Immunotherapy in Non-Small-Cell Lung Cancer: A Modified Delphi Survey Consensus on First Line Treatment, Special Populations and Rechallenge
Abstract
:1. Introduction
2. Methods
2.1. Steering Committee and Delphi Panel
2.2. Modified Delphi Survey
2.3. Definitions
3. Results
3.1. First Round
3.2. Second Round
4. Discussion
4.1. Therapeutic Choice and First-Line Treatment
4.2. Immunotherapy and Chemoimmunotherapy
4.3. The Role of Mutations
4.4. The Role of Smoking
4.5. The Role of Concurrent Steroid Therapy
4.6. Special Populations
4.7. Immunotherapy Rechallenge
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef]
- Cheng, T.Y.; Cramb, S.M.; Baade, P.D.; Youlden, D.R.; Nwogu, C.; Reid, M.E. The International Epidemiology of Lung Cancer: Latest Trends, Disparities, and Tumor Characteristics. J. Thorac. Oncol. 2016, 11, 1653–1671. [Google Scholar] [CrossRef]
- Mielgo-Rubio, X.; Uribelarrea, E.A.; Cortés, L.Q.; Moyano, M.S. Immunotherapy in non-small cell lung cancer: Update and new insights. J. Clin. Transl. Res. 2021, 7, 1–21. [Google Scholar]
- Proto, C.; Ferrara, R.; Signorelli, D.; Lo Russo, G.; Galli, G.; Imbimbo, M.; Prelaj, A.; Zilembo, N.; Ganzinelli, M.; Pallavicini, L.M.; et al. Choosing wisely first line immunotherapy in non-small cell lung cancer (NSCLC): What to add and what to leave out. Cancer Treat. Rev. 2019, 75, 39–51. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Wu, Y.L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G., Jr.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Keytruda. Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/keytruda-epar-product-information_en.pdf (accessed on 20 August 2024).
- Herbst, R.S.; Giaccone, G.; de Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef] [PubMed]
- ESMO. EMA Recommends Extension of Indications for Atezolizumab. New Indication Concerns First-Line Treatment of Patients with Metastatic NSCLC Whose Tumours Have High PD-L1 Expression. Available online: https://www.esmo.org/oncology-news/ema-recommends-extension-of-indications-for-atezolizumab4 (accessed on 29 March 2021).
- Sezer, A.; Kilickap, S.; Gümüş, M.; Bondarenko, I.; Özgüroğlu, M.; Gogishvili, M.; Turk, H.M.; Cicin, I.; Bentsion, D.; Gladkov, O.; et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: A multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet 2021, 397, 592–604. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in metastatic non-small-cell lung cancer and investigators, KEYNOTE-189. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef]
- West, H.; McCleod, M.; Hussein, M.; Morabito, A.; Rittmeyer, A.; Conter, H.J.; Kopp, H.-G.; Daniel, D.; McCune, S.; Mekhail, T.; et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 924–937. [Google Scholar] [CrossRef]
- Jotte, R.; Cappuzzo, F.; Vynnychenko, I.; Stroyakovskiy, D.; Rodríguez-Abreu, D.; Hussein, M.; Soo, R.; Conter, H.J.; Kozuki, T.; Huang, K.-C.; et al. Atezolizumab in Combination with Carboplatin and Nab-Paclitaxel in Advanced Squamous NSCLC (IMpower131): Results From a Randomized Phase III Trial. J. Thorac. Oncol. 2020, 15, 1351–1360. [Google Scholar] [CrossRef]
- Nishio, M.; Barlesi, F.; West, H.; Ball, S.; Bordoni, R.; Cobo, M.; Longeras, P.D.; Goldschmidt, J.; Novello, S.; Orlandi, F.; et al. Atezolizumab Plus Chemotherapy for First-Line Treatment of Nonsquamous NSCLC: Results From the Randomized Phase 3 IMpower132 Trial. J. Thorac. Oncol. 2021, 16, 653–664. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Ciuleanu, T.E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Baxevanis, C.N. Biomarkers in the Era of Precision Oncology. Cancers 2023, 15, 1782. [Google Scholar] [CrossRef]
- Putzu, C.; Canova, S.; Paliogiannis, P.; Lobrano, R.; Sala, L.; Cortinovis, D.L.; Colonese, F. Duration of Immunotherapy in Non-Small Cell Lung Cancer Survivors: A Lifelong Commitment? Cancers 2023, 15, 689. [Google Scholar] [CrossRef]
- Sharma, J.; Shum, E.; Chau, V.; Paucar, D.; Cheng, H.; Halmos, B. The Evolving Role of Biomarkers in Personalized Lung Cancer Therapy. Respiration 2017, 93, 1–14. [Google Scholar] [CrossRef]
- Mogavero, A.; Cantale, O.; Mollica, V.; Anpalakhan, S.; Addeo, A.; Mountzios, G.; Friedlaender, A.; Kanesvaran, R.; Novello, S.; Banna, G.L. First-line immunotherapy in non-small cell lung cancer: How to select and where to go. Expert Rev. Respir. Med. 2023, 17, 1191–1206. [Google Scholar] [CrossRef] [PubMed]
- Castelo-Branco, L.; Morgan, G.; Prelaj, A.; Scheffler, M.; Canhão, H.; Van Meerbeeck, J.P.; Awada, A. Challenges and knowledge gaps with immune checkpoint inhibitors monotherapy in the management of patients with non-small-cell lung cancer: A survey of oncologist perceptions. ESMO Open 2023, 8, 100764. [Google Scholar] [CrossRef] [PubMed]
- Szajewska, H. Evidence-Based Medicine and Clinical Research: Both Are Needed, Neither Is Perfect. Ann. Nutr. Metab. 2018, 72 (Suppl. S3), 13–23. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.K.; Black, N.A.; Lamping, D.L.; McKee, C.M.; Sanderson, C.F.; Askham, J.; Marteau, T. Consensus development methods, and their use in clinical guideline development. Health Technol. Assess. 1998, 2, i–iv, 1–88. [Google Scholar] [CrossRef]
- Milholland, A.V.; Wheeler, S.G.; Heieck, J.J. Medical assessment by a Delphi group opinion technic. N. Engl. J. Med. 1973, 288, 1272–1275. [Google Scholar] [CrossRef]
- Gattrell, W.T.; Logullo, P.; van Zuuren, E.J.; Price, A.; Hughes, E.L.; Blazey, P.; Winchester, C.C.; Tovey, D.; Goldman, K.; Hungin, A.P.; et al. ACCORD (ACcurate COnsensus Reporting Document): A reporting guideline for consensus methods in biomedicine developed via a modified Delphi. PLoS Med. 2024, 21, e1004326. [Google Scholar] [CrossRef]
- Candiani, G.; Colombo, C.; Daghini, R.; Magrini, N.; Mosconi, P.; Nonino, F.; Sampaolo, L.; Satollo, R.; Come Organizzare Una Conferenza di Consenso. Manuale Metodologico Sistema Nazionale per le Linee Guida (2009). Available online: https://publ.iss.it/ITA/Items/AssetDetails?uuid=fa224b71-dc78-4172-b1e7-a6b2b6b95766 (accessed on 13 November 2024).
