Early Alpha-Fetoprotein Response Predicts Sustained Tumor Response Following Immune Checkpoint Inhibitors Combined with Targeted Therapy in Liver Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Drug Administration
2.3. Definitions in Research
2.4. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Risk Factors of Early Progression in Patients with Liver Cancer
3.3. Early AFP Response Is Associated with Long-Term Survival Prognosis
3.4. Relationship Between Early AFP Response and Early Tumor Response
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
Abbreviation | Full form |
ICI | immune checkpoint inhibitor |
OS | overall survival |
mOS | median overall survival |
AFP | alpha-fetoprotein |
AUC | area under curve |
HCC | hepatocellular carcinoma |
PFS | progression-free survival |
mPFS | median progression-free survival |
HBV | hepatitis B virus |
BCLC | Barcelona Clinic Liver Cancer |
ALBI | Albumin–Bilirubin |
CRP | C-reactive protein |
NLR | neutrophil–lymphocyte ratio |
ECOG PS | Eastern Cooperative Oncology Group Performance Status |
SD | standard deviation |
IQR | interquartile range |
CI | confidence interval |
ROC | receiver operating characteristic |
OR | odds ratio |
DCA | decision curve analysis |
KM | Kaplan–Meier |
PVTT | portal vein tumor thrombosis |
M | metastas |
TARE | transarterial radioembolization |
AST | aspartate aminotransferase |
ALP | alkaline phosphatase |
PTCD | percuteneous transhepatic cholangio drainage |
HAIC | hepatic artery infusion chemotherapy |
RFA | radiofrequency ablation |
WBC | white blood cell |
CR | complete response |
PR | partial response |
SD | stable disease |
PD | progressive disease |
ORR | objective response rate |
DCR | disease control rate |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Llovet, J.M.; Castet, F.; Heikenwalder, M.; Maini, M.K.; Mazzaferro, V.; Pinato, D.J.; Pikarsky, E.; Zhu, A.X.; Finn, R.S. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2022, 19, 151–172. [Google Scholar] [CrossRef]
- Donne, R.; Lujambio, A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology 2023, 77, 1773–1796. [Google Scholar] [CrossRef]
- Galle, P.R.; Finn, R.S.; Qin, S.; Ikeda, M.; Zhu, A.X.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.; et al. Patient-reported outcomes with atezolizumab plus bevacizumab versus sorafenib in patients with unresectable hepatocellular carcinoma (IMbrave150): An open-label, randomised, phase 3 trial. Lancet Oncol. 2021, 22, 991–1001. [Google Scholar] [CrossRef]
- Yang, X.; Yang, C.; Zhang, S.; Geng, H.; Zhu, A.X.; Bernards, R.; Qin, W.; Fan, J.; Wang, C.; Gao, Q. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell 2024, 42, 180–197. [Google Scholar] [CrossRef]
- Cappuyns, S.; Corbett, V.; Yarchoan, M.; Finn, R.S.; Llovet, J.M. Critical Appraisal of Guideline Recommendations on Systemic Therapies for Advanced Hepatocellular Carcinoma: A Review. JAMA Oncol. 2024, 10, 395–404. [Google Scholar] [CrossRef]
- Sangro, B.; Sarobe, P.; Hervás-Stubbs, S.; Melero, I. Advances in immunotherapy for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 525–543. [Google Scholar] [CrossRef]
- EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [CrossRef]
