression Unmasks Increased Connectivity in the Default Mode Network. Proc. Natl. Acad. Sci. USA 2010, 107, 11020–11025. [Google Scholar] [CrossRef]
- Disner, S.G.; Beevers, C.G.; Haigh, E.A.; Beck, A.T. Neural mechanisms of the cognitive model of depression. Nat. Rev. Neurosci. 2011, 12, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Whitfield-Gabrieli, S.; Ford, J.M. Default mode network activity and connectivity in psychopathology. Annu. Rev. Clin. Psychol. 2012, 8, 49–76. [Google Scholar] [CrossRef] [PubMed]
- Palaniyappan, L.; Simmonite, M.; White, T.P.; Liddle, E.B.; Liddle, P.F. Neural primacy of the salience processing system in schizophrenia. Neuron 2013, 79, 814–828. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Woodward, N.D.; Heckers, S. Mapping Thalamocortical Functional Connectivity in Chronic and Early Stages of Psychotic Disorders. Biol. Psychiatry 2016, 79, 1016–1025. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krishnan, V.; Nestler, E.J. The molecular neurobiology of depression. Nature 2008, 455, 894–902. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ritter, C.; Buchmann, A.; Müller, S.T.; Volleberg, M.; Haynes, M.; Ghisleni, C.; Noeske, R.; Tuura, R.; Hasler, G. Evaluation of Prefrontal γ-Aminobutyric Acid and Glutamate Levels in Individuals with Major Depressive Disorder Using Proton Magnetic Resonance Spectroscopy. JAMA Psychiatry 2022, 79, 1209–1216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perez, S.M.; Elam, H.B.; Lodge, D.J. Increased Presynaptic Dopamine Synthesis Capacity Is Associated with Aberrant Dopamine Neuron Activity in the Methylazoxymethanol Acetate Rodent Model Used to Study Schizophrenia-Related Pathologies. Schizophr. Bull. Open 2022, 3, sgac067. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Panov, G.; Panova, P. Neurobiochemical Disturbances in Psychosis and their Implications for Therapeutic Intervention. Curr. Top. Med. Chem. 2024, 24, 1784–1798. [Google Scholar] [CrossRef] [PubMed]
- Coyle, J.T. Glutamate and schizophrenia: Beyond the dopamine hypothesis. Cell Mol. Neurobiol. 2006, 26, 365–384. [Google Scholar] [CrossRef] [PubMed]
- Erhardt, S.; Schwieler, L.; Imbeault, S.; Engberg, G. The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology 2017, 112 Pt B, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Wichers, M.C.; Koek, G.H.; Robaeys, G.; Verkerk, R.; Scharpé, S.; Maes, M. IDO and interferon-alpha-induced depressive symptoms: A shift in hypothesis from tryptophan depletion to neurotoxicity. Mol. Psychiatry 2005, 10, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Martos, D.; Tuka, B.; Tanaka, M.; Vécsei, L.; Telegdy, G. Memory Enhancement with Kynurenic Acid and Its Mechanisms in Neurotransmission. Biomedicines 2022, 10, 849. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tanaka, M.; Bohár, Z.; Martos, D.; Telegdy, G.; Vécsei, L. Antidepressant-like effects of kynurenic acid in a modified forced swim test. Pharmacol. Rep. 2020, 72, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Martos, D.; Lőrinczi, B.; Szatmári, I.; Vécsei, L.; Tanaka, M. The Impact of C-3 Side Chain Modifications on Kynurenic Acid: A Behavioral Analysis of Its Analogs in the Motor Domain. Int. J. Mol. Sci. 2024, 25, 3394. [Google Scholar] [CrossRef] [PubMed]
- Upthegrove, R.; Birchwood, M.; Ross, K.; Brunett, K.; McCollum, R.; Jones, L. The evolution of depression and suicidality in first episode psychosis. Acta Psychiatr. Scand. 2010, 122, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.S.; Caiaffa, W.T.; Bandeira, M.; Siqueira, A.L.; Silva, J.T.; Fonseca, J.O. Depression in schizophrenia: Prevalence and relationship to quality of life. Cad. Saude Publica. 2007, 23, 2035–2048. [Google Scholar] [CrossRef]