- Dall’Olio, F.G.; Marabelle, A.; Caramella, C.; Garcia, C.; Aldea, M.; Chaput, N.; Robert, C.; Besse, B. Tumour burden and efficacy of immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2022, 19, 75–90. [Google Scholar] [CrossRef]
- Barlesi, F.; Mazieres, J.; Merlio, J.P.; Debieuvre, D.; Mosser, J.; Lena, H.; Ouafik, L.; Besse, B.; Rouquette, I.; Westeel, V.; et al. Routine molecular profiling of patients with advanced non-small-cell lung cancer: Results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). Lancet 2016, 387, 1415–1426. [Google Scholar] [CrossRef]
- Shah, M.; Mamtani, R.; Marmarelis, M.E.; Hennessy, S. Chemoimmunotherapy vs. Immunotherapy for First Line Treatment of Advanced Non-small Cell Lung Cancer with a PD-L1 Expression ≥50% or ≥90. Clin. Lung Cancer 2023, 24, 235–243. [Google Scholar] [CrossRef]
- Brown, L.J.; Khou, V.; Brown, C.; Alexander, M.; Jayamanne, D.; Wei, J.; Gray, L.; Chan, W.Y.; Smith, S.; Harden, S.; et al. First-line chemoimmunotherapy and immunotherapy in patients with non-small cell lung cancer and brain metastases: A registry study. Front. Oncol. 2024, 14, 1305720. [Google Scholar] [CrossRef]
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Wood, K.; Hensing, T.; Malik, R.; Salgia, R. Prognostic and Predictive Value in KRAS in Non-Small-Cell Lung Cancer: A Review. JAMA Oncol. 2016, 2, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Calles, A.; Liao, X.; Sholl, L.M.; Rodig, S.J.; Freeman, G.J.; Butaney, M.; Lydon, C.; Dahlberg, S.E.; Hodi, F.S.; Oxnard, G.R.; et al. Expression of PD-1 and Its Ligands, PD-L1 and PD-L2, in Smokers and Never Smokers with KRAS-Mutant Lung Cancer. J. Thorac. Oncol. 2015, 10, 1726–1735. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Lopes, G.; Kowalski, D.M.; Kasawara, K.; Wu, Y.L.; De Castro, G.; Cho, B.C.; Cristecu, R.; Aurora-Garg, D.; Lunceford, J.; et al. LBA4 Association of KRAS mutational status with response to pembrolizumab monotherapy given as first-line therapy for PD-L1-positive advanced non-squamous NSCLC in Keynote-042. Ann. Oncol. 2019, 30, xi63–xi64. [Google Scholar] [CrossRef]
- Lee, C.K.; Man, J.; Lord, S.; Cooper, W.; Links, M.; Gebski, V.; Herbst, R.S.; Gralla, R.J.; Mok, T.; Yang, J.C. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma. JAMA Oncol. 2018, 4, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Landre, T.; Justeau, G.; Assié, J.B.; Chouahnia, K.; Davoine, C.; Taleb, C.; Chouaïd, C.; Duchemann, B. Anti-PD-(L)1 for KRAS-mutant advanced non-small-cell lung cancers: A meta-analysis of randomized-controlled trials. Cancer Immunol. Immunother. 2022, 71, 719–726. [Google Scholar] [CrossRef]
- Bange, E.; Marmarelis, M.E.; Hwang, W.T.; Yang, Y.X.; Thompson, J.C.; Rosenbaum, J.; Bauml, J.M.; Ciunci, C.; Alley, E.W.; Cohen, R.B.; et al. Impact of KRAS and TP53 co-mutations on outcomes after first-line systemic therapy among patients with STK11-mutated advanced non-small-cell lung cancer. JCO Precis. Oncol. 2019, 3, 1–11. [Google Scholar] [CrossRef]
- Sun, L.; Hsu, M.; Cohen, R.B.; Langer, C.J.; Mamtani, R.; Aggarwal, C. Association between KRAS variant status and outcomes with first-line immune checkpoint inhibitor-based therapy in patients with advanced non-small-cell lung cancer. JAMA Oncol. 2021, 7, 937. [Google Scholar] [CrossRef]
- Rossi, S.; Pagliaro, A.; Finocchiaro, G.; Marinello, A.; Giordano, L.; Bria, E.; Stefani, A.; Vitale, A.; Toschi, L.; D’Argento, E.; et al. Response to first-line pembrolizumab in metastatic KRAS-mutated non-small-cell lung cancer. Future Oncol. 2024, 20, 373–380. [Google Scholar] [CrossRef]
- Ricciuti, B.; Arbour, K.C.; Lin, J.J.; Vajdi, A.; Vokes, N.; Hong, L.; Zhang, J.; Tolstorukov, M.Y.; Li, Y.Y.; Spurr, L.F.; et al. Diminished Efficacy of Programmed Death-(Ligand)1 Inhibition in STK11- and KEAP1-Mutant Lung Adenocarcinoma Is Affected by KRAS Mutation Status. J. Thorac. Oncol. 2022, 17, 399–410. [Google Scholar] [CrossRef]
- Borzi, C.; Galli, G.; Ganzinelli, M.; Signorelli, D.; Vernieri, C.; Garassino, M.C.; Sozzi, G.; Moro, M. Beyond LKB1 Mutations in Non-Small Cell Lung Cancer: Defining LKB1less Phenotype to Optimize Patient Selection and Treatment. Pharmaceuticals 2020, 13, 385. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Handorf, E.A.; Zhou, Y.; Borghaei, H.; Aggarwal, C.; Bauman, J. Outcomes in patients treated with frontline immune checkpoint inhibition (ICI) for advanced NSCLC with KRAS mutations and STK11/KEAP1 comutations across PD-L1 levels. Lung Cancer 2024, 190, 107510. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, P.; Reck, M.; Overbeck, T.; Christopoulos, P.; Rittmeyer, A.; Lüders, H.; Kollmeier, J.; Kulhavy, J.; Kemper, M.; Reinmuth, N.; et al. Outcome of First-Line Treatment with Pembrolizumab According to KRAS/TP53 Mutational Status for Nonsquamous Programmed Death-Ligand 1-High (≥50%) NSCLC in the German National Network Genomic Medicine Lung Cancer. J. Thorac. Oncol. 2024, 19, 803–817. [Google Scholar] [CrossRef] [PubMed]