- European Association for the Study of the Liver. Corrigendum to ‘EASL recommendations on treatment of hepatitis C: Final update of the series’ [J Hepatol 73 (2020) 1170-1218]. J. Hepatol. 2023, 78, 452. [Google Scholar] [CrossRef]
- Yeo, Y.H.; Lee, Y.T.; Tseng, H.R.; Zhu, Y.; You, S.; Agopian, V.G.; Yang, J.D. Alpha-fetoprotein: Past, present, and future. Hepatol. Commun. 2024, 8, e0422. [Google Scholar] [CrossRef]
- Chan, S.L.; Mo, F.K.; Johnson, P.J.; Hui, E.P.; Ma, B.B.; Ho, W.M.; Lam, K.C.; Chan, A.T.; Mok, T.S.; Yeo, W. New utility of an old marker: Serial alpha-fetoprotein measurement in predicting radiologic response and survival of patients with hepatocellular carcinoma undergoing systemic chemotherapy. J. Clin. Oncol. 2009, 27, 446–452. [Google Scholar] [CrossRef]
- Vora, S.R.; Zheng, H.; Stadler, Z.K.; Fuchs, C.S.; Zhu, A.X. Serum alpha-fetoprotein response as a surrogate for clinical outcome in patients receiving systemic therapy for advanced hepatocellular carcinoma. Oncologist 2009, 14, 717–725. [Google Scholar] [CrossRef]
- Shao, Y.Y.; Lin, Z.Z.; Hsu, C.; Shen, Y.C.; Hsu, C.H.; Cheng, A.L. Early alpha-fetoprotein response predicts treatment efficacy of antiangiogenic systemic therapy in patients with advanced hepatocellular carcinoma. Cancer 2010, 116, 4590–4596. [Google Scholar] [CrossRef]
- Li, X.L.; Zhu, X.D.; Cai, H.; Li, Y.; Zhou, J.; Fan, J.; Tang, Z.Y.; Sun, H.C. Postoperative α-fetoprotein response predicts tumor recurrence and survival after hepatectomy for hepatocellular carcinoma: A propensity score matching analysis. Surgery 2019, 165, 1161–1167. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Van Dao, T.; De Toni, E.N.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evid. 2022, 1, EVIDoa2100070. [Google Scholar] [CrossRef]
- Sperandio, R.C.; Pestana, R.C.; Miyamura, B.V.; Kaseb, A.O. Hepatocellular Carcinoma Immunotherapy. Annu. Rev. Med. 2022, 73, 267–278. [Google Scholar] [CrossRef]
- Harkus, U.; Wankell, M.; Palamuthusingam, P.; McFarlane, C.; Hebbard, L. Immune checkpoint inhibitors in HCC: Cellular, molecular and systemic data. Semin. Cancer Biol. 2022, 86, 799–815. [Google Scholar] [CrossRef]
- Pang, B.Y.; Leng, Y.; Wang, X.; Wang, Y.Q.; Jiang, L.H. A meta-analysis and of clinical values of 11 blood biomarkers, such as AFP, DCP, and GP73 for diagnosis of hepatocellular carcinoma. Ann. Med. 2023, 55, 42–61. [Google Scholar] [CrossRef]
- Xue, J.; Cao, Z.; Cheng, Y.; Wang, J.; Liu, Y.; Yang, R.; Li, H.; Jiang, W.; Li, G.; Zhao, W.; et al. Acetylation of alpha-fetoprotein promotes hepatocellular carcinoma progression. Cancer Lett. 2020, 471, 12–26. [Google Scholar] [CrossRef]
- Galle, P.R.; Foerster, F.; Kudo, M.; Chan, S.L.; Llovet, J.M.; Qin, S.; Schelman, W.R.; Chintharlapalli, S.; Abada, P.B.; Sherman, M.; et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int. 2019, 39, 2214–2229. [Google Scholar] [CrossRef]
- Hong, Y.; Peng, Y.; Guo, Z.S.; Guevara-Patino, J.; Pang, J.; Butterfield, L.H.; Mivechi, N.F.; Munn, D.H.; Bartlett, D.L.; He, Y. Epitope-optimized alpha-fetoprotein genetic vaccines prevent carcinogen-induced murine autochthonous hepatocellular carcinoma. Hepatology 2014, 59, 1448–1458. [Google Scholar] [CrossRef]