- van Os, J.; Fahy, T.A.; Jones, P.; Harvey, I.; Sham, P.; Lewis, S.; Bebbington, P.; Toone, B.; Williams, M.; Murray, R. Psychopathological syndromes in the functional psychoses: Associations with course and outcome. Psychol. Med. 1996, 26, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, P.; Khalsa, H.M.; Hennen, J.; Tohen, M.; Yurgelun-Todd, D.; Casolari, F.; Depanfilis, C.; Maggini, C.; Baldessarini, R.J. Psychopathology factors in first-episode affective and non-affective psychotic disorders. J. Psychiatr. Res. 2007, 41, 724–736. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, H.; Nyman, A.K. Predicting long-term outcome in schizophrenia. Acta Psychiatr. Scand. 1991, 83, 342–346. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.M.; Forrester, A.; Lawrie, S.M.; Byrne, M.; Harper, A.; Kestelman, J.N.; Best, J.J.; Johnstone, E.C.; Owens, D.G. A factor model of the functional psychoses and the relationship of factors to clinical variables and brain morphology. Psychol. Med. 2001, 31, 159–171. [Google Scholar] [CrossRef]
- Allardyce, J.; McCreadie, R.G.; Morrison, G.; van Os, J. Do symptoms dimensions or categorical diagnoses best discriminate between known risk factors for psychosis? Soc. Psychiatry Psychiatr. Epidemiol. 2007, 42, 429–437. [Google Scholar] [CrossRef]
- World Health Organization. ICD-10: International Statistical Classification of Diseases and Related Health Problems: Tenth Revision, 2nd ed.; World Health Organization: Geneva, Switzerland, 2004; Available online: https://iris.who.int/handle/10665/42980 (accessed on 24 September 2024).
- World Health Organization. ICD-11: International Classification of Diseases, 11th ed.; World Health Organization: Geneva, Switzerland, 2022; Available online: https://icd.who.int/ (accessed on 24 September 2024).
- Panov, G. Analysis of Depressive Symptoms in Treatment-Resistant Schizophrenia. J. Psychiatr. Res. 2022, 150, 100–110. [Google Scholar]
- Golubović, B.; Golubović, Š. The Impact of Socio-Demographic Factors on Depressive Symptoms in Schizophrenia. Psychiatr. Danub. 2020, 32 (Suppl. S2), 220–225. [Google Scholar]
- Golubović, B.; Gajić, Z.; Ivetić, O.; Milatović, J.; Vuleković, P.; Đilvesi, Đ.; Golubović, S.; Vrban, F.; Subašić, A.; Rasulić, L. Factors associated with depression in patients with schizophrenia. Acta Clin. Croat. 2020, 59, 605–614. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van IJzendoorn, M.H.; Schuengel, C. The measurement of dissociation in normal and clinical populations: Meta-analytic validation of the Dissociative Experiences Scale (DES). Clin. Psychol. Rev. 1996, 16, 365–382. [Google Scholar] [CrossRef]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M. The assessment of anxiety states by rating. Br. J. Med. Psychol. 1959, 32, 50–55. [Google Scholar] [CrossRef]
- Abramowitz, J.S.; Deacon, B.J.; Olatunji, B.O.; Wheaton, M.G.; Berman, N.C.; Losardo, D.; Timpano, K.R.; McGrath, P.B.; Riemann, B.C.; Adams, T.; et al. Assessment of obsessive-compulsive symptom dimensions: Development and evaluation of the Dimensional Obsessive-Compulsive Scale. Psychol. Assess. 2010, 22, 180–198. [Google Scholar] [CrossRef] [PubMed]
- Golden, C.J.; Hammeke, T.A. The Luria-Nebraska Neuropsychological Battery: Theory and Clinical Applications; Grune & Stratton: New York, NY, USA, 1984. [Google Scholar]
- Overall, J.E.; Gorham, D.R. The Brief Psychiatric Rating Scale. Psychol. Rep. 1962, 10, 799–812. [Google Scholar] [CrossRef]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef]
- Andrean, N.C.; Carpenter, W.T.; Kane, J.M., Jr.; Lasser, R.A.; Marder, S.R.; Weinberger, D.R. Remission in schizophrenia: Proposed criteria and rationale for consensus. Am. J. Psychiatry 2005, 162, 441–449. [Google Scholar] [CrossRef]
- Diagnostic and Statistical Manual of Mental Disorders: DSM-IV; American Psychiatric Association: Washington, DC, USA, 2013.