- Guisier, F.; Dubos-Arvis, C.; Viñas, F.; Doubre, H.; Ricordel, C.; Ropert, S.; Janicot, H.; Bernardi, M.; Fournel, P.; Lamy, R.; et al. Efficacy and safety of anti-PD-1 immunotherapy in patients with advanced NSCLC with BRAF, HER2, or MET mutations or RET translocation: GFPC 01-2018. J. Thorac. Oncol. 2020, 15, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Y.; Xu, Y.; Huang, Z.; Cheng, G.; Xie, M.; Zhou, Z.; Yu, Y.; Xi, W.; Fan, Y. Tumor immune microenvironment and immunotherapy efficacy in BRAF mutation non-small-cell lung cancer. Cell Death Dis. 2022, 13, 55. [Google Scholar] [CrossRef]
- Mazieres, J.; Drilon, A.; Lusque, A.; Mhanna, L.; Cortot, A.B.; Mezquita, L.; Thai, A.A.; Mascaux, C.; Couraud, S.; Veillon, R.; et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: Results from the IMMUNOTARGET registry. Ann. Oncol. 2019, 30, 1321–1328. [Google Scholar] [CrossRef]
- Zhou, C.; Solomon, B.; Loong, H.H.; Park, K.; Pérol, M.; Arriola, E.; Novello, S.; Han, B.; Zhou, J.; Ardizzoni, A.; et al. First-Line Selpercatinib or Chemotherapy and Pembrolizumab in RET Fusion-Positive NSCLC. N. Engl. J. Med. 2023, 389, 1839–1850. [Google Scholar] [CrossRef]
- Liu, F.; Wei, Y.; Zhang, H.; Jiang, J.; Zhang, P.; Chu, Q. NTRK Fusion in Non-Small Cell Lung Cancer: Diagnosis, Therapy, and TRK Inhibitor Resistance. Front. Oncol. 2022, 12, 864666. [Google Scholar] [CrossRef]
- Cortellini, A.; De Giglio, A.; Cannita, K.; Cortinovis, D.L.; Cornelissen, R.; Baldessari, C.; Giusti, R.; D’Argento, E.; Grossi, F.; Santoni, M.; et al. Smoking status during first-line immunotherapy and chemotherapy in NSCLC patients: A case-control matched analysis from a large multicenter study. Thorac. Cancer 2021, 12, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Norum, J.; Nieder, C. Tobacco smoking and cessation and PD-L1 inhibitors in non-small cell lung cancer (NSCLC): A review of the literature. ESMO Open 2018, 3, e000406. [Google Scholar] [CrossRef]
- Zhao, W.; Jiang, W.; Wang, H.; He, J.; Su, C.; Yu, Q. Impact of Smoking History on Response to Immunotherapy in Non-Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2021, 11, 703143. [Google Scholar] [CrossRef] [PubMed]
- Di Federico, A.; De Giglio, A.; Gelsomino, F.; Sperandi, F.; Melotti, B.; Ardizzoni, A. Predictors of survival to immunotherapy and chemoimmunotherapy in non-small cell lung cancer: A meta-analysis. J. Natl. Cancer Inst. 2023, 115, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.C.; Chen, C.H. Cigarette Smoking-Mediated Macrophage Reprogramming: Mechanistic Insights and Therapeutic Implications. J. Nat. Sci. 2018, 4, e539. [Google Scholar] [PubMed]
- Takamochi, K.; Oh, S.; Suzuki, K. Differences in EGFR and KRAS mutation spectra in lung adenocarcinoma of never and heavy smokers. Oncol. Lett. 2013, 6, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef]
- Cortellini, A.; Tucci, M.; Adamo, V.; Stucci, L.S.; Russo, A.; Tanda, E.T.; Spagnolo, F.; Rastelli, F.; Bisonni, R.; Santini, D.; et al. Integrated analysis of concomitant medications and oncological outcomes from PD-1/PD-L1 checkpoint inhibitors in clinical practice. J. Immunother. Cancer 2020, 8, e001361. [Google Scholar] [CrossRef]
- Hussain, N.; Naeem, M.; Pinato, D.J. Concomitant medications and immune checkpoint inhibitor therapy for cancer: Causation or association? Hum. Vaccines Immunother. 2020, 16, 949–955. [Google Scholar] [CrossRef]
- Ricciuti, B.; Dahlberg, S.E.; Adeni, A.; Sholl, L.M.; Nishino, M.; Awad, M.M. Immune Checkpoint Inhibitor Outcomes for Patients with Non-Small-Cell Lung Cancer Receiving Baseline Corticosteroids for Palliative Versus Nonpalliative Indications. J. Clin. Oncol. 2019, 37, 1927–1934. [Google Scholar] [CrossRef]
- Fucà, G.; Galli, G.; Poggi, M.; Lo Russo, G.; Proto, C.; Imbimbo, M.; Ferrara, R.; Zilembo, N.; Ganzinelli, M.; Sica, A.; et al. Modulation of peripheral blood immune cells by early use of steroids and its association with clinical outcomes in patients with metastatic non-small cell lung cancer treated with immune checkpoint inhibitors. ESMO Open 2019, 4, e000457. [Google Scholar] [CrossRef]
- Haanen, J.; Ernstoff, M.S.; Wang, Y.; Menzies, A.M.; Puzanov, I.; Grivas, P.; Larkin, J.; Peters, S.; Thompson, J.A.; Obeid, M. Autoimmune diseases and immune-checkpoint inhibitors for cancer therapy: Review of the literature and personalized risk-based prevention strategy. Ann. Oncol. 2020, 31, 724–744. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.D.; Zhao, Y.; Zhang, C.; Fu, J.; Su, Y.J.; Cui, X.L.; Ma, E.L.; Liu, B.L.; Gu, Z.C.; Lin, H.W. Toxicity spectrum of immunotherapy in advanced lung cancer: A safety analysis from clinical trials and a pharmacovigilance system. eClinicalMedicine 2022, 50, 101535. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.D.; Cui, J.J.; Fu, J.; Su, Y.J.; Chen, X.Y.; Gu, Z.C.; Lin, H.W. A Network Comparison on Safety Profiling of Immune Checkpoint Inhibitors in Advanced Lung Cancer. Front. Immunol. 2021, 12, 760737. [Google Scholar] [CrossRef] [PubMed]