- He, Y.; Hong, Y.; Mizejewski, G.J. Engineering α-fetoprotein-based gene vaccines to prevent and treat hepatocellular carcinoma: Review and future prospects. Immunotherapy 2014, 6, 725–736. [Google Scholar] [CrossRef]
- Taketa, K. Alpha-fetoprotein: Reevaluation in hepatology. Hepatology 1990, 12, 1420–1432. [Google Scholar] [CrossRef]
- Wang, W.; Wei, C. Advances in the early diagnosis of hepatocellular carcinoma. Genes. Dis. 2020, 7, 308–319. [Google Scholar] [CrossRef]
- Mittendorf, E.A.; Burgers, F.; Haanen, J.; Cascone, T. Neoadjuvant Immunotherapy: Leveraging the Immune System to Treat Early-Stage Disease. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 189–203. [Google Scholar] [CrossRef]
- American Association for Cancer Research. Conference Poster (A single-center, randomized, Phase II trial for resectable locally advanced esophageal squamous cell carcinoma (LA-ESCC), aiming to evaluate the efficacy of camrelizumab combined with chemotherapy as neoadjuvant treatment.). In Proceedings of the 2024 American Association for Cancer Research (AACR) Annual Meeting, San Diego, CA, USA, 5–10 April 2024. [Google Scholar]
- Wang, X.Q.; Danenberg, E.; Huang, C.-S.; Egle, D.; Callari, M.; Bermejo, B.; Dugo, M.; Zamagni, C.; Thill, M.; Anton, A.; et al. Spatial predictors of immunotherapy response in triple-negative breast cancer. Nature 2023, 621, 868–876. [Google Scholar] [CrossRef]
- Qin, J.; Xue, L.; Hao, A.; Guo, X.; Jiang, T.; Ni, Y.; Liu, S.; Chen, Y.; Jiang, H.; Zhang, C.; et al. Neoadjuvant chemotherapy with or without camrelizumab in resectable esophageal squamous cell carcinoma: The randomized phase 3 ESCORT-NEO/NCCES01 trial. Nat. Med. 2024, 30, 2549–2557. [Google Scholar] [CrossRef]
- Deutsch, J.S.; Cimino-Mathews, A.; Thompson, E.; Provencio, M.; Forde, P.M.; Spicer, J.; Girard, N.; Wang, D.; Anders, R.A.; Gabrielson, E.; et al. Association between pathologic response and survival after neoadjuvant therapy in lung cancer. Nat. Med. 2024, 30, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Zhao, H.; Zhao, H.; Li, G.; Wang, X.; Chen, B.; Zhang, W.; Che, X.; Huang, Z.; Han, Y.; et al. Consensus of Chinese expert on neoadjuvant and conversion therapies for hepatocellular carcinoma: 2023 update. Liver Cancer 2024, 1–16. Available online: https://karger.com/lic/article/doi/10.1159/000541249/912695/Consensus-of-Chinese-Experts-on-Neoadjuvant-and (accessed on 2 December 2024). [CrossRef]
- Harding-Theobald, E.; Louissaint, J.; Maraj, B.; Cuaresma, E.; Townsend, W.; Mendiratta-Lala, M.; Singal, A.G.; Su, G.L.; Lok, A.S.; Parikh, N.D. Systematic review: Radiomics for the diagnosis and prognosis of hepatocellular carcinoma. Aliment. Pharmacol. Ther. 2021, 54, 890–901. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, T.; Hsu, C.; Lu, L.; Shen, Y.; Lin, Z.; Cheng, A.; Hsu, C. Early alpha-foetoprotein response associated with treatment efficacy of immune checkpoint inhibitors for advanced hepatocellular carcinoma. Liver Int. 2019, 39, 2184–2189. [Google Scholar] [CrossRef]
- Kim, H.I.; Lim, J.; Shim, J.H. Role of the alpha-fetoprotein response in immune checkpoint inhibitor-based treatment of patients with hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2022, 148, 2069–2077. [Google Scholar] [CrossRef]