- Panov, G.; Panova, P. Obsessive-compulsive symptoms in patient with schizophrenia: The influence of disorganized symptoms, duration of schizophrenia, and drug resistance. Front. Psychiatry. 2023, 14, 1120974. [Google Scholar] [CrossRef]
- Panov, G. Dissociative Model in Patients with Resistant Schizophrenia. Front. Psychiatry 2022, 13, 845493. [Google Scholar] [CrossRef]
- Panov, G. Comparative Analysis of Lateral Preferences in Patients with Resistant Schizophrenia. Front. Psychiatry 2022, 13, 868285. [Google Scholar] [CrossRef] [PubMed]
- Panov, G. Gender-associated role in patients with schizophrenia. Is there a connection with the resistance? Front. Psychiatry 2022, 13, 995455. [Google Scholar] [CrossRef] [PubMed]
- Panov, G.P. Early Markers in Resistant Schizophrenia: Effect of the First Antipsychotic Drug. Diagnostics 2022, 12, 803. [Google Scholar] [CrossRef] [PubMed]
- Panov, G.; Djulgerova, S.; Panova, P. The effect of education level and sex differences on resistance to treatment in patients with schizophrenia. Bulg. Med. 2022, 12, 22–29. [Google Scholar]
- Panov, G.; Djulgerova, S.; Panova, P. Comparative anthropometric criteria in patients with resistant schizophrenia. Bulg. Med. 2022, 12, 30–39. [Google Scholar]
- Kuehner, C. Why is depression more common among women than among men? Lancet Psychiatry 2017, 4, 146–158. [Google Scholar] [CrossRef]
- Hafner, H.; van der Heiden, W.; Behrens, S.; Gattaz, W.F.; Hambrecht, M.; Loffler, W.; Maurer, K. Causes and consequences of the gender difference in age at onset of schizophrenia. Schizophr. Bull. 1999, 24, 99–113. [Google Scholar] [CrossRef]
- Goldstein, J.M.; Tsuang, M.T.; Faraone, S.V. Gender and schizophrenia: Implications for understanding the heterogeneity of the illness. Psychiatr. Clin. N. Am. 1989, 12, 205–221. [Google Scholar] [CrossRef]
- Cotton, S.M.; Lambert, M.; Schimmelmann, B.G.; Filia, K.M.; Rayner, V.; Hides, L.; McGorry, P.D. Gender differences in premorbid, entry, treatment, and outcome characteristics in a treated epidemiologicl sample of 661 patients with first-episode psychosis. Schizophr. Res. 2009, 114, 17–24. [Google Scholar] [CrossRef]
- Leung, A.; Chue, P.; Xiang, Y.T. Gender differences in schizophrenia: A review of the literature. J. Psychiatry Neurosci. 2010, 35, 322–330. [Google Scholar]
- Seeman, M.V. Psychopathology in women and men: Focus on female hormones. Am. J. Psychiatry 1997, 154, 1641–1647. [Google Scholar] [CrossRef] [PubMed]
- Hambrecht, M.; Maurer, K.; Häfner, H.; Sartorius, N. Gender differences in schizophrenia in three cultures: Results of the WHO ten-country study. Acta Psychiatr. Scand. 1992, 86, 287–292. [Google Scholar]
- Perlick, D.A.; Rosenheck, R.A.; Kaczynski, R.; Swartz, M.S.; Cañive, J.M.; Lieberman, J.A. Components and correlates of family burden in schizophrenia. Psychiatr. Serv. 2006, 57, 1117–1125. [Google Scholar] [CrossRef] [PubMed]
- Conus, P.; Berk, M.; McGorry, P.D. Psychological treatment of comorbid depression and substance use disorder. J. Clin. Psychiatry 2014, 75, 134–141. [Google Scholar]