- Mezquita, L.; Auclin, E.; Ferrara, R.; Charrier, M.; Remon, J.; Planchard, D.; Ponce, S.; Ares, L.P.; Leroy, L.; Audigier-Valette, C.; et al. Association of the Lung Immune Prognostic Index with Immune Checkpoint Inhibitor Outcomes in Patients with Advanced Non-Small Cell Lung Cancer. JAMA Oncol. 2018, 4, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Green, M.D.; Li, S.; Sun, Y.; Journey, S.N.; Choi, J.E.; Rizvi, S.M.; Qin, A.; Waninger, J.J.; Lang, X.; et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat. Med. 2021, 27, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Facchinetti, F.; Mazzaschi, G.; Barbieri, F.; Passiglia, F.; Mazzoni, F.; Berardi, R.; Proto, C.; Cecere, F.L.; Pilotto, S.; Scotti, V.; et al. First-line pembrolizumab in advanced non-small cell lung cancer patients with poor performance status. Eur. J. Cancer 2020, 130, 155–167. [Google Scholar] [CrossRef]
- Lobefaro, R.; Viscardi, G.; Di Liello, R.; Massa, G.; Iacovino, M.L.; Sparano, F.; Della Corte, C.M.; Ferrara, R.; Signorelli, D.; Proto, C.; et al. Immunotherapy in advanced Non-Small Cell Lung Cancer patients with poor performance status: The role of clinical-pathological variables and inflammatory biomarkers. Lung Cancer 2021, 152, 165–173. [Google Scholar] [CrossRef]
- Powell, S.F.; Rodríguez-Abreu, D.; Langer, C.J.; Tafreshi, A.; Paz-Ares, L.; Kopp, H.G.; Rodríguez-Cid, J.; Kowalski, D.M.; Cheng, Y.; Kurata, T.; et al. Outcomes with Pembrolizumab Plus Platinum-Based Chemotherapy for Patients with NSCLC and Stable Brain Metastases: Pooled Analysis of KEYNOTE-021, -189, and -407. J. Thorac. Oncol. 2021, 16, 1883–1892. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Ciuleanu, T.E.; Cobo, M.; Bennouna, J.; Schenker, M.; Cheng, Y.; Juan-Vidal, O.; Mizutani, H.; Lingua, A.; Reyes-Cosmelli, F.; et al. First-line nivolumab plus ipilimumab with chemotherapy versus chemotherapy alone for metastatic NSCLC in CheckMate 9LA: 3-year clinical update and outcomes in patients with brain metastases or select somatic mutations. J. Thorac. Oncol. 2023, 18, 204–222. [Google Scholar] [CrossRef]
- Gridelli, C.; Peters, S.; Mok, T.; Garassino, M.; Paz-Ares, L.; Attili, I.; de Marinis, F. Face to face among different chemo-immunotherapy combinations in the first line treatment of patients with advanced non-small cell lung cancer: Results of an international expert panel meeting by the italian association of thoracic oncology (AIOT). Lung Cancer 2024, 187, 107441. [Google Scholar] [CrossRef]
- Novello, S.; Kowalski, D.M.; Luft, A.; Gümüş, M.; Vicente, D.; Mazières, J.; Rodríguez-Cid, J.; Tafreshi, A.; Cheng, Y.; Lee, K.H.; et al. Pembrolizumab Plus Chemotherapy in Squamous Non-Small-Cell Lung Cancer: 5-Year Update of the Phase III KEYNOTE-407 Study. J. Clin. Oncol. 2023, 41, 1999–2006. [Google Scholar] [CrossRef]
- Reck, M.; Ciuleanu, T.E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-line nivolumab plus ipilimumab with two cycles of chemotherapy versus chemotherapy alone (four cycles) in advanced non-small-cell lung cancer: CheckMate 9LA 2-year update. ESMO Open 2021, 6, 100273. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.W.; Kim, M.; Lee, Y.; Ahn, H.K.; Cho, J.H.; Kim, I.H.; Lee, Y.G.; Shin, S.H.; Park, S.E.; et al. Long-term outcomes in patients with advanced and/or metastatic non-small cell lung cancer who completed 2 years of immune checkpoint inhibitors or achieved a durable response after discontinuation without disease progression: Multicenter, real-world data (KCSG LU20-11). Cancer 2022, 128, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, D.M.; Garon, E.B.; Chandler, J.; McCleod, M.; Hussein, M.; Jotte, R.; Horn, L.; Daniel, D.B.; Keogh, G.; Creelan, B.; et al. Continuous Versus 1-Year Fixed-Duration Nivolumab in Previously Treated Advanced Non-Small-Cell Lung Cancer: CheckMate 153. J. Clin. Oncol. 2020, 38, 3863–3873. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, V.; Smith, K.N.; Forde, P.M.; Niknafs, N.; Bhattacharya, R.; White, J.; Zhang, T.; Adleff, V.; Phallen, J.; Wali, N.; et al. Evolution of Neoantigen Landscape during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer. Cancer Discov. 2017, 7, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.; Guven Mese, S. Durable response after discontinuation of nivolumab therapy in the absence of disease progression or toxicity with two advanced NSCLC patients. J. Oncol. Pharm. Pract. 2020, 26, 761–767. [Google Scholar] [CrossRef]