- Lee, P.-C.; Chao, Y.; Chen, M.-H.; Lan, K.-H.; Lee, C.-J.; Lee, I.-C.; Chen, S.-C.; Hou, M.-C.; Huang, Y.-H. Predictors of Response and Survival in Immune Checkpoint Inhibitor-Treated Unresectable Hepatocellular Carcinoma. Cancers 2020, 12, 182. [Google Scholar] [CrossRef]
- Shao, Y.; Chen, B.; Ou, D.; Lin, Z.; Hsu, C.; Wang, M.; Cheng, A. Lenalidomide as second-line therapy for advanced hepatocellular carcinoma: Exploration of biomarkers for treatment efficacy. Aliment. Pharmacol. Ther. 2017, 46, 722–730. [Google Scholar] [CrossRef]
Variables | Total (n = 159) | Sustained Response Group (n = 63) | Early Progression Group (n = 96) | p Value |
---|---|---|---|---|
Sex, n (%) | 0.266 | |||
Female | 21 (13.2) | 6 (9.5) | 15 (15.6) | |
Male | 138 (86.8) | 57 (90.5) | 81 (84.4) | |
Age, n (%) | 0.274 | |||
≤60 y | 104 (65.4) | 38 (60.3) | 66 (68.8) | |
>60 y | 55 (34.6) | 25 (39.7) | 30 (31.3) | |
Diagnose, n (%) | 1.000 | |||
Alcoholic HCC | 22 (13.8) | 9 (14.3) | 13 (13.5) | |
Hepatitis virus-associated HCC | 129 (81.1) | 51 (81.0) | 78 (81.3) | |
Cholangiocarcinoma | 8 (5.0) | 3 (4.8) | 5 (5.2) | |
TNM, n (%) | 0.603 | |||
3 | 5 (26.3) | 1 (14.3) | 4 (33.3) | |
4 | 14 (73.7) | 6 (85.7) | 8 (66.7) | |
BCLC stage, n (%) | 0.235 | |||
A | 11 (7.8) | 7 (12.3) | 4 (4.8) | |
B | 29 (20.6) | 13 (22.8) | 16 (19.1) | |
C (PVTT) | 55 (39.0) | 23 (40.4) | 32 (38.1) | |
C (M) | 43 (30.5) | 14 (24.6) | 29 (34.5) | |
D | 3 (2.1) | 0 (0.0) | 3 (3.6) | |
Child-pugh stage, n (%) | 0.160 | |||
A | 71 (44.7) | 33 (52.4) | 38 (39.6) | |
B | 81 (50.9) | 29 (46.0) | 52 (54.2) | |
C | 7 (4.4) | 1 (1.6) | 6 (6.2) | |
ALBI grade, n (%) | 0.112 | |||
1 | 13 (8.2) | 8 (12.7) | 5 (5.2) | |
2 | 97 (61.1) | 40 (63.5) | 57 (59.4) | |
3 | 49 (30.8) | 15 (23.8) | 34 (35.4) | |
Tumor size, n (%) | 0.008 | |||
<5 cm | 63 (41.2) | 33 (54.1) | 30 (32.6) | |
≥5 cm | 90 (58.8) | 28 (45.9) | 62 (67.4) | |
TARE, n (%) | 0.796 | |||
No | 99 (62.3) | 40 (63.5) | 59 (61.5) | |
Yes | 60 (37.7) | 23 (36.5) | 37 (38.5) | |
AST, n (%) | 0.002 | |||
<40 U/L | 51 (32.1) | 29 (46.0) | 22 (22.9) | |
≥40 U/L | 108 (67.9) | 34 (54.0) | 74 (77.1) | |
AFP, n (%) | 0.005 | |||
<400 (ng/mL) | 96 (62.0) | 46 (75.4) | 50 (53.2) | |
≥400 (ng/mL) | 59 (38.0) | 15 (24.6) | 44 (46.8) | |
Combination treatment, n (%) | 0.130 | |||
Sintilimab + Lenvatinib/Sorafenib/Bevacizumab | 109 (68.5) | 40 (63.5) | 72 (75.0) | |
Camrelizumab + Lenvatinib/Sorafenib | 21 (13.2) | 9 (14.3) | 12 (12.5) | |
Tislelizumab + Lenvatinib/Sorafenib | 16 (10.1) | 11(17.5) | 5 (5.2) | |
Cadonilimab + Lenvatinib | 7 (4.4) | 2 (3.2) | 5 (5.2) | |
Other medication regimens | 6 (3.8) | 1 (1.6) | 2 (2.1) | |
Prior treatment, n (%) | 0.328 | |||
PTCD | 9 (10.8) | 6 (12.0) | 3 (9.7) | |
Curative treatment (Surgery, Ablation) | 7 (8.4) | 6 (12.0) | 1 (3.2) | |
Local-regional (TACE, HAIC, RFA) | 54 (65.1) | 28 (56.0) | 24 (77.4) | |
Target therapy (Sorafenib, lenvatinib) | 10 (15.9) | 7 (14.0) | 3 (9.7) | |
Radiotherapy | 3 (4.8) | 3 (6.0) | 0 (0.0) |
Variables | Univariate Analysis | Multivariate Analysis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