- Addington, J.; Addington, D. Neurocognitive and social functioning in schizophrenia: A 2.5 year follow-up study. Schizophr. Res. 2000, 44, 47–56. [Google Scholar] [CrossRef]
- Ventura, J.; Nuechterlein, K.H.; Subotnik, K.L.; Green, M.F.; Gitlin, M.J. Symptom dimensions in recent-onset schizophrenia: Associations with social functioning. Schizophr. Res. 2000, 45, 107–119. [Google Scholar]
- Lysaker, P.H.; Lysaker, J.T. Schizophrenia and alterations in self-experience: A comparison of 6 perspectives. Schizophr. Bull. 2010, 36, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Sass, L.A.; Parnas, J. Schizophrenia, consciousness, and the self. Schizophr. Bull. 2003, 29, 427–444. [Google Scholar] [CrossRef]
- van der Meer, L.; de Vos, A.E.; Stiekema, A.P.; Pijnenborg, G.H.; van Tol, M.J.; Nolen, W.A.; Aleman, A. Insight in schizophrenia: Involvement of self-reflection networks? Schizophr. Bull. 2013, 39, 1288–1295. [Google Scholar] [CrossRef]
- Poyurovsky, M.; Koran, L.M. Obsessive-compulsive disorder in schizophrenia. CNS Drugs 2005, 19, 997–1008. [Google Scholar] [CrossRef]
- Geddes, J.; Mercer, G.; Frith, C.D.; Macmillan, F.; Owens, D.G.C.; Johnstone, E.C. Prediction of outcome following a first episode schizophrenia; a follow-up study of Northwick Park first episode study subjects. Br. J. Psychiatry 1994, 165, 664–668. [Google Scholar] [CrossRef] [PubMed]
- Buckley, P.F.; Miller, B.J.; Lehrer, D.S.; Castle, D.J. Schizophrenia and comorbid conditions. Schizophr. Bull. 2009, 35, 383–402. [Google Scholar] [CrossRef]
- Siris, S.G. Depression in schizophrenia: Perspective in the era of atypical antipsychotic agents. Am. J. Psychiatry 2000, 157, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Rector, N.A.; Beck, A.T. Cognitive behavioral therapy for schizophrenia: An empirical review. J. Nerv. Ment. Dis. 2001, 189, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Upthegrove, R.; Marwaha, S.; Birchwood, M. Depression and schizophrenia: Cause, consequence, or trans-diagnostic issue? Schizophr. Bull. 2017, 43, 240–244. [Google Scholar] [CrossRef]
- Addington, D.; Addington, J.; Maticka-Tyndale, E. Cognitive functioning and positive and negative symptoms in schizophrenia. Schizophr. Res. 1993, 9, 179–185. [Google Scholar] [CrossRef]
- Leucht, S.; Kane, J.M.; Kissling, W.; Hamann, J.; Etschel, E.; Engel, R. Clinical implications of Brief Psychiatric Rating Scale scores. Br. J. Psychiatry 2005, 187, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Leucht, S.; Engel, R.R.; Kane, J.M. Measuring schizophrenia—What difference does the choice of the scale make? Schizophr. Res. 2008, 100, 251–258. [Google Scholar]
- Emsley, R.; Rabinowitz, J.; Medori, R. PANSS factors predictive of response to risperidone in schizophrenia: Evidence from a large, long-term, randomized trial. Schizophr. Res. 2007, 92, 65–73. [Google Scholar]
- Meltzer, H.Y. Treatment of schizophrenia with atypical antipsychotic drugs: Influence on cognition, depression, and negative symptoms. Am. J. Manag. Care 2001, 7 (Suppl. S11), S253–S257. [Google Scholar]
- Schennach, R.; Obermeier, M.; Seemüller, F.; Jäger, M.; Schmauss, M.; Laux, G.; Riedel, M. Change of subjective well-being under antipsychotic treatment in schizophrenia. Eur. Psychiatry 2012, 27, 247–256. [Google Scholar]