- Iivanainen, S.; Koivunen, J.P. Early PD-1 Therapy Discontinuation in Responding Metastatic Cancer Patients. Oncology 2019, 96, 125–131. [Google Scholar] [CrossRef]
- Tachihara, M.; Negoro, S.; Inoue, T.; Tamiya, M.; Akazawa, Y.; Uenami, T.; Urata, Y.; Hattori, Y.; Hata, A.; Katakami, N.; et al. Efficacy of anti-PD-1/PD-L1 antibodies after discontinuation due to adverse events in non-small cell lung cancer patients (HANSHIN 0316). BMC Cancer 2018, 18, 946. [Google Scholar] [CrossRef]
- Kimura, H.; Araya, T.; Yoneda, T.; Shirasaki, H.; Kurokawa, K.; Sakai, T.; Koba, H.; Tambo, Y.; Nishikawa, S.; Sone, T.; et al. Long-lasting responses after discontinuation of nivolumab treatment for reasons other than tumor progression in patients with previously treated, advanced non-small cell lung cancer. Cancer Commun. 2019, 39, 78. [Google Scholar] [CrossRef]
- Ramos, P.; Bentires-Alj, M. Mechanism-based cancer therapy: Resistance to therapy, therapy for resistance. Oncogene 2015, 34, 3617–3626. [Google Scholar] [CrossRef]
- Herbst, R.S.; Garon, E.B.; Kim, D.W.; Cho, B.C.; Gervais, R.; Perez-Gracia, J.L.; Han, J.Y.; Majem, M.; Forster, M.D.; Monnet, I.; et al. Five Year Survival Update From KEYNOTE-010: Pembrolizumab Versus Docetaxel for Previously Treated, Programmed Death-Ligand 1-Positive Advanced NSCLC. J. Thorac. Oncol. 2021, 16, 1718–1732. [Google Scholar] [CrossRef]
- Giaj Levra, M.; Cotté, F.E.; Corre, R.; Calvet, C.; Gaudin, A.F.; Penrod, J.R.; Grumberg, V.; Jouaneton, B.; Jolivel, R.; Assié, J.B.; et al. Immunotherapy rechallenge after nivolumab treatment in advanced non-small cell lung cancer in the real-world setting: A national data base analysis. Lung Cancer 2020, 140, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Özgüroğlu, M.; Kilickap, S.; Sezer, A.; Gümüş, M.; Bondarenko, I.; Gogishvili, M.; Nechaeva, M.; Schenker, M.; Cicin, I.; Ho, G.F.; et al. First-line cemiplimab monotherapy and continued cemiplimab beyond progression plus chemotherapy for advanced non-small-cell lung cancer with PD-L1 50% or more (EMPOWER-Lung 1): 35-month follow-up from a mutlicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2023, 24, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Prelaj, A.; Pircher, C.C.; Massa, G.; Martelli, V.; Corrao, G.; Lo Russo, G.; Proto, C.; Ferrara, R.; Galli, G.; De Toma, A.; et al. Beyond First-Line Immunotherapy: Potential Therapeutic Strategies Based on Different Pattern Progressions: Oligo and Systemic Progression. Cancers 2021, 13, 1300. [Google Scholar] [CrossRef] [PubMed]
- Dolladille, C.; Ederhy, S.; Sassier, M.; Cautela, J.; Thuny, F.; Cohen, A.A.; Fedrizzi, S.; Chrétien, B.; Da-Silva, A.; Plane, A.F.; et al. Immune Checkpoint Inhibitor Rechallenge After Immune-Related Adverse Events in Patients with Cancer. JAMA Oncol. 2020, 6, 865–871. [Google Scholar] [CrossRef]
First Round | Second Round | ||||||
---|---|---|---|---|---|---|---|
Level of Disagreement | Level of Agreement | Consensus | Level of Disagreement | Level of Agreement | Consensus | ||
In “fit” patients with PD-L1 < 50%, a combination of short-course chemotherapy (two cycles) and nivolumab + ipilimumab is preferred over chemotherapy + pembrolizumab in case of: | In “fit” patients with PD-L1 < 50%, high disease burden is a limitation for choosing a combination of short-course chemotherapy (two cycles) and nivolumab + ipilimumab. | ||||||
High disease burden | 57.38% | 6.56% | Not met | 25.86% | 58.62% | Not met | |
Low disease burden | 8.20% | 62.29% | Not met | ||||
Regardless of the disease burden | 32.79% | 26.23% | Not met | ||||
In “fit” patients with PD-L1 < 50%, a combination of short-course chemotherapy (two cycles) and nivolumab + ipilimumab is preferred over chemotherapy + pembrolizumab in the context of possibly receiving a platinum-based second line. | In “fit” patients with PD-L1 < 50%, a combination of short-course chemotherapy (two cycles) and nivolumab + ipilimumab is preferred over chemotherapy + pembrolizumab in the context of a platinum-based rechallenge in case of disease progression. | ||||||
31.15% | 44.26% | Not met | 36.21% | 32.76% | Not met | ||
In patients with PD-L1 ≥ 50%, a high disease burden may prompt consideration, if possible, of chemoimmunotherapy combination treatment instead of anti-PD1/PD-L1 therapy as a single agent. | - | - | - | - | |||
4.92% | 90.16% | Yes, consensus on agreement | - | - | - | - | |
Comprehensive molecular characterization (by NGS if available) of mutations should also be performed in all patients to optimize therapeutic choices regarding first-line chemotherapy and immunotherapy. | - | - | - | - | |||
0.00% | 100.00% | Yes, consensus on agreement | - | - | - | - | |
In patients with PD-L1 ≥ 50%, first-line mono-immunotherapy treatment should be proposed in case of alterations in: | In patients with PD-L1 ≥ 50%, I would propose mono-immunotherapy versus platinum-based doublet chemotherapy in case of alterations in: | ||||||