β | S.E | Z | p | OR (95% CI) | β | S.E | Z | p | OR (95% CI) | |
ALBI grade | ||||||||||
1 | 1.00 (Reference) | |||||||||
2 | 0.82 | 0.61 | 1.36 | 0.174 | 2.28 (0.69~7.48) | |||||
3 | 1.29 | 0.65 | 1.99 | 0.047 | 3.63 (1.02~12.94) | |||||
Tumor size | ||||||||||
<5 cm | 1.00 (Reference) | |||||||||
≥5 cm | 0.89 | 0.34 | 2.62 | 0.009 | 2.44 (1.25~4.74) | |||||
AST (U/L) | ||||||||||
<40 U/L | 1.00 (Reference) | 1.00 (Reference) | ||||||||
≥40 U/L | 1.05 | 0.35 | 3.01 | 0.003 | 2.87 (1.44~5.70) | 0.88 | 0.50 | 1.76 | 0.079 | 2.41 (0.90~6.43) |
Alkaline phosphatase | ||||||||||
<150 U/L | 1.00 (Reference) | |||||||||
≥150 U/L | 1.15 | 0.35 | 3.31 | <0.001 | 3.15 (1.60~6.23) | |||||
γ-glutamyl | ||||||||||
<50 U/L | 1.00 (Reference) | 1.00 (Reference) | ||||||||
≥50 U/L | 1.31 | 0.37 | 3.50 | <0.001 | 3.70 (1.78~7.71) | 0.98 | 0.53 | 1.87 | 0.062 | 2.68 (0.95~7.51) |
AFP (ng/mL) | ||||||||||
<400 (ng/mL) | 1.00 (Reference) | |||||||||
≥400 (ng/mL) | 0.99 | 0.36 | 2.74 | 0.006 | 2.70 (1.33~5.49) | |||||
Early AFP response | ||||||||||
No | 1.00 (Reference) | 1.00 (Reference) | ||||||||
Yes | −0.92 | 0.42 | −2.20 | 0.028 | 0.40 (0.18~0.91) | −1.09 | 0.47 | −2.34 | 0.019 | 0.34 (0.13~0.84) |
WBC (109/L) | 0.13 | 0.07 | 1.98 | 0.047 | 1.14 (1.01~1.31) | 0.12 | 0.08 | 1.47 | 0.140 | 1.13 (0.96~1.33) |
Monocyte (109/L) | 1.70 | 0.77 | 2.21 | 0.027 | 5.45 (1.21~24.59) |
Treatment Response of 3 Months | Early AFP Response (n = 43) | Early AFP Nonresponse (n = 28) | p Value |
---|---|---|---|
CR | 2 (4.6%) | 1 (3.6%) | |
PR | 15 (34.9%) | 2 (7.1%) | |
SD | 15 (34.9%) | 6 (21.4%) | |
PD + death | 11 (25.6%) | 19 (67.9%) | |
ORR (CR + PR) | 17 (39.5%) | 3 (10.1%) | 0.014 |
DCR (CR + PR + SD) | 32 (74.4%) | 9 (32.1%) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Pan, S.; Wang, Y.; Yu, Y.; Wang, S.; Shen, Y.; Yang, L.; Liu, X.; Qiu, Q.; Luan, J.; et al. Early Alpha-Fetoprotein Response Predicts Sustained Tumor Response Following Immune Checkpoint Inhibitors Combined with Targeted Therapy in Liver Cancer. Biomedicines 2024, 12, 2769. https://doi.org/10.3390/biomedicines12122769
Tian J, Pan S, Wang Y, Yu Y, Wang S, Shen Y, Yang L, Liu X, Qiu Q, Luan J, et al. Early Alpha-Fetoprotein Response Predicts Sustained Tumor Response Following Immune Checkpoint Inhibitors Combined with Targeted Therapy in Liver Cancer. Biomedicines. 2024; 12(12):2769. https://doi.org/10.3390/biomedicines12122769
Chicago/Turabian StyleTian, Jiahe, Shida Pan, Yilin Wang, Yingying Yu, Siyu Wang, Yingjuan Shen, Luo Yang, Xiaomeng Liu, Qin Qiu, Junqing Luan, and et al. 2024. "Early Alpha-Fetoprotein Response Predicts Sustained Tumor Response Following Immune Checkpoint Inhibitors Combined with Targeted Therapy in Liver Cancer" Biomedicines 12, no. 12: 2769. https://doi.org/10.3390/biomedicines12122769
APA StyleTian, J., Pan, S., Wang, Y., Yu, Y., Wang, S., Shen, Y., Yang, L., Liu, X., Qiu, Q., Luan, J., Wang, F., & Meng, F. (2024). Early Alpha-Fetoprotein Response Predicts Sustained Tumor Response Following Immune Checkpoint Inhibitors Combined with Targeted Therapy in Liver Cancer. Biomedicines, 12(12), 2769. https://doi.org/10.3390/biomedicines12122769