- Kane, J.M.; Kishimoto, T.; Correll, C.U. Non-adherence to medication in patients with psychotic disorders: Epidemiology, contributing factors and management strategies. World Psychiatry 2013, 12, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Leucht, S.; Cipriani, A.; Spineli, L.; Mavridis, D.; Örey, D.; Richter, F.; Samara, M.; Barbui, C.; Engel, R.R.; Geddes, J.R.; et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: A multiple-treatments meta-analysis. Lancet 2013, 382, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Correll, C.U.; Rubio, J.M.; Kane, J.M. What is the risk-benefit ratio of long-term antipsychotic treatment in people with schizophrenia? World Psychiatry 2018, 17, 149–160. [Google Scholar] [CrossRef]
- Miyamoto, S.; Duncan, G.E.; Marx, C.E.; Lieberman, J.A. Treatments for schizophrenia: A critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol. Psychiatry 2005, 10, 79–104. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J.A.; Stroup, T.S.; McEvoy, J.P.; Swartz, M.S.; Rosenheck, R.A.; Perkins, D.O.; Keefe, R.S.E.; Davis, S.M.; Davis, C.E.; Lebowitz, B.D.; et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N. Engl. J. Med. 2005, 353, 1209–1223. [Google Scholar] [CrossRef]
- Gallagher, P.; Jones, L.; O’Connor, R.; Cowen, P.J. A pilot study of antidepressant efficacy in patients with schizophrenia and depressive symptoms: Mirtazapine combined with risperidone. J. Psychopharmacol. 2006, 20, 683–688. [Google Scholar]
- Zisook, S.; Kasckow, J.W. Intriguing role of antidepressants in schizophrenia treatment. J. Clin. Psychiatry 2009, 70, 514–522. [Google Scholar]
- Wijkstra, J.; Lijmer, J.; Burger, H.; Geddes, J.; Nolen, W.A. Pharmacological treatment for major depressive disorder and depressive symptoms in schizophrenia: A systematic review and meta-analysis. Br. J. Psychiatry 2013, 204, 255–259. [Google Scholar]
- Schennach, R.; Meyer, S.; Seemüller, F.; Jäger, M.; Schmauss, M.; Laux, G.; Riedel, M. Antidepressant treatment in schizophrenic patients with predominantly negative symptoms. Pharmacopsychiatry 2015, 48, 141–149. [Google Scholar]
- Rothschild, A.J. Challenges in the treatment of major depressive disorder with psychotic features. Schizophr. Bull. 2013, 39, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Meyers, B.S.; Flint, A.J. The epidemiology of psychotic depression: Age, race, gender, and risk for chronicity. Am. J. Geriatr. Psychiatry 1991, 7, 5–13. [Google Scholar]
- Coryell, W.; Leon, A.C.; Turvey, C.; Akiskal, H.S.; Mueller, T.; Endicott, J. The significance of psychotic features in unipolar major depression: A report from the National Institute of Mental Health collaborative depression study. J. Clin. Psychiatry 2001, 62, 521–527. [Google Scholar]
- Tew, J.D.; Mulsant, B.H. Current approaches to the treatment of major depression with psychotic features. J. Clin. Psychiatry 2007, 68 (Suppl. S3), 12–17. [Google Scholar]
- Meyer-Lindenberg, A. From maps to mechanisms through neuroimaging of schizophrenia. Nature 2010, 468, 194–202. [Google Scholar] [CrossRef]