MET | 40.99% | 47.54% | Not met | MET | 44.83% | 39.65% | Not met |
BRAF (V600) | 73.77% | 14.76% | Not met | BRAF (V600) | 31.03% | 53.45% | Not met |
RET | 80.33% | 13.12% | Yes, consensus on disagreement | - | - | - | - |
K-RAS (G12C) | 6.56% | 83.61% | Yes, consensus on agreement | - | - | - | - |
HER2 | 52.46% | 22.95% | Not met | HER2 | 58.62% | 27.59% | Not met |
NTRK | 78.69% | 9.84% | Yes, consensus on disagreement | - | - | - | - |
In patients with PD-L1 < 50%, first-line immunotherapy + chemotherapy treatment should be proposed in case of alterations in: | In patients with PD-L1 < 50%, I would propose immunotherapy + chemotherapy treatment over chemotherapy alone in case of alterations in: | ||||||
MET | 27.87% | 57.38% | Not met | MET | 27.58% | 58.62% | Not met |
BRAF (V600) | 65.57% | 22.95% | Not met | BRAF (V600) | 22.41% | 67.24% | Not met |
RET | 62.30% | 26.23% | Not met | RET | 50.00% | 43.10% | Not met |
K-RAS (G12C) | 4.92% | 85.25% | Yes, consensus on agreement | - | - | - | - |
HER2 | 40.99% | 37.70% | Not met | HER2 | 34.48% | 53.45% | Not met |
NTRK | 67.21% | 19.68% | Not met | NTRK | 48.28% | 37.93% | Not met |
In patients with PD-L1, <50% and candidates for first-line chemoimmunotherapy treatment, the presence of BRAF (V600) and/or K-RAS (G12C) mutations suggests treatment with: | In patients with PD-L1 < 50% and candidates for first-line chemoimmunotherapy treatment, the presence of K-RAS (G12C) mutations suggests a treatment with: | ||||||
Triplet (chemotherapy + pembrolizumab) | 16.40% | 49.18% | Not met | Triplet (chemotherapy + pembrolizumab) | 3.44% | 74.14% | Not met * |
Quadruplet (chemotherapy + nivolumab + ipilimumab) | 27.87% | 27.87% | Not met | Quadruplet (chemotherapy + nivolumab + ipilimumab) | 12.07% | 63.79% | Not met |
In patients with PD-L1 < 50% and candidates for first-line chemoimmunotherapy treatment, the presence of MET, RET, HER2, or NTRK mutations suggests treatment with: | In patients with PD-L1 < 50% and candidates for first-line chemoimmunotherapy treatment, the presence of MET, RET, HER2, or NTRK mutations suggests a treatment with: | ||||||
Triplet (chemotherapy + pembrolizumab) | 22.95% | 42.63% | Not met | Triplet (chemotherapy + pembrolizumab) for performing multiple cycles of chemotherapy | 10.34% | 72.41% | Not met |
Quadruplet (chemotherapy + nivolumab + ipilimumab) | 44.27% | 22.95% | Not met | Quadruplet (chemotherapy + nivolumab + ipilimumab) | 55.17% | 18.96% | Not met |
Q10. Co-mutation of KRAS with STK11 +/- KEAP1 is a criterion for preferring triplet over quadruplet. | Q8. In patients with PD-L1 < 50% and in the presence of KRAS co-mutation with STK11 ± KEAP1, first-line therapy choice depends on the efficacy data of anti-CTLA4. | ||||||
22.95% | 36.07% | Not met | 15.52% | 58.62% | Not met | ||
In case of a “non-oncogene-addicted” tumor, PD-L1 expression ≥ 50%, and “never smoker” status, the first-line therapy choice is: | In case of a “non-oncogene-addicted” tumor, PD-L1 expression ≥ 50%, and “never smoker” status, the first-line therapy choice is: | ||||||
Immunotherapy | 26.23% | 63.94% | Not met | Immunotherapy | 20.69% | 74.14% | Not met * |
Immunotherapy + chemotherapy (if possible, from a prescriptive standpoint) | 9.84% | 81.96% | Yes, consensus on agreement | - | - | - | - |
Chemotherapy (without immunotherapy) | 67.21% | 18.03% | Not met | Chemotherapy (without immunotherapy) | 62.07% | 27.59% | Not met |
Q12. In the case of a “non-oncogene-addicted” tumor, PD-L1 expression ≥ 90%, and “never smoker” status, the first-line therapy choice is: | Q10. In case of a “non-oncogene-addicted” tumor, PD-L1 expression ≥ 90%, and “never smoker” status, although the first-line therapy chosen is immunotherapy, I would consider immunotherapy + chemotherapy if it was possible from a prescriptive standpoint. | ||||||
Immunotherapy | 9.84% | 83.60% | Yes, consensus on agreement | 10.35% | 86.21% | Yes, consensus on agreement | |
Immunotherapy + chemotherapy (if possible, from a prescriptive standpoint) | 16.40% | 70.50% | Not met | - | - | - | - |
Chemotherapy (without immunotherapy) | 75.41% | 14.75% | Yes, consensus on disagreement | - | - | - | - |
In clinical practice, I use the cut-off of 10 mg/day prednisone (or equivalent dose) in therapeutic choice. | Beyond the regulatory aspect, exceeding the cut-off of 10 mg/day prednisone (or equivalent dose) in therapeutic choice is an absolute clinical contraindication to immunotherapy use. | ||||||
24.59% | 67.21% | Not met | 82.76% | 12.07% | Yes, consensus on disagreement | ||