- Howes, O.D.; Kapur, S. The dopamine hypothesis of schizophrenia: Version III—The final common pathway. Schizophr. Bull. 2009, 35, 549–562. [Google Scholar] [CrossRef]
- Sanacora, G.; Banasr, M. From pathophysiology to novel antidepressant drugs: Glial contributions to the pathology and treatment of mood disorders. Biol. Psychiatry 2013, 73, 1172–1179. [Google Scholar] [CrossRef]
- Gibbons, A.; Dean, B. The role of glutamate in schizophrenia and the likely impact of glutamatergic dysfunction on the development of the disorder. Biochem. Cell Biol. 2016, 94, 92–97. [Google Scholar]
- Zhou, Y.; Liang, M.; Jiang, T.; Tian, L.; Liu, Y.; Liu, Z.; Liu, H.; Kuang, F. Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neurosci Lett. 2007, 417, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Metsanen, M.; Wahlberg, K.E.; Hakko, H.; Saarento, O.; Tienari, P. Thought disorder index: A longitudinal study of severity levels and schizophrenia factors. J. Psychiatr. Res. 2006, 40, 258–266. [Google Scholar] [CrossRef]
- Reed, R.A.; Harrow, M.; Herbener, E.S.; Martin, E.M. Executive function in schizophrenia: Is it linked to psychosis and poor life functioning? J. Nerv. Ment. Dis. 2002, 190, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Shenton, M.E.; Kikinis, R.; Jolesz, F.A.; Pollak, S.D.; LeMay, M.; Wible, C.G.; Hokama, H.; Martin, J.; Metcalf, D.; Coleman, M.; et al. Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study. N. Engl. J. Med. 1992, 327, 604–612. [Google Scholar] [CrossRef] [PubMed]
Age (years) | 37.13 |
Age of onset of SZ (years) | 25.51 |
Duration of untreated period/months/ | 14.78 |
Duration of SZ (years) | 11.77 |
BMI | 26.9562 |
Height (cm) | 168.55 |
Sex (M/F) | 39/66 |
Onset of the Illness | Duration of Untreated Symptoms | Duration of Sch | Hamilton D | ||
---|---|---|---|---|---|
Onset of the illness | Pearson Correlation | 1 | −0.350 ** | −0.313 ** | −0.039 |
Sig. (2-tailed) | 0.000 | 0.001 | 0.694 | ||
Duration of the untreated symptoms | Pearson Correlation | −0.350 ** | 1 | 0.148 | −0.104 |
Sig. (2-tailed) | 0.000 | 0.133 | 0.292 | ||
Duration of the illness | Pearson Correlation | −0.313 ** | 0.148 | 1 | 0.196 * |
Sig. (2-tailed) | 00.001 | 0.133 | 0.046 | ||
Hamilton D scale | Pearson Correlation | −0.039 | −0.104 | 0.196 * | 1 |
Sig. (2-tailed) | 0.694 | 0.292 | 0.046 |
Hamilton D | PANSS | PANSS Positive Subscale | PANSS Negative Subscale | PANSS Disorganized Subscale | BPRS | ||
---|---|---|---|---|---|---|---|
Hamilton D | Pearson Correlation | 1 | 0.275 ** | 0.240 * | 0.156 | 0.295 ** | 0.383 ** |
Sig. (2-tailed) | 0.005 | 0.014 | 0.113 | 0.002 | 0.000 | ||
PANSS | Pearson Correlation | 0.275 ** | 1 | 0.835 ** | 0.806 ** | 0.954 ** | 0.911 ** |
Sig. (2-tailed) | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | ||
PANSS positive subscale | Pearson Correlation | 0.240 * | 0.835 ** | 1 | 0.493 ** | 0.738 ** | 0.785 ** |
Sig. (2-tailed) | 0.014 | 0.000 | 0.000 | 0.000 | 0.000 | ||
PANSS negative subscale | Pearson Correlation | 0.156 | 0.806 ** | 0.493 ** | 1 | 0.730 ** | 0.719 ** |
Sig. (2-tailed) | 0.113 | 0.000 | 0.000 | 0.000 | 0.000 | ||