In patients with PD-L1 ≥ 50% and on steroid treatment with prednisone at >10 mg/day (or equivalent dose) for oncological needs (e.g., dyspnea, brain metastasis, other), the therapeutic choice is: | In patients with PD-L1 ≥ 50% and undergoing steroid treatment with prednisone at doses >10 mg/day (or equivalent dose) for oncological needs (e.g., dyspnea, brain metastasis, other), the treatment choice is: | ||||||
Immunotherapy | 16.39% | 75.40% | Yes, consensus on agreement | Immunotherapy | 18.97% | 72.42% | Not met * |
Chemotherapy (without immunotherapy) | 49.18% | 32.79% | Not met | Chemotherapy (without immunotherapy) | 43.11% | 34.48% | Not met |
- | - | - | - | Chemotherapy + immunotherapy, if possible, from a descriptive perspective | 1.72% | 94.83% | Yes, consensus on agreement |
First Round | Second Round | ||||||
---|---|---|---|---|---|---|---|
Level of Disagreement | Level of Agreement | Consensus | Level of Disagreement | Level of Agreement | Consensus | ||
In patients with PD-L1 < 50%, first-line treatment choice could be driven by the patient’s comorbidities (cardiac, renal, etc.) that influence their need for multiple cycles of chemotherapy, resulting in choosing the ipilimumab + nivolumab combination, which provides only two cycles of chemotherapy. | - | - | - | ||||
6.56% | 88.53% | Yes, consensus on agreement | - | - | - | ||
Choosing a chemotherapy + immunotherapy combination depends on the presence of autoimmune diseases that, although controlled, would make the combination of two immunotherapies more hazardous and complex to manage than the anti-PD1 immunotherapy alone. | - | ||||||
8.20% | 85.25% | Yes, consensus on agreement | - | - | - | ||
In patients with PD-L1 < 50%, the choice of using triplet or quadruplet as first-line therapy is also affected by the presence of brain metastases. | In patients with PD-L1 < 50% and brain metastasis, the quadruplet would be preferred over the triplet. | ||||||
16.40% | 60.66% | Not met | 10.34% | 51.72% | Not met | ||
In patients with PD-L1 < 50%, the choice of using triplet or quadruplet as first-line therapy is also affected by the presence of liver metastases. | In patients with PD-L1 < 50% and liver metastasis, the quadruplet would be preferred over the triplet. | ||||||
31.15% | 36.07% | Not met | 27.58% | 22.42% | Not met | ||
In patients with PD-L1 < 50%, poor LIPI scores with high neutrophil/lymphocyte ratio and LDH value steer the therapeutic choice toward triplet versus quadruplet. | In patients with PD-L1 < 50%, the presence of poor LIPI score with high neutrophil/lymphocyte ratio and LDH value steer the therapeutic choice toward triplet versus quadruplet. | ||||||
21.31% | 40.98% | Not met | 8.62% | 51.73% | Not met | ||
In clinical practice, the preference for the quadruplet over the triplet is based on the following factors: | In clinical practice, I prefer quadruplet over triplet in case of frail patients (e.g., advanced age (>75 years), performance status = 2, etc.). | ||||||
Advanced age (≥75 years) | 34.43% | 37.71% | Not met | 44.83% | 41.38% | Not met | |
Performance status = 2 | 40.99% | 31.15% | Not met | - | - | - | |
Non-adenocarcinoma histology | 21.31% | 54.10% | Not met | - | - | - | |
PD-L1 negative (<1%) | 16.40% | 62.29% | Not met | - | - | - | |
High disease burden | 50.81% | 18.04% | Not met | - | - | - | |
Q21. In clinical practice, the preference for triplet over quadruplet is based on the following factors: | In clinical practice, I prefer quadruplet over triplet in case of non-adenocarcinoma histology and PD-L1 negative (<1%). | ||||||
Advanced age (≥75 years) | 31.15% | 31.15% | Not met | 6.90% | 81.04% | Yes, consensus on agreement | |
Performance status = 2 | 36.07% | 32.79% | Not met | - | - | - | |
Non-adenocarcinoma histology | 50.82% | 13.11% | Not met | - | - | - | |
PD-L1 negative (<1%) | 54.10% | 18.03% | Not met | - | - | - | |
High disease burden | 11.48% | 57.37% | Not met | - | - | - |
First Round | Second Round | ||||||
---|---|---|---|---|---|---|---|
Level of Disagreement | Level of Agreement | Consensus | Level of Disagreement | Level of Agreement | Consensus | ||
In clinical practice, after two years of treatment with first-line immunotherapy as a single agent, immunotherapy treatment should be discontinued in case of: | In clinical practice, after 2 years of first-line mono-immunotherapy treatment, discontinuation of immunotherapy treatment occurs in the case of: | ||||||
Complete response | 8.20% | 81.96% | Yes, consensus on agreement | - | - | - | - |
Partial response | 24.59% | 57.37% | Not met | Partial response | 20.69% | 65.52% | Not met |
Stable disease | 39.35% | 34.43% | Not met | Stable disease | 43.10% | 27.59% | Not met |
Assuming it was possible, in case of progression after completion of 2 years with first-line immunotherapy, I would consider a rechallenge: | To perform a rechallenge with immunotherapy in case of disease progression after completion of 2 years of first-line immunotherapy treatment, the minimum time for disease control is: | ||||||
Yes, regardless of the time to progression | 68.85% | 29.51% | Not met | - | - | - | - |
Yes, after 3 months | 54.10% | 24.59% | Not met | - | - | - | - |
Yes, after 6 months | 9.84% | 78.69% | Yes, consensus on agreement | At least 6 months, if it was possible, from a descriptive perspective | 10.34% | 77.59% | Yes, consensus on agreement |
Yes, after 1 year | 0.00% | 93.44% | Yes, consensus on agreement | At least 12 months, if it was possible, from a descriptive perspective | 20.69% | 60.34% | Not met |
Yes, after a line of CT | 22.96% | 40.99% | Not met | - | - | - | - |
In patients who discontinued the nivolumab + ipilimumab combination for G3 toxicity, continuing therapy with nivolumab alone can be considered. | In patients who discontinued the nivolumab + ipilimumab combination for G3 toxicity, continuing therapy with nivolumab alone can be considered if the toxicity resolves. | ||||||
22.95% | 68.85% | Not met | 12.06% | 84.49% | Yes, consensus on agreement | ||
Assuming it was possible, in patients with PD-L1 ≥ 50% progressing to immunotherapy, I would like to continue immunotherapy beyond progression by adding platinum-based chemotherapy. | - | - | - | - | |||
6.56% | 86.88% | Yes, consensus on agreement | - | - | - | - | |
Q26. In case of severe toxicity (≥G3) from immunotherapy with symptom resolution or improvement to G1, I would resume immunotherapy treatment in case of toxicity was: | Q21. In case of severe toxicity (≥G3) from immunotherapy with symptom resolution or improvement to G1, I would still not resume immunotherapy treatment in case the toxicity was: | ||||||
Pulmonary | 75.40% | 11.48% | Yes, consensus on disagreement | - | - | - | - |
Gastroenteric | 37.70% | 36.07% | Not met | Gastroenteric | 37.93% | 50.00% | Not met |
Endocrinological | 3.28% | 90.17% | Yes, consensus on agreement | - | - | - | - |
Cutaneous | 11.48% | 81.97% | Yes, consensus on agreement | - | - | - | - |
Hepatic | 50.82% | 40.99% | Not met | Hepatic | 31.03% | 58.62% | Not met |
Cardiac/muscle | 88.53% | 0.00% | Yes, consensus on disagreement | - | - | - | - |
In patients who have discontinued immunotherapy treatment due to toxicity, I would resume treatment at the time of disease progression, with close clinical monitoring: | In patients who have discontinued immunotherapy treatment for toxicity, I would resume treatment at the time of progression, with close clinical monitoring: | ||||||
Always | 63.94% | 21.31% | Not met | Always | 48.28% | 36.20% | Not met |
Always, except in cases of cardiac or neurological toxicities or those that have required hospitalization | 26.23% | 70.49% | Not met | Always, except in cases of cardiac or neurological toxicities or those that have required hospitalization | 18.97% | 72.41% | Not met |
At least 3 months after the resolution of toxicity | 32.79% | 27.87% | Not met | Only in the case of G1-2 toxicity | 24.14% | 63.79% | Not met |
At least 6 months after the resolution of toxicity | 29.51% | 40.99% | Not met | - | - | - | - |
At least 12 months after resolution of toxicity | 29.51% | 44.27% | Not met | - | - | - | - |
In case of severe toxicity (≥G3) from immunotherapy, it is advisable to consult the organ specialist (if available) | - | - | - | - | |||
1.64% | 96.72% | Yes, consensus on agreement | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colonese, F.; Bulotta, A.; Genova, C.; Signorelli, D.; Bonanno, L.; Proto, C.; Immunotherapy in NSCLC Delphi Panel; Cortinovis, D.L. Immunotherapy in Non-Small-Cell Lung Cancer: A Modified Delphi Survey Consensus on First Line Treatment, Special Populations and Rechallenge. Biomedicines 2024, 12, 2742. https://doi.org/10.3390/biomedicines12122742
Colonese F, Bulotta A, Genova C, Signorelli D, Bonanno L, Proto C, Immunotherapy in NSCLC Delphi Panel, Cortinovis DL. Immunotherapy in Non-Small-Cell Lung Cancer: A Modified Delphi Survey Consensus on First Line Treatment, Special Populations and Rechallenge. Biomedicines. 2024; 12(12):2742. https://doi.org/10.3390/biomedicines12122742
Chicago/Turabian StyleColonese, Francesca, Alessandra Bulotta, Carlo Genova, Diego Signorelli, Laura Bonanno, Claudia Proto, Immunotherapy in NSCLC Delphi Panel, and Diego Luigi Cortinovis. 2024. "Immunotherapy in Non-Small-Cell Lung Cancer: A Modified Delphi Survey Consensus on First Line Treatment, Special Populations and Rechallenge" Biomedicines 12, no. 12: 2742. https://doi.org/10.3390/biomedicines12122742
APA StyleColonese, F., Bulotta, A., Genova, C., Signorelli, D., Bonanno, L., Proto, C., Immunotherapy in NSCLC Delphi Panel, & Cortinovis, D. L. (2024). Immunotherapy in Non-Small-Cell Lung Cancer: A Modified Delphi Survey Consensus on First Line Treatment, Special Populations and Rechallenge. Biomedicines, 12(12), 2742. https://doi.org/10.3390/biomedicines12122742