PANSS disorganized subscale | Pearson Correlation | 0.295 ** | 0.954 ** | 0.738 ** | 0.730 ** | 1 | 0.888 ** |
Sig. (2-tailed) | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | ||
BPRS | Pearson Correlation | 0.383 ** | 0.911 ** | 0.785 ** | 0.719 ** | 0.888 ** | 1 |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Hamilton D Scale | Dissociation Scale | Fixation Scale | Hamilton A Scale | OCS Scale | ||
---|---|---|---|---|---|---|
Hamilton D | Pearson Correlation | 1 | 0.133 | −0.139 | 0.719 ** | 0.256 ** |
Sig. (2-tailed) | 0.175 | 0.158 | 0.000 | 0.009 | ||
Dissociation scale | Pearson Correlation | 0.133 | 1 | −0.467 ** | 0.209 * | 0.335 ** |
Sig. (2-tailed) | 0.175 | 0.000 | 0.032 | 0.000 | ||
Fixation | Pearson Correlation | −0.139 | −0.467 ** | 1 | −0.270 ** | −0.121 |
Sig. (2-tailed) | 0.158 | 0.000 | 0.005 | 0.218 | ||
Hamilton anxiety scale | Pearson Correlation | 0.719 ** | 0.209 * | −0.270 ** | 1 | 0.208 * |
Sig. (2-tailed) | 0.000 | 0.032 | 0.005 | 0.033 | ||
OCS scale | Pearson Correlation | 0.256 ** | 0.335 ** | −0.121 | 0.208 * | 1 |
Sig. (2-tailed) | 0.009 | 0.000 | 0.218 | 0.033 |
R2 | β | t | p (sig) | |
---|---|---|---|---|
Step 1 PANSS disorganized | 0.295 | 0.148 | 3.136 | 0.002 |
Step 2 Duration of untreated symptoms | 0.351 | 0.174 | 3.611 | 0.044 |
Step 3 OCS scale | 0.409 | 0.150 | 3.098 | 0.022 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | ||
---|---|---|---|---|---|---|
B | Std. Error | Beta | ||||
1 | (Constant) | 7.126 | 1.568 | 4.544 | 0.000 | |
PANSS disorganized | 0.148 | 0.047 | 0.295 | 3.136 | 0.002 | |
2 | (Constant) | 7.576 | 1.560 | 4.855 | 0.000 | |
PANSS disorganized | 0.174 | 0.048 | 0.347 | 3.611 | 0.000 | |
Duration of untreated psychosis | −0.086 | 0.042 | −0.196 | −2.040 | 0.044 | |
3 | (Constant) | 6.513 | 1.594 | 4.085 | 0.000 | |
PANS disorganized | 0.150 | 0.048 | 0.299 | 3.098 | 0.003 | |
Duration of untreated psychosis | −0.098 | 0.042 | −0.223 | −2.351 | 0.021 | |
OCS scale | 0.111 | 0.048 | 0.220 | 2.329 | 0.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panov, G.; Dyulgerova, S.; Panova, P.; Stefanova, S. Untangling Depression in Schizophrenia: The Role of Disorganized and Obsessive-Compulsive Symptoms and the Duration of Untreated Psychosis. Biomedicines 2024, 12, 2646. https://doi.org/10.3390/biomedicines12112646
Panov G, Dyulgerova S, Panova P, Stefanova S. Untangling Depression in Schizophrenia: The Role of Disorganized and Obsessive-Compulsive Symptoms and the Duration of Untreated Psychosis. Biomedicines. 2024; 12(11):2646. https://doi.org/10.3390/biomedicines12112646
Chicago/Turabian StylePanov, Georgi, Silvana Dyulgerova, Presyana Panova, and Sonia Stefanova. 2024. "Untangling Depression in Schizophrenia: The Role of Disorganized and Obsessive-Compulsive Symptoms and the Duration of Untreated Psychosis" Biomedicines 12, no. 11: 2646. https://doi.org/10.3390/biomedicines12112646
APA StylePanov, G., Dyulgerova, S., Panova, P., & Stefanova, S. (2024). Untangling Depression in Schizophrenia: The Role of Disorganized and Obsessive-Compulsive Symptoms and the Duration of Untreated Psychosis. Biomedicines, 12(11), 2646. https://doi.org/10.3390/biomedicines12112646